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Recent technological advances have enabled assaying DNA methylation 
in single cells. Current protocols are limited by incomplete CpG 
coverage and hence methods to predict missing methylation states are 
critical to enable genome-wide analyses. We here report DeepCpG, a 
computational approach based on deep neural networks to predict DNA 
methylation states from DNA sequence and incomplete methylation 
profiles in single cells. We validate DeepCpG on mouse embryonic stem 
cells, where we report substantially more accurate predictions than 
previous methods. Additionally, we show that DeepCpG provides new 
insights for interpreting the sources of epigenetic diversity. Our model 
can be used to estimate the effect of single nucleotide changes and we 
uncover sequence motifs that are associated with DNA methylation level 
and epigenetic heterogeneity. 
 

Introduction 
DNA methylation is one of the most extensively studied epigenetic marks, and 

is known to be implicated in a wide range of biological processes, including 

chromosome instability, X-chromosome inactivation, cell differentiation, 

cancer progression and gene regulation1–4. 
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Well-established protocols exist for quantifying average DNA methylation 

levels in populations of cells. Recent technological advances have enabled 

profiling DNA methylation at single-cell resolution, either using genome-wide 

bisulfite sequencing (scBS-seq5) or reduced representation protocols 

(scRRBS6,7). These protocols have already provided unprecedented insights 

into the regulation and the dynamics of DNA methylation in single cells6,8, and 

have uncovered new linkages between epigenetic and transcriptional 

heterogeneity 9–11.  

 

Because of the small amounts of genomic DNA starting material per cell, 

single-cell methylation analyses are intrinsically limited by moderate CpG 

coverage (Fig. 1a, 20-40% for current protocols5). Consequently, a first critical 

step is to predict missing methylation states to enable genome-wide analyses. 

While methods exist for predicting average DNA methylation profiles in cell 

populations12–16, these approaches do not account for cell-to-cell variability, 

which is critical for studying epigenetic diversity. Additionally, existing 

approaches require a priori defined features and genome annotations, which 

are typically limited to a narrow set of cell types and conditions. 

 

Here we report DeepCpG, a computational method based on deep neural 

networks17–19 for predicting single-cell methylation states and for modelling 

the sources of DNA methylation heterogeneity. DeepCpG leverages 

associations between DNA sequence patterns and methylation states as well 

as between neighbouring CpG sites, both within individual cells and across 

cell populations. Unlike previous methods12,13,15,20–23, our approach does not 

separate the extraction of DNA sequence features and model training. 

Instead, DeepCpG uses a modular architecture to learn predictive sequence 

patterns in a data-driven manner. We evaluate DeepCpG on mouse 

embryonic stem cells profiled using scBS-Seq, finding that our model yields 

substantially more accurate predictions of methylation states than previous 

approaches. Additionally, we show that by interpreting trained model 

parameters, DeepCpG uncovers both previously known and novel sequence 

motifs that are associated with methylation changes and epigenetic 

heterogeneity between cells. 
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Results 
DeepCpG is trained to predict binary CpG methylation states from local DNA 

sequence windows and observed neighbouring methylation states (Fig. 1a). A 

major feature of the model is its modular architecture, comprising of a CpG 

module to account for correlations between CpG sites within and across cells, 

a DNA module to detect informative sequence patterns, and a fusion module 

that integrates the evidence from the CpG and DNA module to predict 

methylation states at target CpG sites (Fig. 1b).  

 

  
Figure 1 | DeepCpG model training and applications. (a) Sparse single-cell CpG 
profiles, for example as obtained by scBS-Seq5. Methylated CpG sites are denoted 
by ones, unmethylated CpG sites by zeros, and CpG sites with missing methylation 
state by question marks. (b) Modular architecture of DeepCpG. The DNA module 
uses convolutional filters and pooling operations to identify predictive sequence 
motifs. The CpG module identifies patters in the CpG neighbourhood across multiple 
cells, using cell-specific convolution and pooling operations (rows in b). The fusion 
module models interactions between higher-level features derived form the DNA- 
and CpG module to predict methylation states in all cells. (c,d) The trained DeepCpG 
model is used for downstream analyses, including the genome-wide imputation of 
missing CpG sites (c) and the discovery of DNA sequence motifs that are associated 
with DNA methylation level and cell-to-cell heterogeneity (d).  
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Briefly, the DNA and CpG module are built using convolutional neural 

networks, which have been successfully applied in different domains24–27, 

including bioinformatics28–32. DNA sequences in windows centred on target 

CpG sites form the input to the DNA module, which uses convolutional filters 

to scan for sequence motifs, analogous to conventional position weight 

matrices33,34 (Online methods). Similarly, the CpG module has a 

convolutional architecture to detect predictive patterns in neighbouring CpG 

sites based on methylation states and their distances to the target site. 

