Interactions between Nodal and Wnt signalling Drive Robust Symmetry-Breaking and Axial Organisation in Gastruloids (Embryonic Organoids)

Turner D.A.∗1, Glodowski C.R.1, Alonso-Crisostomo L.1, Baillie-Johnson P.1, Hayward P.C.1, Collignon J.2, Gustavsen, C.3, Serup P.3, Schröter C.1,4, and Martinez Arias A.∗1

1Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
2Université Paris-Diderot, CNRS, Institut Jacques Monod, UMR 7592, Development and Neurobiology Programme, F-75013 Paris, France
3Danish Stem Cell Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
4Max Planck Institute of Molecular Physiology, Dortmund, Germany

May 13, 2016

Abstract

Generation of asymmetry within the early embryo is a critical step in the establishment of the three body axes, providing a reference for the patterning of the organism. To study the establishment of asymmetry and the development of the anteroposterior axis (AP) in culture, we utilised our ’Gastruloid’ model system. Gastruloids, highly reproducible embryonic organoids formed from aggregates of mouse embryonic stem cells, display symmetry-breaking, polarised gene expression and axial development, mirroring the processes on a time-scale similar to that of the mouse embryo. Using Gastruloids formed from mouse ESCs containing reporters for Wnt, FGF and Nodal signalling, we were able to quantitatively assess the contribution of these signalling pathways to the establishment of asymmetry through single time-point and live-cell fluorescence microscopy.

During the first 24-48h of culture, interactions between the Wnt/β-Catenin and Nodal/TGFβ signalling pathways promote the initial symmetry-breaking event, manifested through polarised Brachyury (T/Bra) expression. Neither BMP nor FGF signalling is required for the establishment of asymmetry, however Wnt signalling is essential for the amplification and stability of the initial patterning event. Additionally, low, endogenous levels of FGF (24-48h) has a role in the amplification of the established pattern at later time-points.

Our results confirm that Gastruloids behave like epiblast cells in the embryo, leading us to translate the processes and signalling involved in pattern formation of Gastruloids in culture to the development of the embryo, firmly establishing Gastruloids as a highly reproducible, robust model system for studying cell fate decisions and early pattern formation in culture.

Key Words Gastruloids, mouse embryonic stem cells, symmetry-breaking, Wnt/β-Catenin, Nodal/TGFβ, embryonic organoids

1 Introduction

The emergence of the anteroposterior (AP) axis during the early stages of animal development is a fundamental patterning event that guides the spatial organisation of tissues and organs during embryogenesis. Comparative studies reveal that, although this process differs from one organism to another, in all cases it involves a symmetry-breaking event within a molecular or cellular isotropic system that results in the asymmetric localisation of signalling centres that will drive subsequent patterning events. Dipteran (e.g Drosophila) and amniote (e.g chicken and mouse) embryos provide extreme examples of the strategies associated with these processes. In Drosophila, the symmetry is broken within a single cell, the oocyte, which acquires both the AP and dorsoventral (DV) axes through well characterised processes of RNA and protein localisation that then serve as references for the rapid patterning of the embryo after fertilisation [1, 2]. On the other hand, in birds and mammals the process occurs in the developing embryo, within a multicellular system, and leads to the assignation of fates to cell populations [3–7].

Efforts to understand the mechanisms that pattern early embryos have commonly relied on genetic
Figure 1: Establishment of the Anteroposterior Axis in the Mouse. At E4.5, following several rounds of cell division and the segregation of the extraembryonic tissues (the Primitive Endoderm (PrE) and the Trophoderm (TE)), the embryo is represented in the blastocyst, a mass of equivalent cells that undergoes a process of epithelialisation. By stage E5.5 the embryo forms a radially symmetric cup-shaped epithelium, the Epiblast (Epi) containing around 300 cells that is attached to the Extraembryonic Ectoderm (ExE) on the proximal side and embedded in another epithelium, the Visceral Endoderm (VE) a derivative of the PrE. At this time, a symmetry-breaking event defines a group of cells within the VE that move to one side and give rise to the Anterior Visceral Endoderm (AVE), a cellular collective that defines the anterior region of the embryo on the adjacent Epi cells and, as a result, establishes the anteroposterior (AP) axis of the embryo. At this stage, the Epi experiences widespread BMP, Nodal and Wnt signalling but the AVE, acting as a source of antagonists of these signalling pathways (Cerl, Lefty1 and Dkk1), restricts their effects to the side of the epithelium opposite to the AVE where they induce the localised expression of T/Bra, the start of gastrulation by initiation of the Primitive Streak and axial extension at the posterior end. Figure part adapted from [8].
the medium in the tissue culture flask was replaced with ESL. All cell lines were routinely tested and confirmed free from mycoplasma.

