REGULATORY ARCHITECTURE OF GENE EXPRESSION VARIATION IN THE
THREESPINE STICKLEBACK, GASTEROSTEUS ACULEATUS.

Victoria L. Pritchard 1, Heidi M. Viitaniemi 1, R.J. Scott McCairns 2, Juha Merilä 2,
Mikko Nikinmaa 1, Craig R. Primmer 1 & Erica H. Leder 1.

1 Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
2 Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland.

Abstract

Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located QTL underlying the variation in gene expression (eQTL) in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis and trans regulatory regions. Trans eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations; rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. Observed hotspots did not co-locate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats, suggesting they do not play a role in this well-documented stickleback radiation.
Introduction

It is now known that much adaptive evolution is underlain by changes in regions of the genome regulating gene expression, rather than in the protein coding regions of the genes themselves (Pavey et al. 2010). Recent work has demonstrated that much variation in gene expression is heritable, and thus evolvable via selection (e.g. Ayroles et al. 2009, Powell et al. 2013, Leder et al. 2015).

Correspondingly, studies using model species have found that the genetic polymorphisms underlying phenotypic variation are typically not within genes (Flint and Mackay 2009). Variation in gene expression has been shown to underlie several well-documented cases of phenotypic and/or adaptive divergence. These include plumage coloration and beak shape in birds (Mallarino et al. 2011; Poelstra et al. 2015), mimetic wing patterns in butterflies (Reed et al. 2011; Hines et al. 2012), and flower colour (Durbin et al. 2003). Further, differences in gene expression patterns have been found to correlate with adaptive divergence in multiple species (e.g. Bernatchez et al. 2010; Barreto et al. 2011).

Dysregulation of gene expression due to interactions amongst regulatory loci has potential to cause reduced fitness of inter-population hybrids and thus contribute to reproductive isolation (Ellison and Burton 2008; Turner et al. 2014). However, it may also promote hybrid speciation by enabling hybrids to exploit new niches (Lai et al. 2006).

The genetic architecture of gene expression regulation can be investigated by treating expression variation as a quantitative trait and identifying the genomic locations associated with it (termed ‘expression quantitative trait loci’ or ‘eQTL’). Such studies have shown that the expression of a gene can be regulated by multiple genomic regions, which are traditionally classified as either cis or trans. Cis regulators, including promoters that activate transcription and enhancers that influence transcription levels, are located close to the regulated gene(s). They contain binding sites for regulatory molecules (proteins or mRNA) that are produced by more distant, trans, regulators. As cis regulators are expected to affect only one or a few focal genes, while trans regulators may have pleiotropic effects on many genes, cis and trans regulators are subject to different evolutionary dynamics. Cis regulatory changes are expected to be important drivers of local adaptation (Steige et al. 2015), while intraspecific trans regulatory variation is considered more likely to be under purifying selection (Schaefke et al. 2013 but see also Landry et al. 2005 for discussion of cis-trans coevolution). Correspondingly, trans regulatory polymorphisms tend to affect gene expression less strongly than cis polymorphisms, and their effects are more likely to be non-additive (Zhang et al. 2011; Gruber et al. 2012; Schaefke et al. 2013; Meiklejohn et al. 2014). Nevertheless, work in multiple species has demonstrated an important role for both cis and trans polymorphism in shaping expression variation (Cubillos et al. 2012) and the role of trans variation may have been underestimated due to the higher statistical power required to detect it (Mackay et al. 2009; Clément-Ziza et al. 2014). Interactions involving trans regulators may be particularly important in reducing the fitness of inter-population hybrids (Turner et al. 2014). Supporting the pleiotropic role of trans
regulators, a ubiquitous feature of eQTL studies is the identification of ‘trans eQTL hotspots’, genomic locations associated with expression variation in many distant genes which are thought to harbour one or more important trans regulators (Wu et al. 2008; Clément-Ziza et al. 2014; Meiklejohn et al. 2014).

The threespine stickleback (*Gasterosteus aculeatus*) is an important model in the study of adaptive evolution. Ancestral anadromous populations of threespine stickleback have repeatedly and independently colonized freshwater throughout the Northern Hemisphere (Taylor and McPhail 2000; Mäkinen et al. 2006). Sympatric and parapatric freshwater populations may exploit different habitats (Schluter and McPhail 1992; Roesti et al. 2012). The species is also distributed throughout semi-marine environments with large temperature and salinity gradients, such as estuaries and the brackish water Baltic Sea (McCairns and Bernatchez 2010; Guo et al. 2015; Konijnendijk et al. 2015).

Successful colonization of these diverse habitats necessitates evolutionary adaptation to novel environmental conditions including changed temperature, salinity and predation regimens, a process that can occur rapidly (Barrett et al. 2011; Terekhanova et al. 2014; Lescak et al. 2015). Parallel adaptations between independently founded freshwater populations frequently involve the same regions of the genome and arise from pre-existing genetic variation in the marine population (Colosimo et al. 2005; Hohenlohe et al. 2010; Jones et al. 2012; Liu et al. 2014; Conte et al. 2015, but see DeFaveri et al. 2011; Leinonen et al. 2012; Ferchaud and Hansen 2016). Local adaptation in environmentally heterogeneous habitats such as the Baltic Sea (Guo et al. 2015) and lake-stream complexes (Roesti et al. 2015) has been shown to involve similar genomic pathways. Evidence suggests that much of this adaptation may be due to changes in gene regulation rather than protein structure (Jones et al. 2012). In addition, plasticity in gene expression in response to different environmental conditions may facilitate colonization of novel habitats in the first place (McCairns and Bernatchez 2010; Morris et al. 2014). Leder et al. (2015) recently demonstrated substantial heritability of gene expression variation within a brackish-water population of threespine stickleback, confirming that it is amenable to evolution. One well-documented locally adaptive trait, reduction of the pelvic girdle, is known to be underlain by variation in the cis regulatory region of the *Pitx1* gene (Chan et al. 2010). Recently, Di Poi et al (2016) showed that differences in behaviour and response to stress between marine and freshwater sticklebacks may be modulated by variation in the expression of hormone receptors. Otherwise, the architecture of gene expression regulation in the threespine stickleback and its role in adaptive evolution is only starting to be explored (Chaturvedi et al. 2014).

An understanding of the potential role of gene expression variation in facilitating local adaptation will be aided by an understanding of the regulatory architecture underlying that gene expression. Here, we perform the first genome-wide study of this regulatory architecture in the threespine stickleback, by mapping QTL underlying the variation in expression of several thousand genes in a population from the Baltic Sea.
Methods

Experimental crosses.