Finally, the fusion module learns cell-specific interactions between output 

features of the DNA- and CpG module using a multi-task architecture, to 

predict the methylation state of target sites in all cells. The trained DeepCpG 

model is then used for different downstream analyses, including i) to impute 

low-coverage methylation profiles for sets of cells and ii) to discover DNA 

sequence motifs that are associated with DNA methylation states and cell-to-

cell heterogeneity (Fig. 1c). 

 

DeepCpG accurately predicts single-cell methylation states 
We applied DeepCpG to 32 mouse embryonic stem cells profiled using scBS-

seq5 (12 2i-cultured cells, 20 serum-cultured cells; average CpG coverage 

17.7%; Supplementary Fig. 1). We compared the prediction accuracy of 

DeepCpG to a baseline model that estimates average methylation levels in 

consecutive 3 kb regions (WinAvg)5, as well as a prediction model based on 

random forests (RF)35 . Methods were trained, selected, and tested on distinct 

chromosomes via holdout validation (Online methods), and we quantified 

prediction accuracies using the area under the receiver operating 

characteristics curve (AUC). DeepCpG yielded more accurate predictions 

than alternative methods (Fig. 1a), which was consistent for all individual cells 

(Fig. 1a,b) and when considering alternative metrics such as precision-recall 

(Supplementary Fig. 2 and Supplementary Table 1). The average 

methylation rate was highly correlated with cell-specific prediction accuracies 

(R=0.91, 𝑃 = 1.03×10!!" ), consistently within 2i and serum cells 

(Supplementary Fig. 3). This relationship explains the different prediction 
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accuracies between 2i-cultured cells (AUC 0.80; 31.1% average methylation) 

and serum-grown cells (AUC 0.87; 63.9% average methylation; Fig. 2a,b). 
 

To explore to which extent DeepCpG can impute methylation in domains 

without observed methylation states, we evaluated the DNA module 

separately (DeepCpG Seq). Notably, although this reduced model does not 

account for local CpG correlations, its performance was similar to 

conventional window averaging (AUC 0.78 WinAvg, AUC 0.77 DeeCpG Seq), 

and it was considerably more accurate than a random forest model trained on 

k-mer frequencies derived from the same sequence windows  (RF Seq, AUC 

0.72). Consistent with these results, we also found that the relative gains of 

the full DeepCpG model compared to other methods were largest in regions 

with low CpG coverage (Fig. 1c). This suggests that DeepCpG can be used 

to extrapolate to larger uncovered genomic regions, for example as obtained 

when using reduced representation sequencing data7. 

 

In line with previous findings12,13, we also observed a relationship between GC 

content and prediction accuracy, where GC-rich regions tended to be 

associated with increased accuracy (Supplementary Fig. 4). Notably, 

DeepCpG performed markedly better than alternative methods in GC-poor 

genomic contexts, including non-CGI promoters, enhancer regions, and 

histone modification marks (H3K4me1, H3K27ac) —contexts that are known 

to be associated with higher epigenetic heterogeneity between cells5.  
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Figure 2 | DeepCpG accurately predicts single-cell CpG methylation 
states. (a) Genome-wide prediction accuracy for imputing CpG sites in mouse 
embryonic stem cells (20 serum-cultured cells, red; 12 2i-cultured cells, blue). 
Shown is the prediction accuracy for individual cells and for alternative 
methods, quantified using the area under the receiver-operating characteristic 
curve (AUC) based on holdout validation. Considered were DeepCpG, 
window averaging in consecutive 3 kb regions (WinAvg), a random forest 
model (RF), and the corresponding models when trained with DNA sequence 
windows only (DeepCpG Seq, RF Seq). (b) Prediction accuracy for individual 
cells, comparing DeepCpG and RF. (c,d) AUC in genomic regions stratified 
by the fraction of cells with sequence coverage (c) and when considering 
alternative sequence contexts (d).  
 