Generation of Cell Lines

The Spry4::H2B-Venus reporter cell line was generated by combining knock-out first targeting arms of the EUCOMM project [24] with a H2B-Venus reporter cassette and a neomycin resistance gene driven from a human β-actin promoter. This construct was integrated by homologous recombination into a cell line carrying a doxycycline-inducible Gata4-mCherry construct described in [25]. This cell contains a constitutively active Cerulean fluorescent protein to aid in image analysis [25]. See supplemental materials and methods for a detailed description of the generation of this cell line.

Immunofluorescence and Microscopy: Gastruloids

Gastruloids from the NodalcondB::EYFP [17] cell line were fixed and stained for YFP, Brachyury and Nanog according to the protocol previously described [15]. Hoechst3342 was used to mark the nuclei (see Table S1 for the antibodies used and their dilutions). Confocal z-stacks of Gastruloids were generated using an LSM700 (Zeiss) on a Zeiss Axiovert 200 M using a 40 EC Plan-Neofluar 1.3 NA DIC oil-immersion objective. Hoechst3342, Alexa-488, 568 and 633 were sequentially excited with 405, 488, 555 and 639 nm diode lasers respectively as previously described [23]. Data capture was carried out using Zen2010 v6 (Carl Zeiss Microscopy Ltd, Cambridge UK) and analysis of the average pixel intensities within each nucleus within a given z-plane was performed in Fiji [26]. The z-stacks were acquired of at least 4 Gastruloids per condition with a z-interval of 2.11μm for a maximum of 42.2μm.

Widefield, single-time point images of Gastruloids were acquired using a Zeiss AxiosObserver.Z1 (Carl Zeiss, UK) in a humidified CO₂ incubator (5% CO₂, 37°C) with a 20x LD Plan-Neofluar 0.4 NA Plö objectiice with the correction collar set to image through plastic. Illumination was provided by an LED white-light system (Laser2000, Kettering, UK) in combination with filter cubes GFP-1828A-ZHE (Semrock, NY, USA), YFP-2427B-ZHE (Semrock, NY, USA) and Filter Set 45 (Carl Zeiss Microscopy Ltd. Cambridge, UK) used for GFP, YFP and RFP respectively and emitted light recorded using a back-illuminated iXon888 Ultra EMCCD (Andor, UK). Images were analysed using the ImageJ image processing package Fiji [26] and plugins therein as previously described [15]. Briefly, the fluorescence intensity was measured by a line of interest (LOI) drawn from the posterior to anterior region of the Gastruloid with the LOI width set to half the diameter of the Gastruloid at 48h (100px with the 20x objective). The background for each position was measured and subtracted from the fluorescence for each Gastruloid. Shape-descriptors were generated by converting brightfield images of Gastruloids to binary images and measuring them by particle detection.

Fluorescence levels were normalised to the maximum obtained in following Chi stimulation, and the maximum length of each Gastruloid was rescaled 1 unit. Average fluorescence traces of Gastruloids ± S.D. are shown.

For live imaging experiments, each well of a 96-well plate containing individual Gastruloids was imaged as described above using both the 20x (24-72h) and the 10x (72-96h) objectives described above, and images captured every 30 min for a maximum of 96h. All images were analysed in Fiji [26] using the LOI interpolator [27] with the LOI set to a width of 100px.