We used a multi-family paternal half-sib crossing design for QTL mapping. Crossing procedures have previously been detailed in Leinonen et al. (2011) and Leder et al. (2015). In short, 30 mature males and 60 gravid females were collected from the Baltic Sea for use as parents. Each male was artificially crossed with two females, producing 30 half-sib blocks each containing two full-sib families. Families were reared in separate 10L tanks with density standardized to 15 individuals per tank, temperature at 17 ± 1°C and 12:12h light/dark photoperiod. At the age of six months, ten offspring from each family (5 treated, 5 controls) were subject to a temperature treatment as part of a related experiment (Leder et al. 2015), and immediately euthanized for DNA and RNA collection.

RNA preparation, microarray design, and data normalization

RNA preparation, gene expression microarrays, hybridization, and normalization procedures are described in detail in Leder et al. (2009, 2015). Briefly, total RNA was isolated from offspring liver tissue using standard protocols. RNA that passed quality thresholds was labelled (Cy3 or Cy5) using the Agilent QuickAmp Kit, with equal numbers of individuals within family groups (control & temperature-treated; males & females) assigned to each dye. Labelled RNA was hybridized to a custom 8x15 microarray, with sample order randomized (Agilent Hi-RPM kit). Images of the arrays were acquired, image analysis was performed, and array quality was assessed as detailed in Leder et al. (2015). Post-processed signals were standardized across arrays using a supervised normalization approach, implemented in the package 'snm' for R/Bioconductor (Mecham et al. 2010; R Core Team 2015). Dye, array and batch (i.e. slide) were defined as ‘adjustment variables’; sex, family and temperature treatment were defined as ‘biological variables’. Following normalization, individual intensity values more than two standard deviations from their family-by-treatment mean, and probes with missing values for an entire family or >10% of individuals were removed. The final dataset contained 10,527 expression traits (10,495 genes plus 32 additional splice variants) and 563 individuals (158 control females; 125 control males; 152 treated females; 128 treated males).

Genotyping-by-Sequencing

For genotyping-by-sequencing of parents and offspring we used the method of Elshire et al. (2011) with an additional gel excision step to improve size selection. DNA was extracted from ethanol preserved fin tissue (parents) or frozen liver tissue (offspring) and DNA concentrations were measured using a NanoDrop ND-1000 spectrophotometer. DNA (80 ng) was digested with the restriction enzyme PstI 1.5 U (New England Biolabs) and 1x NEB buffer 3, 1x bovine serum albumin (BSA) and dH$_2$O (3.3 µl) in a thermocycler (37°C, 2h; 75°C, 15min; 4°C, 10min). The digested DNA was ligated to adapters with T4-ligase 0.6x (New England Biolabs), 1x Ligase Buffer, 21 µl dH$_2$O and
50 nM of pooled forward and reverse adapters, which were prepared according to Elshire et al. (2011; ligation program: 22°C, 1h; 65°C, 30min; 4°C, 10min). Up to one hundred and four unique barcodes were used in each library to label individual samples. The ligation products were pooled into libraries and purified with a QIAquick PCR Purification Kit (Qiagen). The purified libraries were PCR amplified with the following components: Purified ligated library (20µl), reaction buffer 1x, MgCl$_2$ 1.5nM (Bioline), primer mix 0.5 µM, dNTPs (Fermentas) 0.4µM, BioTaq 0.05 U (Bioline) and dH$_2$O (20µl) (Amplification program: [95°C, 5min; 4 cycles [95°C, 10s; 95°C, 10s; 65°C, 30s; 72°C, 30s]; 11 cycles [95°C, 10s; 65°C, 30s; 72°C, 20s]; 72°C, 5min; 4°C, 10min). Lastly, we performed a manual size selection by loading 40 µl of the amplified library on a gel (MetaPhor [Lonza] 2.5 %, 150 ml, 100 V. 1.5 h) and cutting the 300-400 bp range from the resultant smear. The DNA was extracted from the gel with a QIAquick Gel Extraction Kit (Qiagen). The cleaned product was again separated on a gel, cut and cleaned.

Six hundred and fifty one individuals, multiplexed into ten separate libraries (maximum library size = 104 individuals), were sequenced with paired-end reading on the Illumina HiSeq2000 platform by the Beijing Genomics Institute (BGI). An additional 55 individuals (including duplicates) were paired-end sequenced on Illumina HiSeq platforms at the Finnish Institute for Molecular Medicine or at the University of Oslo.

Variant calling

Reads were split by barcode, and barcodes removed, using a custom perl script. Low quality bases were removed from the reads via window adaptive trimming using Trim.pl (available: http://wiki.bioinformatics.ucdavis.edu/index.php/Trim.pl, Illumina quality score \(\leq 20 \)). Sufficient numbers of reads were obtained for 626 of the 672 individuals sent for sequencing. Paired-end reads for each of these individuals were aligned to the BROAD S1 stickleback genome using BWA aln/sampe (v 0.6.2) with default parameters (Li and Durbin 2009). The threespine stickleback genome comprises 21 assembled chromosomes plus 1,823 un-placed genomic scaffolds. Unmapped reads, and reads with non-unique optimal alignments, pair-rescued alignments, or any alternative suboptimal alignments, were discarded from resulting SAM files. SAM files were converted to sorted BAM files using samtools 0.1.18 (Li et al. 2009) and variants were called within each paternal family using the samtools mpileup function with extended BAQ computation (options: -AED, max-depth 500), in combination with bcftools (Li et al. 2009). We did not degrade mapping quality for reads with large numbers of mismatches as we found this to reject high-quality reads due to fixed polymorphisms between our European stickleback samples and the North American stickleback genome. Indel and multi-allelic variants were discarded. Initial filters based on SNP quality and variability within and across families resulted in list of 26,290 candidate bi-allelic SNPs for further analysis. Samtools and bcftools, applied to each paternal family separately, were then used to call each individual for the
Genotype at each of the 26,290 sites. Sites at which bcftools identified multiple variant types (SNPs, indels and multi-base polymorphisms) within and among families were removed, leaving 25,668 successfully called variant sites.

Genotype quality control

Vcftools (Danecek et al. 2011) was used to recode genotypes with a genotype quality phred score (GQ) < 25 or a sequencing depth (DP) < 8 or > 1000 to missing. Vcf files for all families were merged and the merged file converted to the input format for Plink 1.07 (Purcell et al. 2007). For SNPs on all autosomal chromosomes and the pseudoautosomal region of Chromosome 19 (see below), the following filters were applied in Plink: hwe (based on founders only) < 0.01, maximum missing genotypes = 0.25, minor allele frequency > 0.05, non-founders with > 70% missing data removed. Adjacent SNPs in complete linkage disequilibrium were manually consolidated into a single locus, with combined SNP information used to call genotypes.

Several approaches were used check for sample contamination or errors in barcode splitting and family assignment: in Plink, the mendel option was used to screen families for Mendelian errors, and sample relatedness was examined by graphically visualizing genome-wide IBD-sharing coefficients generated by genome; the program SNPPIT (Anderson 2012) was used to assign individuals to parents, based on five independent datasets of 100 SNPs; and 220 SNPs on Stratum II of Chromosome 19 (see below) were examined for their expected pattern in males and females (all heterozygous in males vs. all homozygous in females).