 

A major advantage of DeepCpG compared to previous methods is its 

convolutional architecture, which allows for discovering predictive motifs in 

larger DNA sequence contexts, as well as for capturing complex methylation 

patterns in neighbouring CpG sites. Indeed, the accuracy of DeepCpG was 

markedly reduced when considering smaller sequence windows (AUC 0.77 

vs. 0.72 for 501 bp and 101 bp contexts; Supplementary Fig. 5), or when 

limiting the number of neighbouring CpG sites in the model (Supplementary 
Fig. 6). We also confirmed that models that include methylation states from 
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other cells were more accurate than equivalent models applied to individual 

cells (Supplementary Fig. 7). 
 

Finally, we compared DeepCpG to a random forest model based on rich DNA 

annotations, including genomic contexts, and tissue-specific elements such as 

DNase1 hypersensitivity sites, histone modification marks, and transcription 

factor binding sites12 (Online methods). Even though DeepCpG does not use 

external annotations, the model clearly outperformed such an approach  

(Supplementary Fig. 8). This strongly suggests that DeepCpG learns higher-

level annotations from the DNA sequence. This ability is particularly important 

for analysing single-cell datasets, where individual cells may be from different 

cell types and cell states, making it difficult to choose appropriate annotations. 

 
Analysis the effect of DNA sequence features on DNA 
methylation 
In addition to imputing missing methylation states, DeepCpG can be used to 

discover methylation-associated motifs, and investigate effects of DNA 

mutations and neighbouring CpG sites on CpG methylation. 

 

To explore this, we analysed the filters of the first convolutional layer of the 

DNA module, which recognize DNA sequence motifs similarly to conventional 

position weight matrices (Fig. 3a). 18 out of 98 discovered motifs could be 

matched to known motifs in CIS-BP36 and UniPROPE37 (FDR<0.01). We 

considered two complementary metrics to score the importance of individual 

motifs: i) their occurrence frequency in DNA sequence windows (activity), and 

ii) the estimated association with single-cell methylation states (Online 
Methods; see Supplementary Table 2, Supplementary Fig. 9, 10). 

 

A principal component analysis on the motif activity revealed that motifs with 

similar nucleotide composition tend to co-occur in the same sequence 

windows, where two major motif clusters were associated with increased or 

decreased methylation levels (Fig. 3a, Supplementary Fig. 10). Consistent 

with previous findings16,38,39, we observed that motifs associated with 



 8 

decreased methylation were CG rich and most active in CG rich promoter 

regions, transcription start sites, as well as in contexts with active promoter 

marks such as H3K4me3 and p300 sites (Supplementary Fig. 9). These 

include known transcription factors and regulators of cell differentiation such 

as Max40, E2f41, and members of the Sp/KLF family42. Conversely, motifs 

associated with increased methylation levels tended to be AT rich and most 

active in CG poor genomic contexts (Supplementary Figure 9). Examples 

include the serum response factor (Srf)43,44, Tlx245, and Gata546, with known 

implications for cell differentiation.  

 

DeepCpG further allows estimating the effect of single nucleotide mutations 

on CpG methylation. For this purpose, we developed an approach that 

exploits gradient information47, a strategy that is computationally more 

efficient than previous approaches29,30,32 (Online methods).  Sequence 

changes in the direct vicinity of the target site had the largest predicted effects 

(Fig. 3b). Mutations in CG dense regions such as CpG islands or promoters 

tended to have smaller effects, suggesting that DNA methylation in these 

regions is more robust to single base-pair mutations. Globally, we observed 

that the predicted effect of single-nucleotide changes was significantly anti-

correlated with DNA sequence conservation (𝑃 < 1.0×10!!", Supplementary 
Fig. 11), providing evidence that the model-based effect size estimates of 

DeepCpG capture genuine effects. 