Gastruloid culture and application of specific signals

Aggregates of mouse ESCs were generated as previously described [13, 15]. Briefly, mouse ESCs suspended in 40μl droplets of N2B27 were plated in round-bottomed low-adhesion 96-well plates and left undisturbed for 48h, following which, they were competent to respond to specific signals. The number of cells within each droplet was optimised to ensure that the size of the Gastruloid was ~150μm in diameter at 48h; this generally consisted of 400 cells/40μl/well (See Table S2 for the numbers of cells required for each cell line used in this study). In experiments which required the addition of specific factors to Gastruloids on the second day of aggregation (24-48h), 20μl medium was carefully removed with a multichannel pipette, and 20μl of N2B27 containing twice the concentration of factors was added. This method was preferable to the addition of smaller volumes containing higher concentrations of agonist/antagonists, as the data from these experiments showed more variation between Gastruloids (DAT, PB-J, AMA unpublished). Control experiments (e.g. DMSO or N2B27 only) showed that replacement of half the medium at this stage did not significantly alter the ability of Gastruloids to respond to signals on the third day. The next day, 150μl fresh N2B27 was added to each of the wells with a multichannel pipette for 1h to wash the Gastruloids; a time delay ensured that sample loss was prevented. Following washing, 150μl N2B27 containing the required factors was then applied. The small molecules used in this study and their concentrations are described in Table S3.

Quantitative RT-PCR

Gastruloids (n = 64 per time-point) from T/Bra::GFP mouse ESCs, subjected to a Chi or DMSO pulse (between 48 and 72h AA), harvested at 48 or 72h AA, trypsinised, pelleted and RNA extracted using the RNeasy Mini kit (Qiagen, 74104) according to the manufacturer’s instruction as previously described [22]. Samples were normalised to the housekeeping gene PP1A. The primers for BMP4, Cerd, Chordin, DKK, FGF4, FGF5, FGF8, Lefty1, Nodal, Ppia, Spry4, Wnt3 and Wnt3a are described in Table S4.

Orientation of Gastruloids

To define the AP orientation of Gastruloids, we have assigned the point of

Figure 2: Symmetry-breaking and polarisation in the absence of signalling. Gastruloids generated from T/Bra::GFP were formed and maintained in N2B27 medium for the duration of the experiment and subjected to a 24h pulse of Chi or DMSO between 48 and 72h after aggregation (AA). (A) Morphology and expression of T/Bra::GFP at 24 and 48h prior to the Chi pulse (left), and examples (i-iv) of Gastruloids following either the Chi or DMSO pulse (right). Chi stimulation increases the robustness of the response and reproducibility of the phenotype. Anteroposterior orientation indicated (bottom right). (B) Quantification of T/Bra::GFP reporter expression in individual Gastruloids over time from one replicate experiment. The maximum length of each Gastruloid is rescaled to 1 unit and the fluorescence is normalised to the maximum fluorescence from the Chi condition. (C) Quantification of T/Bra::GFP Gastruloids following stimulation with either Chi or Wnt3a. (D) Live imaging of one representative Gastruloid subjected to a pulse of DMSO (top) or Chir (bottom) between 48 and 72h AA. Shown is the length of the Gastruloid over time (posterior = 0 µm) and the fluorescence intensity of the reporter (colour). Early time-points (24-72h AA) imaged with a higher power objective. The schematic of the experimental design for Gastruloid stimulation is indicated as inserts in (B) and (C). Horizontal lines at 72 and 96h AA in (B) and (C) indicate the maximum fluorescence of the Chi pulse condition.

T/Bra::GFP expression as the ‘Posterior’, as the primitive streak, which forms in the posterior of embryo, is the site of T/Bra expression in the embryo [28–30].

3 Results

3.1 Intrinsic Patterning in the Gastruloids

As a reference for the evaluation and interpretation of our results, a summary of the main events that lead to the establishment of the anteroposterior (AP) axis in the mouse embryo is provided in Fig. 1. This process confines the start of gastrulation to a cell population in the proximal posterior edge of the embryo, next to the Extraembryonic Ectoderm, through a sequence of carefully choreographed interactions between extraembryonic and embryonic tissues mediated by Nodal, BMP and Wnt signalling. The relationship between these three signals has been established in genetic experiments and places Nodal and Wnt signalling in the epiblast as the effective target of the process [31, 32].