The stickleback Chromosome 19 is a proto-sex chromosome (Roesti et al. 2013; Schultheiß et al. 2015), with a normally recombining pseudo-autosomal domain (approximately 0-2.5mB), a non-recombining domain in the male version (Stratum I, approximately 2.5-12mB) and a domain largely absent in the male version (Stratum II, approximately 12-20mB). For Stratum I, parental and offspring genotypes were inspected manually in order to identify the male-specific allele and this was recoded to a unique allele code (‘9’) for the purposes of linkage map construction. Where the male-specific allele could not be identified, all genotypes within a family were re-coded as missing. Genotypes were also inspected manually for Stratum II, and any SNP found to be heterozygous in males was excluded. All remaining Stratum II SNPs were considered to be hemizygous in males, and one of the alleles was also recoded as ‘9’.

Linkage map construction

We constructed a linkage map using the improved version of Crimap (Green et al. 1990, available: http://www.animalgenome.org/tools/share/crimap/). Remaining Mendelian errors in the dataset were removed using the set-me-missing option in Plink. For each SNP, the number of informative meiosis
was examined using Crimap, and markers with < 150 informative meioses or within 500bp of one
another were discarded.

The initial map build included 6,448 markers. Where applicable, SNPs were ordered according to the
modified genome build of Roesti et al. (2013). We attempted to position all previously un-placed
scaffolds containing at least two genotyped SNPs on to the map. Scaffolds were assigned to
chromosome on the basis of LOD score using the Crimap function two-point, and then positioned
using a combination of information from pilot Crimap builds, chrompic, and fixed together with
known start and end points of previously assembled scaffolds (Roesti et al. 2013). Information from
chrompic and fixed were also used to confirm the orientation of scaffolds newly placed by Roesti et
al. (2013). Once all possible scaffolds had been placed, recombination distance between ordered
SNPs was estimated using fixed. To refine the map, we iteratively removed SNP genotypes
contributing to implied double crossovers within a 10 cM interval (presumed to be genotyping errors),
and SNPs generating recombination distances of >1cM per 10,000 bp and recalculated distances using
fixed. Remaining regions of unusually high recombination on the map were investigated by examining
whether removal of individual SNPs altered map distance.

eQTL identification

Expression QTL (eQTL) were identified using an interval mapping approach (Knott et al. 1996)
implemented in QTLMap 0.9. 0 (http://www.inra.fr/qtlmap; QTLMap option: -- data-transcriptomic).
As we found that missing values in the expression trait file caused QTLMap to over-estimate the LRT
statistic (see below), we eliminated these from the dataset by removing two individuals and 195
expression traits. Eighty-seven genotyped parents, 474 genotyped and phenotyped offspring (mean
no. offspring per family = 15.8, mean proportion of missing genotypes in offspring = 0.11; maximum
= 0.56), and 10,332 expression traits were included in the analysis. We applied linkage analysis
assuming a Gaussian trait distribution (QTLMap option: --calcul = 3), and included dye, temperature
treatment, and sex as fixed factors in the model. Due to the relatively small size of some of our half-
sib families, we examined sire effects only, with a separate QTL effect estimated for each sire. A fast
algorithm was used to identify phase and estimate transmission probabilities at each chromosomal
location (Elsen et al. 1999, QTLMap option: --snp). Autosomes and the pseudoautosomal portion of
the sex chromosome were scanned at 1cM intervals, and the presence of QTL on a chromosome was
assessed using a likelihood ratio test (LRT) under the hypothesis of one versus no QTL. LRT
significance thresholds for each trait on each chromosome were identified empirically, by permuting
fixed effects and traits amongst individuals within families and recalculating LRT scores (5000
permutations). As the combination of 5000 permutations x 10,332 traits x 21 chromosomes was
computationally prohibitive, we first performed permutations on a subset of 200 expression traits to
identify a LRT threshold below which identified QTL were unlikely to be significant at chromosome-
wide p < 0.05 (LRT = 55), and then used permutations to assess significance of all QTL above this threshold. The non-pseudo-autosomal region of the female Chromosome 19 can be considered analogous to the X chromosome; identification of QTL in this region requires estimation of dam effects and was therefore not performed. The 95% confidence interval for each QTL was estimated using the drop-off method implemented in QTLMap 0.9.7, which returns flanking map positions plus their nearest marker.

Cis vs. trans eQTL

To discriminate cis vs. trans QTL, we compared inferred QTL location to the position of the expressed gene according to the BROAD G. aculeatus genome annotation v. 1.77 (available: http://ftp.ensembl.org/pub/release-77/gtf/gasterosteus_aculeatus/). All positions on the BROAD annotation were re-coded to positions on our modified chromosome assemblies. We considered a QTL to be in cis if the SNP closest to the upper or lower 95% confidence bounds of that QTL was within 5Mb of the regulated gene; all other QTL were considered trans-QTL. For genes on scaffolds un-anchored to our assembly, we also used information on scaffold position available in the recently published map of Glazer et al. (2015). Following Johnsson et al. (2015) we applied a local significance threshold (chromosome-wide p < 0.01) for evaluation of possible cis-QTL and a genome-wide significance threshold (genome-wide p < 0.021, = chromosome-wide threshold of 0.001 * 21 chromosomes) for evaluation of possible trans-QTL. Although this significance threshold is permissive, we considered it acceptable as our aim was to analyse the eQTL distribution across the genome rather than to identify individual QTL-locus associations. Similar significance thresholds have been used for eQTL detection in comparable studies (e.g. Whiteley et al. 2008).

To ask whether the effect of variation in trans regulatory sites was more often non-additive than the effect of variation in cis regulatory sites, we examined the narrow sense heritability (h^2) and dominance proportion of genetic variance (d^2) estimated for each expression trait by Leder et al. (2015) and provided in the Supplementary Data for that paper.

Genes with plastic vs. non-plastic expression

To investigate whether genes exhibiting an alteration in expression level in response to a temperature stress treatment (i.e. those exhibiting environmental plasticity) had a different underlying regulatory architecture to those not exhibiting such a response, we divided genes into a ‘responding’ and ‘non-responding’ group based on the results in Leder et al. (2015) and compared the frequency and position of cis and trans eQTL between the two groups.

Evaluation of eQTL hotspots
As all identified eQTL had wide 95% confidence intervals, meaning that physically close eQTL positions could be due to the effect of the same locus (see below), we evaluated potential eQTL hotspots by counting eQTL within 5cM bins across the genome (‘hotspot size’ = number of eQTL). Where the number of 1cM bins within a chromosome was not a simple multiple of 5, bin sizes at the start and/or end of the chromosome were increased to 6 or 7. To obtain an empirical significance threshold above which clusters of eQTL could be considered a ‘hotspot’, we simulated the expected neutral distribution of eQTL across the genome using a custom script. We performed 5000 simulations: for each, we assigned \(n \) eQTL (where \(n \) = relevant number of significant eQTL) randomly across the 3,062 1cM bins of the genome and then summed them into 5cM (or larger) bins as described above. Conservatively, we compared the size of hotspots in the real data to the size distribution of the largest hotspot observed over each of the 5000 simulations.