 

We used the analogous approach to quantify the effect of epimutations on 

neighbouring CpG sites, again finding a clear relationship between distance 

and the mutational effect (Fig. 3c). Similar to DNA mutations, we found that 

alterations in CG dense regions had smaller effects, whereas CpG island 

shores and CG poor regions had larger mutational effects close to the target 

site, which is consistent with previous findings12,48. 
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Figure 3: Analysis of DNA sequence features and impact of genetic and 
epigenetic mutations. (a) Clustering of 98 discovered motifs. Shown are the 
two first principal components of the motif occurrence frequencies in genome-
wide sequence windows. Triangles denote annotated motifs (matched to CIS-
BP36 and UniPROPE37; FDR<0.01); circles denote de novo motifs. The 
symbol size indicates the average occurrence frequency (activity); the 
estimated motif effect on methylation level is shown in colour. Sequence logos 
are shown for representative motifs with larger effects, including 9 annotated 
motifs. PC1 separates GC rich motifs (PC 1 high, decreased methylation) and 
AT rich motifs (PC 1 low, increased methylation). (b,c) Average effect of DNA 
sequence mutations (b) and epimutations (c) on methylation levels, as a 
function of distances to the CpG site and for different sequence contexts.  
 
Discovery of DNA sequence motifs that are associated with 
epigenetic variability 
Uniquely, single-cell methylation studies allow quantifying the epigenetic 

diversity to study the sources of this variation.  

 

To discern motifs that affect variability between cells from those that affect 

overall methylation level, we trained a second neural network, reusing the 

learnt motifs from the DNA module of DeepCpG, however using a multi-task 

objective to jointly predict the variability across cells and the average 

methylation level for each CpG site (Online methods). 
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Notably, this model could predict both global changes in DNA methylation 

level (Pearson’s R=0.77; MAD=0.11; Supplementary Fig. 12; hold-out 

validation), and cell-to-cell variability (Pearson’s R=0.48; MAD=0.03; Fig. 4c, 
or Kendall’s R=0.3, Supplementary Fig. 13).  

 

To identify motifs that drive epigenetic variability between cells, we estimated 

the effect of individual motifs on both cell-to-cell variability and methylation 

levels. Although there is an intrinsic mean-variance relationship of methylation 

levels (Supplementary Fig. 14), we identified 12 motifs that were primarily 

associated with differences in cell-to-cell variability (Fig. 4a).  These motifs 

were most active in CG-poor and active enhancer regions — sequence 

contexts with increased epigenetic variability between cells5. Six AT-rich 

motifs were associated with increased variability, including Tlx2 and the 

serum response factor Srf, both known transcription factors that play a role in 

cell-differentiation and gene expression regulation44,45. Notably, variance-

increasing motifs were more frequent in non-conserved regions such as active 

enhancers, in contrast to variance- decreasing motifs, which were enriched in 

evolutionary conserved regions such as gene promoters (Fig. 4b, 

Supplementary Fig. 15). 

 

As an indirect validation of model predictions for heterogeneous sites, we 

overlaid the predicted cell-to-cell variability with methylome-transcriptome 

linkages obtained using parallel single-cell methylation and transcriptome 

sequencing in the same cell type9. The rationale behind this approach is that 

regions with increased epigenetic heterogeneity are more likely to harbour 

associations between transcriptional and epigenetic diversity. Indeed, we 

observed that the predicted epigenetic heterogeneity was correlated to the 

level of epigenome-transcriptome coupling (Supplementary Fig. 16). This 

suggests that DNA sequence motifs discovered using DeepCpG explain a 

genuine component of the epigenetic heterogeneity between cells. 
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Figure 4: Prediction of epigenetic heterogeneity from local DNA 
sequence. (a) Difference of motif effect on cell-to-cell variability and 
methylation levels for different genomic contexts. Motifs associated with cell-
to-cell variability are highlighted in brown; motifs that were primarily 
associated with changes in methylation level are shown in purple. (b) 
Genome-wide correlation coefficients between motif activity and DNA 
sequence conservation (left), as well as cell-to-cell variability (right). (c) 
Sequence logos for selected motifs identified in a. (d) Boxplots of the 
predicted and the observed cell-to-cell variability in different genomic contexts 
(left) alongside Pearson’s and Kendall’s correlation coefficients between 
predicted and observed heterogeneity within contexts (right). 
 

Discussion 
Here we reported DeepCpG, a computational approach based on 

convolutional neural networks for modelling low-coverage single-cell 

methylation data. In applications to mouse embryonic stem cells, we have 

shown that DeepCpG accurately predicts missing methylation states, and 

detects sequence motifs that are associated with changes in methylation level 

and epigenetic heterogeneity. 
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We have demonstrated that our model enables accurate imputation of missing 

methylation states, thereby facilitating genome-wide downstream analyses. 