To investigate initial patterning mechanisms during development, and to circumvent the difficulties involved in experimentation with embryos at this stage of development, we utilised our non-adherent culture method [13–15]. We have reported before that in this system, small numbers of ESCs upon specific culture treatment will undergo symmetry-breaking and axial elongation; here we confirm this. Using a T/Bra::GFP line that identifies the Bra-expressing cells as the posterior of the Gastruloids, we set out to study the mechanisms involved in the patterning of Gastruloids. (See Materials and Methods). After the initial aggregation period, Gastruloid cultures were kept individually for 2 days in N2B27 (Fig. 2A). If they were maintained in N2B27 for a further 72h (120h AA), a variety of patterns were observed with a large degree of interexperimental variation. In general about 50% of individual Gastruloids exhibited different degrees of axial
Gastruloids generated from T/Bra::GFP mouse ESCs were harvested at 48 and 72h with (72h (C)) or without (72h (D)) a Chir pulse prior to RNA extraction and qRT-PCR analysis for the indicated genes. Data normalised to the housekeeping gene Ppia and is representative of 2 replicate experiments; error bars represent standard deviation of triplicate samples. Schematic of experimental design shown top right.

Due to the reproducibility of these structures in culture and the ease with which they can be manipulated by the addition of specific signalling molecules, we were able to utilise this technique to assess how the initial patterning event in the Gastruloids is established.

Analysis of Gastruloids 24h AA revealed weak, spotty expression of T/Bra::GFP with a proportion already displaying signs of biased expression towards one pole (Fig. 2). By 48h AA in N2B27, the expression levels of T/Bra::GFP had risen and a more prominent polarisation and regionalisation of the reporter was observed in several Gastruloids (Fig. 2A). T/Bra::GFP was observed in one hemisphere of the Gastruloids, which tended to show a slight distortion in their shape from spherical to slightly ovoid as previously reported [13]. Addition of Chi at 48h increased both the levels of T/Bra::GFP and polarity by 72h AA (Fig. 2). If Gastruloids were treated with the vehicle control (DMSO), regionalised expression of the reporters could also observed, however the fluorescence levels were generally lower, with a higher degree of variation both within and between experimental replicates. This suggests that increased Wnt/β-Catenin signalling modulates the reproducibility and stability of the established pattern (Table S5).

To garner a better understanding of the heterogeneities in levels of T/Bra::GFP expression between the Gastruloids over time, we quantified the fluorescence in a posterior to anterior direction along the spine of the Gastruloids (Fig. 2B,C; see Materials and Methods and [15]). T/Bra::GFP expression increased transiently over time, peaking at 96h AA (Fig. 2B), and was localised predominantly towards the posterior region (the origin) at all time-points (polarisation). Chi stimulation results in a lower standard deviation and a higher maximum fluorescence than the DMSO control and the expression of the reporter is maintained at the later time-points following Chi treatment (Fig. 2B). Stimulation Wnt3a resulted in a similar fluorescence trace compared with Chi (Fig. 2C), however the heterogeneity between individual Gastruloids is reduced and the higher expression is confined to a narrower region of the Gastruloid (increased polarity; Fig. 2C).