Association of eQTL with regions under selection

Hohenlohe et al. (2010), Jones et al. (2012), and Terekhanova et al. (2014) documented parallel regions of the genome divergent between marine and freshwater sticklebacks on Chromosomes 1, 4 (three regions), 7, 11 and 21, and clusters of QTL associated with morphological variation also occur on Chromosome 20 (Miller et al. 2014). We investigated whether these regions harboured important trans regulators that might contribute to marine/freshwater adaptation by comparing the location of these regions with the location of our identified trans eQTL hotspots. We also compared hotspot location to regions of the genome inferred by Guo et al. (2015) to be involved in adaptive differentiation amongst different stickleback populations in the Baltic Sea.

Ortholog identification

In order to maximize the functional information available, we identified human orthologues for *G. aculeatus* genes. As a first attempt, we used BioMart (Durinck et al. 2005; Smedley et al. 2009) to identify human orthologues and obtain the HGNC symbols for the human genes. When BioMart failed to return a human orthologue, protein BLAST searches were used to identify orthologues using the Ensembl human protein database. The identifier conversion tool, db2db, from bioDBnet (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) was used to convert between Ensembl identifiers and HGNC gene symbols when needed (Mudunuri et al. 2009).

Hotspot annotation

For functional annotation analysis of *G. aculeatus* genes, Human Ensembl IDs were used as input into AmiGO2 (Carbon et al. 2009) or the Database for Annotation, Visualization and Integrated Discovery (DAVID, Huang et al. 2009a; b). To identify regulatory genes physically associated with an eQTL hotspot, we defined hotspot confidence boundaries as being the most frequently observed 95% confidence limits of all significant eQTL centred in the hotspot. We identified the map markers...
closest to the two boundaries (Table S3), and used AmiGO2 to search for intervening genes annotated with ‘molecular function’ or ‘biological process’ Gene Ontology (GO) terms that contained the words ‘transcription’ and ‘regulation’. As an important transcriptional regulator generating a hotspot might itself be regulated by the hotspot rather than physically present within it, we repeated this analysis for all genes with eQTL mapped to the hotspot. We used DAVID to examine GO term enrichment for the sets of genes with significant eQTL mapping to each hotspot, using the 9,071 genes on the microarray with identified human orthologues as the background.

Upstream regulator and functional interaction analyses

To search for regulatory genes which may be responsible for the expression variation in genes with identified trans eQTL, we used the upstream regulator analysis in the Ingenuity Pathway Analysis (IPA) software (Qiagen). This analysis uses a Fisher’s Exact Test to determine whether genes in a test dataset are enriched for known targets of a specific transcription factor. We used the human HGNC symbols as identifiers in IPA. First we examined all genes that had a significant trans-eQTL mapping to any location at a genome-wide p < 0.021 (chromosome–wide p < 0.001). To investigate in more detail the upstream regulators potentially involved in generating eQTL hotspots, we lowered our stringency and also examined all genes with trans eQTL mapping to the hotspot locations at genome-wide p < 0.057 (chromosome-wide p < 0.0027).

Since transcription is typically initiated by a complex of genes rather than a single transcription factor, we examined functional relationships among the identified upstream regulators for each hotspot (Table S7b), the genes located within a hotspot, and the genes with significant eQTL mapping to that hotspot (Table S3; cis eQTL significant at chromosome-wide p < 0.01, trans eQTL significant at genome-wide p < 0.021), using STRING v10 (Jensen et al. 2009, http://string-db.org/). We searched for evidence of functional relationships from experiments, databases and gene co-expression, and applied a minimum required interaction score of 0.4.

Results

Genotyping by sequencing

For the 604 sticklebacks that we retained for analysis, we obtained a total of 583,032,024 raw paired reads (40,357 – 11,940,726 per individual, median=834,286). Approximately 67% of these reads remained aligned to the stickleback genome following removal of reads with non-unique optimal alignments, any alternative suboptimal alignments, or pair-rescued alignments (range 36.2% - 78.8%, median = 70.1%). Raw read and alignment statistics for each individual are provided in Table S0.

Linkage map construction
Following SNP calling and quality control steps 13,809 of the original 25,668 SNPs, genotyped in 604 individuals (mean number of offspring per family = 18), were available for linkage map construction. Following removal of markers with < 150 informative meioses or within 500bp, 6,448 SNPs were included in the initial map build. The final sex-averaged linkage map spanned 3,110 cM Kosambi (including the complete Chromosome 19) and included 5,975 markers, of which approximately 45% were located at the same map position as another marker (Figure 1, Figure S1, Table S1). Forty-three previously un-placed scaffolds (10.35 mB) were added to the chromosome assemblies of Roesti et al. (2012, Table S2). Thirty-five of these scaffolds were also recently added to the stickleback assembly in an independent study by Glazer et al. (2015). Although there were some differences in scaffold orientation, location of the new scaffolds was almost completely congruent between the two maps (Table S2). For QTL detection with QTLMap, the map was reduced to 3,189 SNPs with unique positions (average inter-marker distance = 0.98cM, Table S1).

Identification of cis and trans eQTL

At chromosome-wide p < 0.01, we identified 5,226 eQTL associated with 4,411 expression traits (42.7% of the 10,322 expression traits examined, Table S3). Based on our recoded gene positions, we classified 2,072 of these as *cis* eQTL, 2,988 as *trans* eQTL, and 165 as unknown – that is, the expressed gene was located on a scaffold that had not been assigned to a *G. aculeatus* chromosome by either this study or Glazer et al. (2015; Table S3, Table S4). Five hundred and eighty of the *trans* eQTL were significant at genome-wide p < 0.021. Of these, 68.3% mapped to a chromosome other than the one containing the regulated gene. After application of this genome-wide significance threshold for *trans* eQTL, 2,713 expression traits (26.3% of those examined) remained associated with one or more significant *cis* or *trans* eQTL. Of these, 74.3% were associated with a *cis* eQTL, 18.9% with one or more *trans* eQTL, 2.1% with both a *cis* and a *trans* eQTL and 4.7% with eQTL of unknown class (Table S3). The physical distribution across the genome of the 2,713 loci with significant *cis* or *trans* eQTL is shown in Figure S1. Mean 95% confidence interval of significant eQTL was 10.1 cM (range 1-74cM). Overall, *trans* regulated expression traits did not exhibit more dominance variance than *cis* regulated loci (*trans* regulated loci, mean $h^2 = 0.32$, mean $d^2 = 0.16$; *cis* regulated loci: mean $h^2 = 0.37$, mean $d^2 = 0.18$; values from Leder et al. 2015).