DeepCpG offers most important advantages in shallow sequenced cells as 

well as in sparsely covered sequence contexts with increased epigenetic 

heterogeneity between cells. More accurate imputation methods may also 

help to reduce the required sequencing depth in single-cell bisulfite 

sequencing studies, thereby enabling assaying larger numbers of cells at 

lower cost. 

 

We have further shown that DeepCpG enables the interpretation of DNA 

sequence and CpG methylation features that are associated with changes in 

DNA methylation states. We have identified known and de novo sequence 

motifs that are predictive for DNA methylation level or methylation 

heterogeneity. Models such as DeepCpG allow discerning pure epigenetic 

effects from variation that reflect DNA sequence changes. Although we have 

not considered this in our work, it would also be possible to consider the 

model residuals to study epigenetic variation that is unlinked to DNA 

sequence effects. 

 

Finally, we have used additional data obtained from parallel methylation-

transcriptome sequencing protocols9 to annotate regions with increased 

epigenetic diversity. An important area of future work will be to integrate 

multiple datasets from parallel-profiling methods9,10, which are now becoming 

increasingly available for different molecular layers. 

 

 

Methods 
Methods and any associated references are available in the online version of the 

paper. 

 

Accession codes The scBS-Seq data from 20 serum and 12 2i ES-cells have 

previously been described in Smallwood et al.9 and are available under the Gene 

Expression Omnibus (GEO) accession number GSE56879. 
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Availability of code An implementation of DeepCpG is available at 

https://github.com/cangermueller/deepcpg. 
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Online Methods 

DeepCpG model 
DeepCpG consists of a DNA module to extract features from the DNA 

sequence, a CpG module to extract features from the CpG neighbourhood of 

all cells, and a multi-task fusion model that integrates the evidence from both 

modules to predict the methylation state of target CpG sites for multiple cells. 

DNA module 
The DNA module is built using a convolutional neural network (CNN) with one 

convolutional, pooling, and fully connected hidden layer. CNNs are designed 

to extract features from high-dimensional inputs while keeping the number of 

model parameters tractable by applying a series of convolutional and pooling 

operations. Unless stated otherwise, the DNA module takes as input a 501 bp 

long DNA sequence cantered on a target CpG site 𝑛, which was represented 

as a binary matrix 𝑠! by one-hot encoding the D = 4 nucleotides as binary 

vectors A=[0, 0, 0, 1], G=[0, 0, 1, 0], T=[0, 1, 0, 0], C=[1, 0, 0, 0]. 𝑠! is first 

transformed by a 1d-convolutional layer, which computes the activations 𝑎!"# 

of multiple convolutional filters 𝑓 at every position 𝑖 as follows: 

𝑎!"# = ReLU 𝑤!"#𝑠!,!!!,!!
!!!

!
!!!    (1) 

Here, 𝑤! are the parameters or weights of convolutional filter 𝑓 of length 𝐿. 

This weight vector can be interpreted similarly to a position weight matrix 

(PWM), which is matched against the input sequence 𝑠! at each position 𝑖 to 

recognize a certain motif. The ReLU 𝑥 = max (0, 𝑥) activation function sets 
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negative values to zero, such that 𝑎!"#  indicates to which extend a motif 

represented by 𝑤! occurs as position 𝑖. 

 

A pooling layer is used to summarize the activations of P adjacent neurons by 

their maximum value 

𝑝!"# = max ! !!/! 𝑎!",!!! . 

Non-overlapping pooling is applied with step size 𝑃 to decrease the dimension 

of the input sequence and hence the number of model parameters. The 

pooling layer is followed by one fully connected hidden layer with ReLU 

activation function. 

CpG module 
Akin to the DNA module, the CpG module has of one convolutional, pooling, 

and fully connected hidden layer. The methylation state and distance of 

observed neighbouring CpG sites are inputs to a 2d-convolutional layer. 

Importantly, this layer convolves each cell separately with the same 

convolutional filters to unlink the number of model parameters from the 

number of cells, which can be large. Specifically, for each target site 𝑛, the 

binary methylation state and distance of K = 25 CpG neighbours to the left 

and right of T cells were represented as a T x 2K x D tensor 𝑐!, by storing 

methylation states at dimension d = 1, and distances at dimension d = 2. 