Next, to assess the evolution of T/Bra::GFP expression over time, we used live-cell microscopy to image the Gastruloids from 24 to 120h AA following a pulse of Chi or vehicle (Fig. 2D). Prior to stimulation, the size of the Gastruloids increased steadily over time with a concomitant increase in the levels of T/Bra::GFP to-
Figure 4: Expression of Nodal during early aggregate formation. (A) Schematic of the experimental design for Gastruloid stimulation. (B) Gastruloids formed from Nodal^{condHBE::YFP} (Nodal reporter) ESCs either maintained in N2B27 or stimulated with a pulse of Chi or vehicle between 48 and 72h AA were imaged by wide-field fluorescence microscopy at 24, 48 and 72h AA. (B’) Gastruloids at 120h AA demonstrating a single region of Nodal expression slightly towards one side of the elongate; magnified regions (i-iv) indicated by hashed white box. (C) Quantitative analysis of the Gastruloids at the aforementioned time-points with their maximum length set to 1 unit and normalising their fluorescence to the maximum fluorescence of the Chi pulse at 72h AA. (D) A single slice through a confocal stack of the Nodal reporter Gastruloids stained for YFP, T/Bra and Nanog. See (Fig. S2) for the quantification of the confocal images. Notice the increase in Nodal expression after Chi stimulation.

Towards one pole, the expression of which became more apparent at approximately 36h AA (Fig. 2D). The addition of Chi at 48h did not have an immediate effect on the expression of the reporter until 72h AA, when a flash of T/Bra::GFP expression was observed throughout the aggregate; higher expression occurred towards the region that was already expressing T/Bra::GFP (Fig. 2D). Between 72-84h AA, T/Bra::GFP was down-regulated in the region that was previously not expressing the reporter and was up-regulated in the region that was already expressing T/Bra::GFP. This suggests that once a T/Bra::GFP domain is specified, only that region can stably respond.

 Altogether, these data suggest that by 48h AA, the Gastruloids have developed an initial patterning, intrinsically driven, prior to the addition of signalling factors. Furthermore, increased Wnt/β-Catenin signalling by the addition of Chi increases the reproducibility both intra- and inter-experimentally, and robustness of the final phenotype and the patterning.

3.2 Gene Expression Analysis of Early Stage Gastruloids

The observation that the patterning of Gastruloids occurs in the absence of an external input led us to search for the expression of elements of the signalling pathways known to participate in symmetry-breaking in the embryo (Fig. 1). At 48h AA, Gastruloids express low levels of FGF4, 5, Axin2, Wnt3, Nodal and Lefty1 (Fig. 3), all of which are expressed in the epiblast of the E6.0 embryo. Additionally, we detected no expression of BMP4, Dkk or Chordin with very low expression of Cerberus (Fig. 3). Noggin, an antagonist of BMP signalling, is not expressed in the early stages of development and its absence of expression serves as a baseline for the others (data not shown). This pattern is consolidated in the absence of any external input with...
increases in expression of Nodal, Lefty1 and FGF5, decreases in FGF4 expression and the emergence, at low levels, of Wnt3a at 72h AA (Fig. 3; 72h(D)). Exposure to Chi during 48 and 72 h AA leads to an increase in Azin2, Nodal, Lefty, Wnt3a and Dkk, all targets of Wnt signalling (Fig. 3; 72h(C)).

These results confirm that Gastruloids resemble the cells in the epiblast and also provide gene expression landmarks to correlate their development with events in embryos e.g. FGF5 is a marker of the E5-E6.5 epiblast and Wnt3a and Dkk in the embryo, characterise the onset of gastrulation. Altogether these observations lead us to suggest that Gastruloids at 48h AA correspond, approximately, to E6.0±0.5) in the embryo and 72h AA to E7.0 ±0.5). Further observations below confirm and extend this correspondence (Fig. 3).

3.3 Early Nodal expression and signalling are associated with the symmetry breaking event

The characterisation of the patterning and gene expression of early Gastruloids suggests that the Nodal/TGFβ signalling pathway may be involved in the initial patterning event. To address this further, we assessed the pattern of expression of two reporters for Nodal activity in the Gastruloids from the early stages of aggregation (24h) up to 120h AA. Gastruloids were generated from ESCs containing a Nodal^{CreHBE::YFP} transcriptional reporter [17] (hereon referred to as the Nodal Reporter; (Fig. 4) or a Smad2/3 Nodal signalling reporter (AR8::mCherry) [18] (hereon referred to as the Signalling Reporter Fig. 5).