Trans eQTL hotspots

Trans eQTL (significant at genome wide p < 0.021) were not evenly distributed across the genome and we identified eight 5cM bins, located on six different chromosomes, as containing eQTL clusters (7 or more eQTL; p < 0.05 based on the largest hotspot observed in neutral simulations; Figure 1). A particularly large eQTL hotspot (38 *trans* eQTL within the 5cM bin) was identified close to one end of Chromosome 6, three hotspots (18, 10, and 9 *trans* eQTL) were present at separate locations on Chromosome 12, and remaining hotspots were located near the ends of Chromosomes 7, 8, 9 and 16.
were contributing to observed hotspots, we repeated the analysis with the 396 trans eQTL that were on a different chromosome to their regulatory target: the same eight hotspots were identified (7 or more eQTL, p < 0.004). Physical hotspot boundaries were assigned from inspection of eQTL hits and 95% confidence intervals as follows: Chromosome 6, 111-116cM (‘Chr6’, 17,238,934-17,469,219bp); Chromosome 7, 5-12cM (‘Chr7’, 396,541-1,107,393bp); Chromosome 8, 134-139cM (‘Chr8’, 19,917,746-20,316,565bp); Chromosome 9, 165-174cM (‘Chr9’, 19,822,078-20,440,410bp); Chromosome 12, 0-1cM (‘Chr12a’, 0-337,849bp); Chromosome 12, 72-79cM (‘Chr12b’, 5,853,981-7,440,742bp); Chromosome 12, 109-119cM (‘Chr12c’, 15,551,555-17,229,387bp); Chromosome 16, 123-130cM (‘Chr16’, 17,658,526-18,257,571bp).

Genes with plastic vs. non-plastic expression

Following FDR correction, 4,253 genes were found by Leder et al. (2015) to exhibit a significant change in expression in response to a temperature treatment. We identified significant eQTL underlying 1,033 of these genes (Table S3; eQTL type: 76.0% cis, 18.0% trans, 2.2% both, 3.8% unknown). The distribution of the 216 significant trans eQTL across 5cM bins indicated five hotspots (5 or more eQTL, p < 0.02, Figure S2), four of which had been previously observed in the full dataset. The Chromosome 16 hotspot was greatly increased in relative importance, and a new hotspot was observed on Chromosome 18 (Chr 6: 12 eQTL; Chr16: 9 eQTL; Chr12a: 5 eQTL; Chr12b: 5 eQTL; Chromosome 18, ‘Chr18’: 5 eQTL, 96-102cM, 13,870,895-14,643,331bp).

Association of eQTL with regions under selection

None of our identified eQTL hotspots overlapped parallel regions of the genome divergent between marine and freshwater sticklebacks identified by Hohenlohe et al. (2010), Jones et al. (2012), and Terekhanova et al. (2014), or with the clusters of morphological QTL on Chromosome 20 (Miller et al. 2014, Table S5). However, one genomic region identified as divergent between marine and freshwater populations by Terekhanova et al. (2014) alone overlapped with the Chr12b eQTL hotspot.

Only four of the 297 genes inferred by Guo et al. (2015) as being under selection amongst Baltic Sea populations experiencing different temperature and salinity regimens overlapped observed eQTL hotspots (Chr7 and Chr12b, Table S5).

Hotspot annotation

We identified human orthologues for 16,315 of the 20,787 protein-coding genes annotated on the Broad stickleback genome (78.5%, Table S4). There were 300 genes with human annotation physically located within the designated boundaries of the nine hotspots (Table S5). Of these, 41 had a GO term related to transcription regulation (Table 1, Table S6). In addition, 21 genes with significant cis eQTL or trans eQTL mapping to a hotspot had GO terms related to transcriptional
regulation (Table 1, Table S6). Following correction for multiple testing we found no significant GO term enrichment amongst any group of genes regulated by the same eQTL hotspot.

Upstream regulator and functional interaction analyses

When examining all 580 genes with *trans* eQTL significant at genome wide p < 0.021, 84 significantly enriched upstream regulators were identified (Table S7a). In total, these regulators had 244 of the genes in the dataset as known targets. Hepatocyte nuclear factor 4α (HNF4A) was identified as a particularly important regulator, with 73 (29.9%) of these genes as downstream targets. Other important regulatory factors were: tumor protein p53 (TP53; 40 genes; 16.4%); estrogen receptor 1 (ESR1; 38 genes; 15.6%); myc proto-oncogene protein (MYC; 30 genes; 12.3%) and huntingtin (HTT; 27 genes; 11.1%). The full list of 85 significant upstream regulators is in Table S7a.

To identify upstream regulators that could be contributing to the nine eQTL hotspots (including one only observed when examining genes with a plastic response to temperature), we further examined all genes that had *trans* eQTL mapping to the hotspots at genome-wide p < 0.057 (1120 genes). One hundred and fifty seven different enriched upstream regulators were identified for these genes (Table S7b). For genes with *trans* eQTL mapping to the Chr6, Chr12a, Chr12b, Chr12c and Chr18 hotspots, HNF4A remained an important regulator. Only two of the identified upstream regulators were physically located within a hotspot (serum response factor, SRF, Chr9; nuclear receptor subfamily 4, group A, member 1, NR4A1, Chr12b). Two had significant *trans* eQTL mapping to the Chr6 hotspot: catenin (cadherin-associated protein) beta (CTNNB1) and hypoxia inducible factor 1 alpha (HIF1A). One had a significant *trans* eQTL mapping to the Chr7 hotspot: junction plakoglobin (JUP), and one had a significant *trans* eQTL mapping to the Chr12b hotspot: Nuclear Receptor Subfamily 1, Group H, Member 4 (NR1H4; Table 1).

When the enriched upstream regulators, genes with cis eQTL mapping to a hotspot at chromosome-wide p < 0.01, and genes with trans eQTL mapping to a hotspot at genome wide p < 0.021 were examined in STRING, multiple protein-protein interactions were found (Figure 2, Figure S4). In particular for the Chr6 hotspot we found an interaction network that included two molecules *trans*-regulated by this hotspot (CTNNB1 and HIF1A), one molecule *cis*-regulated by the hotspot (C1D Nuclear Receptor Co-Repressor), and multiple molecules inferred as important upstream regulators by IPA (Figure 2a). Similarly, for the Chr12b hotspot, we observed a large network of interactions involving molecules *cis* and *trans* regulated by the hotspot, molecules produced by genes physically located in the hotspot, and inferred upstream regulators (Figure 2b).