Distances were transformed to relative ranges 0; 1  by dividing by the 

maximum distance. A 2d-convolution layer convolves the CpG neighbourhood 

of cells t independently at every position 𝑖 by using filters 𝑤! of dimension 1 x 

L x D and length 𝐿: 

𝑎!"#$ = ReLU 𝑤!"#𝑐!,!!!,!!
!!!

!
!!! . 
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Non-overlapping pooling of 𝑃  neurons is performed independently on the 

activations 𝑎!"#$ of each cell by using a max-pooling with step size 1 x P: 

p!"#$ = max ! !!/! 𝑎!,!,!,!!!  

The pooling layer is followed by one fully connected hidden layer with ReLU 

activation function. 

Fusion module 
To model cell-specific interactions between extracted DNA sequence and 

CpG neighbourhood features, the fusion module has one hidden layer with 

ReLU activation function, which is connected to all neurons of the last layer of 

the DNA and CpG module. Each hidden layer is connect to one output neuron 

with sigmoid activation function, which predicts the methylation rate 𝑦!" ∈

[0; 1] of CpG site 𝑛 and cell 𝑡: 

𝑦!"(x)=sigmoid(x)=
1

1+ e!!  

Model training 
Model parameters were learnt on the training set by minimizing the following 

loss function: 

𝐿 𝑤 = NLL! 𝑦,𝑦 + 𝜆! 𝑤 ! + 𝜆! 𝑤 ! 

Here, the regularization hyper-parameters 𝜆!  and 𝜆!  penalize large model 

weights quantified by the L1 and L2 norm, respectively, and NLL is the 

negative log-likelihood, which measures the fit between the predicted 

methylation rates 𝑦!" and true methylation states 𝑦!" ∈ {0,1}: 

𝑁𝐿𝐿! 𝑦,𝑦 = − 𝑜!"

!

!!!

!

!!!

𝑦!"𝑙𝑜𝑔 𝑦!" + 1− 𝑦!" log (1− 𝑦!")  
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𝑜!" = 1  if the true methylation state 𝑦!"  is observed and zero otherwise. 

Dropout49 with different dropout rates for the sequence, CpG, and fusion 

module was used for additional regularization. Model parameters were 

initialized randomly following the approach in Golorot et al50. The loss function 

was optimized by mini-batch stochastic gradient descent with Adam51 learning 

rate adaptation. The global learning rate was multiplied by 0.5 if the validation 

loss did not improve over four epochs. Learning was terminated if the 

validation loss did not improve over five epochs (early stopping). The DNA 

and CpG module was pre-trained independently to predict methylation from 

the DNA sequence (DeepCpG Seq) or the CpG neighbourhood (DeepCpG 

CpG) alone, followed by further joint training with the fusion module 

afterwards. Training time on a single NVIDIA Tesla K20 GPU was 

approximately 15 hours for the DNA module, 12 hours for the CpG modules, 

and 4 hours for the fusion module. Hyper-parameters were optimized on the 

validation set by random sampling52, and are summarized in Supplementary 

Table 6. DeepCpG was implemented in Python using Theano53 0.7.0 and 

Keras54 0.2.0. 

Prediction performance evaluation 

Data pre-processing 
We evaluated DeepCpG using a dataset of 20 serum and 12 2i mouse 

embryonic stem cells that have been profiled using scBS-Seq5. Data were 

pre-processed as described in Smallwood et al9, and mapped to the GRCm38 

mouse genome. Binary CpG methylation states were obtained for CpG sites 

with mapped reads, by defining sites with more methylated than un-

methylated read counts as methylated, and un-methylated otherwise.  
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The prediction performance of DeepCpG was compared with window 

averaging (WinAvg), a random forest model with comparable features than 

DeepCpG (RF), and a random forest classifier with high-level sequence 

features as described in Zhang et al20  (RF Zhang).  

 

For all prediction experiments and evaluations, we used chromosomes 1, 3, 5 

and 10 (4,509,888 CpG sites) as training set, chromosomes 7, 9 and 13 

(2,875,909 CpG sites) as validation set, and chromosomes 2, 4, 6 and 12 

(4,359,411 CpG sites) as test set. 

Window averaging (WinAvg) 

For window averaging, the methylation rate 𝑦!" of CpG site n and cell t was 

estimated as the mean of all observed CpG neighbours 𝑦!!!,! in a window of 

length W = 3001 bp cantered on site n: 

𝑦!" = mean
! !!! ,!!!