At 24h AA, most of the cells within each Gastruloid expressed low levels of the Nodal reporter heterogeneously, with no evidence of a bias to any particular region and by 48h AA it was down-regulated throughout each Gastruloid (Fig. 4A-C). Gastruloids formed from the signalling reporter showed expression prior to the addition of Chi (Fig. 5) however, by contrast to the Nodal reporter, the signalling reporter was expressed in discrete punctate patterns that varied from Gastruloid to Gastruloid that increased, in number and intensity, between 24 and 48h AA.

Whereas continued culture in N2B27 maintained low expression of the Nodal reporter (Fig. 4A,B), following a Chi pulse between 48 and 72h AA, a dramatic increase in fluorescence throughout the whole Gastruloid was observed (Fig. 4A,B), that correlated with the expression within the epiblast at E4.5 and 5.5 [17]. Similarly, the signalling reporter was up-regulated following addition of Chi (Fig. 5C), however, at the end of the Chi pulse (72h AA), we observed in many Gastruloids a crescent free of the expression of the signalling reporter at the future posterior end (Fig. 5C). This pattern was also observed in the DMSO treated Gastruloids control, but regions of non-expression were more likely to appear in multiple locations (Fig. 5C). As with the Nodal reporter, vehicle treatment failed to up-regulate the signalling reporter to the same extent as Chi treated Gastruloids (Fig. 5C), indicating that Wnt/β-Catenin signalling was necessary for the enhancement and maintenance of Nodal signalling within one, polar region of the Gastruloids.

Between 96 and 120h AA, Nodal reporter Gastruloids treated with Chi confined Nodal expression to the elongating region and gradually reduced their expression (Fig. 4B,B’). By 120h AA these Gastruloids developed a polarised elongation and we note the emergence of high reporter activity in a group of cells centred at the anterior edge of the elongate; these cells may correspond to an attempt to establish a node as they mimic Nodal expression in the embryo [33, 34].
Figure 6: Expression of IBRE4-TA-Cerulean in Chi pulsed Gastruloids either pre-treated with vehicle or BMP4 for 24h. (A) Schematic of treatment and conditions. Cont; Control (HCl+0.1%BSA). Gastruloids imaged at 24h (B) and 47-120h (C) in the conditions described in (A). By 24h, there is very low BMP signalling. Following BMP pretreatment greatly increases the fluorescence of the reporter. Scalebar indicates 100 µm, lookup table displayed in (C) corresponds all images in this figure.

In support of this, in some instances, we observe low levels of the reporter restricted to one side of the aggregate, much as is the case for Nodal in the embryo (Fig. 4B'i-iv).

Finally, we sought to directly probe for the expression of T/Bra and Nanog within Nodal reporter Gastruloids to assess a) the correlation between Nodal expression and the acquisition of a posterior fate and b) to understand the timing of the initial symmetry-breaking event with respect to the loss of pluripotency (Nanog) and initiation of differentiation (T/Bra). Nodal reporter Gastruloids were fixed and stained for GFP, Brachyury and Nanog, and their expression assessed by confocal microscopy (Fig. 4C).

By 24h AA, Nodal was expressed at low levels in a heterogeneous manner, similar to that seen by wide-field microscopy (Fig. 4D, Fig. S1). Nanog was also expressed in a heterogeneous manner, with a broad distribution in fluorescence values (Fig. 4D, Fig. S1); there was no detectable above-baseline expression of Brachyury at this stage.

In Gastruloids maintained in N2B27 from 48h to 72h, Nodal expression remained low with no increase in the expression of Brachyury and a gradual reduction in the expression of Nanog (Fig. 4D, Fig. S1). This was reflected in the increasing correlation between Nanog, Brachyury and Nanog in a heterogeneous manner, suggesting a commitment to a differentiated state (Fig. 4D, Fig. S1); the heterogeneous expression of Nodal in this region bears similarity to that in the embryo at E6.5[17]. Furthermore, there is evidence for expression of Nanog in this region at this time.