Discussion

In this study we identified regions of the genome underlying variation in gene expression in a marine population of threespine stickleback from northern Europe. We used a genotyping-by-sequencing
approach to generate an improved linkage map, and applied interval mapping to identify eQTL. Our new map was independent of that recently constructed by Glazer et al. (2015), and the congruent placement of scaffolds between the two maps confirms the reliability of these new genome assemblies. Our map covered a substantially larger distance in cM than those of Roesti et al. (2013) and Glazer et al. (2015), probably due to differences in experimental design. Nevertheless, for our Baltic Sea population, we observe very similar patterns of recombination rate variation across and between chromosomes as found by Roesti et al. (2013) for freshwater sticklebacks from central Europe and Glazer et al. (2015) for marine-freshwater crosses from western North America, (Figure S1). Thus, the large scale pattern of recombination rate variation across the genome may impose, and/or be under, similar evolutionary constraints throughout the range of the species.

Using a chromosome-wide significance threshold for cis regulatory loci and a genome-wide threshold for trans loci, we identified eQTL for just over a quarter of the 10,332 expression traits examined. Because at least 74% of these expression traits exhibit significant heritable variation (Leder et al. 2015), and gene expression is commonly regulated by multiple eQTL, we expect that a much larger number of underlying eQTL remain undetected due to low statistical power. Despite expectations that trans regulatory regions might be under purifying selection due to their potentially pleiotropic effect, and that the effect of trans eQTL on expression will be weaker than that cis eQTL, we found many cases where gene expression was influenced by regulatory variation in trans but not in cis. This suggests that a frequently-used approach of detecting local selection by examining patterns of differentiation at markers linked to genes that are adaptive candidates (e.g. DeFaveri et al. 2011, Shimada et al. 2011) may fail to identify such selection as it is acting to change gene expression via trans regulatory regions. We did not observe any difference in additive vs dominance variance underlying genes found to be regulated in cis vs. those regulated in trans. However this may again be due to low statistical power to detect many of the underlying eQTL: genes are expected to be influenced by a large number of eQTL, meaning that the observed heritable variation is generated by a combination of additively and non-additively acting regulatory regions.

The trans eQTL that we detected were not randomly distributed across the genome but instead clustered into multiple eQTL hotspots. This observation is a ubiquitous feature of eQTL studies and is thought to indicate the existence of ‘master regulators’ acting in trans to influence many genes.

However apparent eQTL hotspots may also arise as a statistical artefact as a result of many false positive QTL when testing thousands of expression traits in combination with spurious correlation between these traits due to uncorrected experimental factors (Wang et al. 2007; Breitling et al. 2008). Disentangling gene expression correlation that is due to common underlying regulatory architecture from that caused by experimental artefacts is a difficult analytical problem that we are unable to fully address here (Joo et al. 2014). Therefore, we caution that these hotspots should be verified using other stickleback populations and different approaches.
The parents for this study came from a genetically diverse marine population of threespine stickleback (DeFaveri et al. 2013). Local adaptation of threespine sticklebacks to freshwater has been demonstrated to arise, at least partly, from selection on standing genetic variation in the marine environment. Further, QTL underlying morphological divergence between marine and freshwater populations have been demonstrated to have pleiotropic effects (Rogers et al. 2012; Miller et al. 2014), and frequently co-localize with regions of the genome found to be under parallel selection amongst independent freshwater colonisations. One way in which these regions could exert such pleiotropic effects is by harbouring loci that influence the expression of many genes, i.e. eQTL hotspots. However, only one of the trans eQTL hotspots found in this study overlapped with genomic regions found to be associated with marine/freshwater divergence by Hohenlohe et al. (2010), Jones et al. (2012), or Terekhanova et al. (2014), indicating that they do not underlie the multiple parallel changes observed when sticklebacks colonize freshwater. It remains possible that regulatory hotspots acting in tissues or life stages that we did not examine do have a role in this freshwater adaptation.

To investigate the potential genetic mechanisms underlying the nine observed eQTL hotspots we searched for associated loci with known transcriptional regulatory functions, and performed upstream regulator analysis for the genes with eQTL in the hotspots. Although the pathways regulating transcription are still poorly characterized for most genes, particularly in non-mammalian species, these analyses can provide useful preliminary information. We found no evidence that eQTL hotspots were due to the presence of a single ‘master’ regulatory locus, or a cluster of regulatory genes, at the hotspot locations. Although many genes with roles in transcriptional regulation were present in, or regulated by, hotspots, finding such genes is not unexpected: approximately 10% of the human orthologues of BROAD stickleback genes are annotated with the GO terms that we used to identify transcriptional regulators. It is also possible that the regulatory elements generating such hotspots are not annotated coding genes: microRNAs and long non-coding RNAs are potentially important trans regulators (Vance and Ponting 2014) and not yet well characterized across the stickleback genome.

Our results suggest that, alternatively, these hotspots may be generated by a complex interaction of multiple transcription regulators. Several well-characterized regulatory proteins were identified as upstream regulators for numerous genes with eQTL within the hotspots. In particular, HNF4A was identified as a strongly enriched regulator for all genes with significant trans eQTL (Table S7a), and the subsets of genes with trans eQTL mapping to the hotspots on Chromosome 6, Chromosome 12, and Chromosome 18 (Table S7b). In mammals, HNF4A is known to be a master regulator of transcription in the liver (Odom et al. 2004). Although the gene is not physically located in any hotspot, and we were unable to identify any significant eQTL underlying its expression, it is less than 300 kb from hotspot Chr12b. HNF4A likely acts through direct and indirect interactions with other proteins to regulate transcription. Interacting molecules particularly of interest in respect to hotspot locations are HIF1A and CTNNB1 (trans regulated by the Chr6 hotspot, Fig. 2a) and NR4A1 (located...
in the Chr12b hotspot, Fig. 2b): all of these are also identified as significantly enriched upstream
regulators when examining genes with trans eQTL mapping to any of the nine hotspots (Table S7b).
CTNNB1 is an important transcriptional coactivator in the cell nucleus (Willert & Jones 2006).
NR4A1 along with its subfamily members NR4A2 (trans regulated by the Chr16 hotspot) and NR4A3
(not on microarray) are orphan nuclear receptors that interact with other regulators to influence
transcription (Ranhotra 2015). From the point of view of local adaptation, HIF1A is particularly
interesting. It is part of a transcriptional complex (HIF) that alters the expression of numerous genes
in response to low oxygen conditions. HIF1A has been demonstrated to regulate responses to hypoxia
in fishes (Nikinmaa and Rees 2005 Liu et al. 2013) and is also involved in inflammation and
temperature adaptation (Rissanen et al. 2006; Liu et al. 2013). It has been investigated as a possible
selective target for adaptation to low-oxygen conditions, such as those encountered in benthic
habitats, in various fish species. Rytkönen et al. (2007) found no association between variation in the
HIF1A coding region and adaptation to hypoxic conditions across species, and markers linked to
HIF1A do not appear be under directional selection amongst Baltic Sea stickleback populations
(Shimada et al. 2011). HIF1A is known to be transcriptionally regulated in fish (Liu et al. 2013), and
the identification of a trans eQTL for HIF1A demonstrates that regulatory variation for this gene is
present in Baltic Sea sticklebacks and could be an alternative target of selection. HNF4A has also
been found to be an important regulator of hypoxia response (Xu et al. 2011).
HNF4A was not implicated in the regulation of genes with trans eQTL mapping to the Chr7, Chr8,
Chr9 or Chr16 hotspots, suggesting that different regulatory complexes may be underlie these
additional hotspots. Comparison of the regulatory architecture underlying genes exhibiting a plastic
response to the temperature treatment to that underlying genes not responding indicates that the Chr16
and Chr18 eQTL hotspots are particularly strongly associated with this gene expression plasticity.
These eQTL hotspots are both linked with the gene bone morphogenic protein 2 (BMP-2, Table 1),
suggesting that this may have a role in mediating such plasticity, although we are unable to examine
this further here.
In conclusion, we have performed the first genome-wide characterisation of the regulatory
architecture of gene expression in G. aculeatus. We found that variation in gene expression was
influenced by polymorphism in both cis-acting and trans acting regulatory regions. Trans-acting
eQTLS clustered into hotspots, however these did not co-locate with regions of the genome known to
be involved in adaptive divergence among marine and freshwater threespine sticklebacks. Hotspots
locations appear to be mediated by complex interactions amongst regulator molecules rather than the
presence of few ‘master regulators’. Our broad-scale study suggests many avenues for finer-scale
investigation of the role of transcriptional regulation in stickleback evolution.
Data accessibility