(𝑦!!!,!) 

 

𝑦!" was set to the  mean genome wide methylation rate of cell t if no CpG 

neighbours were present in the window. 

Random forest models (RF, RF Zhang) 
Features of the RF model are i) the methylation state and distance of 25 CpG 

neighbours to the left and right of the target site (100 features), and ii) 4-mer 

frequencies from the 501 bp genomic sequence cantered on the target site 

(256 features). 
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The set of features for the RF Zhang model are summarized in 

Supplementary Table 5 and include a) the methylation state and distance of 

2 CpG neighbours to the left and right of the target site (8 features), b) 

annotated genomic contexts (23 features), c) transcription factor binding sites 

(24 features), d) histone modification marks (28 features), and e) DNaseI 

hypersensitivity sites (1 feature). Features were downloaded from the 

ChipBase database and UCSC Genome Browser for the GRCm37 mouse 

genome, and mapped to the GRCm38 mouse genome using the liftOver tool 

from the UCSC Genome Browser. 

 

Random forest classifiers were trained independently for individual cells, and 

the number of trees and tree depth optimized on the validation set by random 

sampling. The implementation is based on the RandomForestClassifer class 

of the scikit-learn v0.17 Python package.  

Motif analysis 
In the following, the filters of the first convolutional layer of the DNA module 

will be denoted by the motif that they recognize in the input sequence. 

Visualization, motif comparison, GO analysis 
Filters of the convolutional layer of the DNA module were visualized by 

aligning sequence fragments that maximally activated them. Specifically, the 

activations of all filters were computed for a set of sequences. For each 

sequence 𝑠!  and filter 𝑓  of length 𝐿 , sequence window  𝑠!,!!! ,… , 𝑠!,!!! were 

selected, if the activation 𝑎!"# of filter 𝑓 at position 𝑖 (Equ. 1), was greater than 

0.5 of the maximum activation of 𝑓  over all sequences, i.e. 
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𝑎!"# > 0.5max!,!(𝑎!"#) . Selected sequence windows were aligned and 

visualized as sequence motifs using WebLogo55 version 3.4.  

 

For motif comparison, filter alignments were matched against the Mus 

Musculus CIS-BP36 and UniPROBE37 database (version 12.12, updated 14 

Mar 2016) using Tomtom 4.11.1 from the MEME-Suite56 with a false 

discovery rate threshold of 0.1. 

 

For Genome Ontology (GO) enrichment analysis, the web interface of the 

GOMo tool of MEME-Suite was used. 

Quantification motif importance 
The importance of each filter was quantified by its activity (occurrence 

frequency) and influence on model predictions.  

 

Specifically, the activity of filter 𝑓 for a set of sequences, e.g. within a certain 

genomic context, was computed by averaging mean sequence activations 

𝑎!", where 𝑎!" is the weighted mean over all activations 𝑎!"#  (Eq. 1) using a 

linear weighting function that gives highest weight to the centre position. 

 

The influence of filter 𝑓 on the predicted methylation states 𝑦!" of cell 𝑡 was 

computed as the Spearman correlation 𝑟!" = cor!(𝑎!" ,𝑦!") over CpG sites 𝑖, 

and the mean influence 𝑟! over all cells by averaging 𝑟!". 

Motif co-occurrence 
The co-occurrence of filters (Fig. 3a) was quantified by principle component 

analysis on their mean sequence activations 𝑎!". 
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Conservation analysis 

For computing the correlation between filter activities 𝑎!" and sequence 

conservation, the Spearman correlation was computed as described before. 

PhastCons 57 conservation scores for the Glire subset (phastCons60wayGlire) 

downloaded from the UCSC Web Browser were used to quantify sequence 

conservation. 

Effect of sequence and methylation state changes 
We used gradient-based optimization as described in Simonyan et al.47 to 

quantify the effect of changes in the input sequence 𝑠! on predicted 

methylation rates 𝑦!"(𝑠!). Specifically, let 𝑦!(𝑠!) = mean! 𝑦!"(𝑠!)  be the 

mean predicted methylation rate across cells 𝑡. Then the effect 𝑒!,!,!!  of 

changing nucleotide 𝑑 at position 𝑖 was quantified as: 

𝑒!"#! =
𝑑 𝑦!"(𝑠!)
𝑑𝑠!"#

∗ (1− 𝑠!"#) 

Here, the first term is the first-order gradient of 𝑦! with respect to 𝑠!"#, and the 

second term sets the effect of wild-type nucleotides (𝑠!"# = 1) to zero. The 

overall effect score 𝑒!"!  at position 𝑖 was computed as the maximum absolute 

effect over all nucleotide changes, i.e. 𝑒!"! = max!|𝑒!"#! |. For mutation analysis 

shown in Supplementary Fig. 11, 𝑒!""!  was correlated with PhastCons 

(phastCons60wayGlire) conservation scores. The overall effect of changes at 

position 𝑖 as shown in Fig. 3b was computed by the mean effect 𝑒!! =

mean! 𝑒!"!  over all sequences. 

 

Analogously, the effect 𝑒!"#!   of changing the methylation state 𝑐!"# of cell 𝑡 at 

position 𝑖 was quantified by the first-order gradient: 
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𝑒!"#! =
𝑑 𝑦!"(𝑐!)
𝑑𝑐!"#

 

Predicting cell-to-cell variability 
For predicting cell-to-cell variability (variance) and mean methylation levels, 

we trained a second neural network with the same architecture as the DNA 

module, except for the output layer.  Specifically, output neurons were 

replaced by neurons with sigmoid activation function to predict for single CpG 

sites both the mean methylation rate  𝑚!" and cell-to-cell variance 𝑣!" within a 

window of size 𝑠 ∈ {1000, 2000, 3000, 4000, 5000} bp. Multiple window sizes 

were used to make predictions at different scales and to account for noisy 

estimates in low-coverage regions. For training the resulting model, 

parameters were initialized with the corresponding parameters of the DNA 

module and fine-tuned, except for motif parameters of the convolutional layer. 

Training objective was  

𝐿 𝑤 = MSE! 𝑚,𝑚, 𝑣, 𝑣 + 𝜆! 𝑤 ! + 𝜆! 𝑤 !, 

where MSE the is mean squared error between model predictions and training 

labels: 

𝑀𝑆𝐸! 𝑚,𝑚, 𝑣, 𝑣 = (𝑚!" −𝑚!")! 
!

!!!

+
!

!!!

(𝑣!" − 𝑣!")! 

𝑚!" is the estimated mean methylation level for a window cantered on target 

site 𝑛 of a certain size indexed by 𝑠: 

𝑚!" =
1
𝑇 𝑚!"#

!

!!!
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Here, 𝑚!"# denotes the estimated mean methylation rate of cell 𝑡 computed 

by averaging the binary methylation state 𝑦!" of all observed CpG sites 𝑌!"#  in 

window 𝑠: 

𝑚!"# =
1
𝑌!"#

𝑦!"
!∈!!"#

 

𝑣!" is the estimated cell-to-cell variance 

𝑣!" =
1
𝑇 𝑚!"# −𝑚!"

!
!

!!!

 

2i cells were excluded for estimating 𝑚!" and 𝑣!" due to their low cell-to-cell 

variance. 

Identifying motifs associated with cell-to-cell variability 
The influence 𝑟!"!  of filter 𝑓 on cell-to-cell variability was computed as the 

Spearman correlation between mean sequence filter activities 𝑎!" and 

predicted variances 𝑣!"  over sites 𝑛: 

𝑟!"!  = cor!(𝑎!" , 𝑣!") 

The influence 𝑟!"! on predicted methylation levels 𝑚!" was computed 

analogously. The difference 𝑟!"! = 𝑟!"!  − 𝑟!"!  in influences was used to 

differentiate between motifs that were associated with either high cell-to-cell 

variance (𝑟!"! > 0.2), or changes in mean methylation levels (𝑟!"! < −0.2). 

Function validation of predicted variability 
For functional validation, methylation-transcriptome linkages as reported in 

Angermueller et al.9 were correlated with the predicted cell-to-cell variability. 

Specifically, let 𝑟!"!  be the linkage between expression levels of gene 𝑖 and the 

mean methylation levels of an adjacent region 𝑗 (see Angermueller et al.9). 
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Then we correlated 𝑟!"!  with 𝑣!, which is the average predicted variability over 

all CpG sites within context 𝑗, and FDR adjusted p-values over genes 𝑖 and 

contexts 𝑗. 
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