Raw and normalized microarray data, in addition to R scripts describing the normalization procedure, are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-3098. RAD sequence reads for each individual are to be deposited in the NCBI Sequence Read Archive. Input files and scripts will be deposited in a relevant archive on article publication.

Acknowledgements

This work was funded by grants from Academy of Finland to C.P., E.L., M. N. and J.M. (grant nos. 129662, 134728, 136464, 141231, 250435 and 265211). Tiina Sävilammi wrote the script for barcode splitting and we thank her for bioinformatics advice. We also thank the numerous people who helped in obtaining and maintaining sticklebacks. Generous computing resources were provided by the Finnish Centre for Scientific Computing (CSC-IT). Research was conducted under an ethical license from the University of Helsinki (HY121-06).

References

Durbin M. L., Lundy K. E., Morrell P. L., Torres-Martinez C. L., Clegg M. T., 2003 Genes that determine flower color: the role of regulatory changes in the evolution of phenotypic

Green, P., Falls, K., Crooks, S. 1990. Documentation for CRI-MAP, version 2.4. Washington University School of Medicine, St. Louis, MO.

Table 1: Known transcriptional regulators associated with identified eQTL hotspots. Human orthologues of stickleback genes were identified using BioMart.

Location is as follows: ‘Hotspot’: annotated gene is in genomic region of hotspot; ‘Cis’: gene is cis-regulated by hotspot at chromosome wide p<0.01; ‘Trans’: gene is trans-regulated by hotspot at genome-wide p<0.021.

<table>
<thead>
<tr>
<th>Hotspot</th>
<th>Location</th>
<th>Stickleback Ensembl_ID</th>
<th>Human Ensembl_ID</th>
<th>Gene Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr06</td>
<td>Cis</td>
<td>ENSGACG00000012317</td>
<td>ENSG00000266412</td>
<td>NCOA4</td>
<td>Nuclear receptor coactivator 4</td>
</tr>
<tr>
<td>Chr06</td>
<td>Cis</td>
<td>ENSGACG00000013721</td>
<td>ENSG00000167380</td>
<td>ZNF226</td>
<td>Zinc finger protein 226</td>
</tr>
<tr>
<td>Chr06</td>
<td>Hotspot</td>
<td>ENSGACG00000011969</td>
<td>ENSG00000197223</td>
<td>C1D</td>
<td>C1D nuclear receptor co-repressor</td>
</tr>
<tr>
<td>Chr06</td>
<td>Trans</td>
<td>ENSGACG00000018659</td>
<td>ENSG00000112983</td>
<td>BRD8</td>
<td>Bromodomain containing 8</td>
</tr>
<tr>
<td>Chr06</td>
<td>Trans</td>
<td>ENSGACG00000004982</td>
<td>ENSG0000065883</td>
<td>CDK13</td>
<td>Cyclin-dependent kinase 13</td>
</tr>
<tr>
<td>Chr06</td>
<td>Trans</td>
<td>ENSGACG00000005986</td>
<td>ENSG00000168036</td>
<td>CTNNB1</td>
<td>Catenin (cadherin-associated protein), beta 1, 88kDa</td>
</tr>
<tr>
<td>Chr06</td>
<td>Trans</td>
<td>ENSGACG0000003088</td>
<td>ENSG00000116580</td>
<td>GON4L</td>
<td>Gon-4-like</td>
</tr>
<tr>
<td>Chr06</td>
<td>Trans</td>
<td>ENSGACG00000008525</td>
<td>ENSG00000100644</td>
<td>HIF1A</td>
<td>Hypoxia inducible factor 1, alpha subunit</td>
</tr>
<tr>
<td>Chr06</td>
<td>Trans</td>
<td>ENSGACG00000013704</td>
<td>ENSG00000096968</td>
<td>JAK2</td>
<td>Janus kinase 2</td>
</tr>
<tr>
<td>Chr07</td>
<td>Cis/Hotspot</td>
<td>ENSGACG00000018669</td>
<td>ENSG00000137462</td>
<td>TLR2</td>
<td>Toll-like receptor 2</td>
</tr>
<tr>
<td>Chr07</td>
<td>Hotspot</td>
<td>ENSGACG0000000325</td>
<td>ENSG00000135625</td>
<td>EGR4</td>
<td>Early growth response 4</td>
</tr>
<tr>
<td>Chr07</td>
<td>Hotspot</td>
<td>ENSGACG00000018606</td>
<td>ENSG00000109670</td>
<td>FBXW7</td>
<td>F-box And WD repeat domain containing 7, E3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ubiquitin protein ligase</td>
</tr>
<tr>
<td>Chr07</td>
<td>Hotspot</td>
<td>ENSGACG0000000304</td>
<td>ENSG00000170448</td>
<td>NFXL1</td>
<td>Nuclear transcription factor, X-box binding-like 1</td>
</tr>
<tr>
<td>Chr07</td>
<td>Hotspot</td>
<td>ENSGACG0000000370</td>
<td>ENSG00000164985</td>
<td>PSIP1</td>
<td>PC4 and SFRS1 interacting protein 1</td>
</tr>
<tr>
<td>Chr07</td>
<td>Hotspot</td>
<td>ENSGACG00000018586</td>
<td>ENSG00000074966</td>
<td>TXK</td>
<td>Tyrosine kinase</td>
</tr>
<tr>
<td>Chr</td>
<td>Type</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Chr7</td>
<td>Trans</td>
<td>ENSGACG00000000173801</td>
<td>ENSG000000173801</td>
<td>JUP</td>
<td></td>
</tr>
<tr>
<td>Chr8</td>
<td>Hotspot</td>
<td>ENSGACG0000000014457</td>
<td>ENSG000000162733</td>
<td>DDR2</td>
<td></td>
</tr>
<tr>
<td>Chr08</td>
<td>Hotspot</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr08</td>
<td>Trans</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr08</td>
<td>Hotspot</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr08</td>
<td>Hotspot</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr09</td>
<td>Hotspot</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr12a</td>
<td>Cis</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr12a</td>
<td>Hotspot</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr12b</td>
<td>Hotspot</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr12b</td>
<td>Hotspot</td>
<td>ENSGACG0000000014404</td>
<td>ENSG000000187764</td>
<td>SEMA4D</td>
<td></td>
</tr>
<tr>
<td>Chr</td>
<td>Type</td>
<td>Gene ID</td>
<td>Protein Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG00000010925</td>
<td>POU6F1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG00000010990</td>
<td>RAPGEF3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG00000010838</td>
<td>RNF41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG00000010929</td>
<td>TFCP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG00000011135</td>
<td>TSHZ2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG000000111187</td>
<td>ZBTB48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG00000011128</td>
<td>ZFP64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Hotspot</td>
<td>ENSGACG00000011124</td>
<td>SALL4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Trans</td>
<td>ENSGACG00000006074</td>
<td>L3MBTL1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Trans</td>
<td>ENSGACG00000011682</td>
<td>LIMX1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Trans</td>
<td>ENSGACG00000004938</td>
<td>NR1H4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>Cis/Hotspot</td>
<td>ENSGACG00000004839</td>
<td>AGRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>Cis/Hotspot</td>
<td>ENSGACG00000004256</td>
<td>CSDE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>Hotspot</td>
<td>ENSGACG00000004544</td>
<td>E2F1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>Hotspot</td>
<td>ENSGACG00000004732</td>
<td>CSDE3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>Hotspot</td>
<td>ENSGACG00000004740</td>
<td>TWIST2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>Hotspot</td>
<td>ENSGACG00000004213</td>
<td>VDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>Hotspot</td>
<td>ENSGACG00000004773</td>
<td>ZGPAT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chr 12b
- POU6F1: POU class 6 homeobox 1
- RAPGEF3: Rap guanine nucleotide exchange factor (GEF) 3
- RNF41: Ring finger protein 41, E3 ubiquitin protein ligase
- TFCP2: Transcription factor CP2
- TSHZ2: Teashirt zinc finger homeobox 2
- ZBTB48: Zinc finger and BTB domain containing 48
- ZFP64: Zinc finger protein 64
- SALL4: Spalt-like transcription factor 4
- L3MBTL1: L(3)mbt-like
- LIMX1A: LIM homeobox transcription factor 1, alpha
- NR1H4: Nuclear receptor subfamily 1, group h, member 4
- AGRN: Agrin
- CSDE1: Cold shock domain containing E1, RNA-binding
- E2F1: E2F transcription factor 1
- CSDE3: Cold shock domain containing E3
- TWIST2: Twist homolog 2
- VDR: Vitamin D (1,25-dihydroxyvitamin D3) receptor
- ZGPAT: Zinc finger, CCCH-type with G patch domain
<table>
<thead>
<tr>
<th>Chr</th>
<th>Type</th>
<th>Ensembl ID</th>
<th>RefSeq ID</th>
<th>Gene Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12c</td>
<td>Hotspot</td>
<td>ENSGACG000000004734</td>
<td>ENSG000000131061</td>
<td>ZNF341</td>
<td>Zinc finger protein 341</td>
</tr>
<tr>
<td>12c</td>
<td>Trans</td>
<td>ENSGACG000000017068</td>
<td>ENSG000000104221</td>
<td>BRF2</td>
<td>BRF2, subunit of RNA polymerase III transcription initiation factor, BRF1-like</td>
</tr>
<tr>
<td>16</td>
<td>Trans</td>
<td>ENSGACG000000012487</td>
<td>ENSG000000125845</td>
<td>BMP2</td>
<td>Bone morphogenetic protein 2</td>
</tr>
<tr>
<td>16</td>
<td>Trans</td>
<td>ENSGACG000000005831</td>
<td>ENSG000000153234</td>
<td>NR4A2</td>
<td>Nuclear receptor subfamily 4, group A, member 2</td>
</tr>
<tr>
<td>18</td>
<td>Hotspot</td>
<td>ENSGACG000000012487</td>
<td>ENSG000000125845</td>
<td>BMP2</td>
<td>Bone morphogenetic protein 2</td>
</tr>
<tr>
<td>18</td>
<td>Hotspot</td>
<td>ENSGACG000000012415</td>
<td>ENSG000000125812</td>
<td>GZF1</td>
<td>GDNF-inducible zinc finger protein 1</td>
</tr>
<tr>
<td>18</td>
<td>Hotspot</td>
<td>ENSGACG000000012595</td>
<td>ENSG000000100811</td>
<td>YY1</td>
<td>YY1 transcription factor</td>
</tr>
<tr>
<td>18</td>
<td>Hotspot</td>
<td>ENSGACG000000012744</td>
<td>ENSG000000165588</td>
<td>OTX2</td>
<td>Orthodenticle homeobox 2</td>
</tr>
<tr>
<td>18</td>
<td>Trans</td>
<td>ENSGACG000000016702</td>
<td>ENSG000000103449</td>
<td>SALL1</td>
<td>Spalt-like transcription factor 1</td>
</tr>
</tbody>
</table>
Figure Legend

Figure 1 Position of SNP markers along each chromosome (top) and location of *trans* eQTL hits for all assayed genes (bottom). Black bars show the number of eQTL hits at each 1cM Kosambi interval along the chromosome. Blue shading shows the number of eQTL with 95% confidence intervals overlapping each 1cM interval. Arrows indicate the location of eight significant *trans* eQTL hotspots. Figure created using ggplot2 (Wickham 2009) in R.

Figure 2: Networks of known protein-protein interactions inferred by String 10 for proteins associated with a) Chr6 hotspot and b) Chr12b hotspot. ‘Upstream Regulator’: significantly enriched upstream regulator identified when examining genes *trans*-regulated by the hotspot using IPA; ‘Hotspot Location’: protein is coded by a gene physically located in the hotspot; ‘Trans regulated’: protein is *trans* regulated by an eQTL mapping to the hotspot and significant at genome-wide p<0.021; Cis/Hotspot: both present in and significantly *cis* regulated by the hotspot. Interactions not involving an identified upstream regulator are not shown.
Figure 1 (cont.)
Figure 2a: Chr6

Figure 2b: Chr12b