This suggests that events in the Gastruloids mimic events in embryos and that the period around 48-72h is related to the onset of gastrulation, and we would suggest here that it might encompass the E6.5-E7.5 in the embryo. In these conditions, the expression of Nodal and Brachyury was strongly correlated (Table S6).

3.4 BMP4 signalling is undetectable during Gastruloid Progression

In the embryo, genetic experiments have demonstrated the need for BMP signalling from the Extra embryonic regions for the expression and localisation of Nodal and Wnt signalling to the proximal posterior region of the embryo, however our data suggests that there is no extraembryonic component in the Gastruloids. To test this further, we investigated the activity of BMP signalling using a Smad1,5,7 reporter (IBRE4-TA-Cerulean; hereon known as the BMP reporter) [18] and measured its expression within Gastruloids treated either with DMSO or with Chi (48-72h AA) that had either been pre-treated with BMP4 or vehicle (Fig. 6).

In Gastruloids only treated with a Chi pulse (control) we did not detect any significant increase in the expression of the BMP reporter from 24-120h AA. To test whether the cells are responsive to BMP at this stage, Gastruloids were pre-treated with BMP4 prior to the Chi pulse. BMP4 Pre-treatment greatly enhanced the activity of the reporter, with the majority of the expression located in the 'anterior' region (Fig. 6C).

Although it is possible that the reporter may not be sensitive enough to detect very low levels of signalling, these results demonstrate the lack of signalling in the Gastruloids and further support the notion that Gastruloids are made up of epiblast cells. In addition it also suggest that BMP signalling is not needed for the symmetry-breaking event itself nor the expression of T/Bra (see next section). Whatever low level of BMP signalling exists within the Gastruloids, it is not modified by Wnt signalling.
Figure 7: Quantitative analysis of T/Bra::GFP Gastruloids reveals importance of early Nodal signalling for correct patterning. (A) A schematic of the experimental design for Gastruloid stimulation. Gastruloids, aggregated in N2B27 (green shading) were treated with either vehicle, activators (i) or inhibitors (ii) of the Nodal and BMP signalling pathways shown in the table on the right, for 24h. Following wash-off of these factors, all Gastruloids were treated with a 24h pulse of Chi followed by sustained culture in N2B27. (B) Individual Gastruloids treated with vehicle, BMP4, DMH1, Nodal or SB43 were imaged by wide-field fluorescence microscopy and quantitatively analysed for the fluorescence (left panel) and length (middle panel). Principal Component Analysis (right) was used to reduce the dimensions of the data, revealing distinct clusters which corresponded to the specific time-points. The indicated percentage for the explained variance is denoted in the axis labels for PC1 and PC2. The fluorescence plots of the left of (B) were normalised to the maximum fluorescence of the control, and the maximum length of each Gastruloid was rescaled to 1 unit. Horizontal dashed lines at 72 and 96h AA in B indicate the maximum fluorescence of the Chi pulse condition.

3.5 Functional analysis of signalling in the early patterning of Gastruloids

Our data suggest that interactions between the TGFβ, FGF and Wnt/β-Catenin signalling before the pulse of Chi and as the Gastruloids polarise, mediate the symmetry-breaking event. To test this, we used agonists and antagonists of these pathways in the form of small molecules and recombinant proteins that target Nodal, BMP, FGF and Wnt/β-Catenin signalling on the day before the Chi pulse (Figs. 7A, 8A, 9A). It is to be noted that gentle mechanical and volumetric disruptions on the second day (24-48h AA) did not unduly affect the patterning and development of the Gastruloids (see Materials and Methods). As a read-out of the patterning events, we used T/Bra::GFP Gastruloids and recorded the fluorescence and morphology by widefield microscopy (Figs. 7B, 8B, 9B).

As well as plotting the normalised fluorescence and the length of the Gastruloids for each specific treatment (left and middle panels of Figs. 2A-C, 7B, 8B, 9B), we performed Principal Component Analysis (PCA) using the variables fluorescence (area under the curve), length, area, roundness and perimeter of the Gastruloids within each experimental replicate (right panels of Figs. 7B, 8B, 9B). By comparing the degree of clustering between individual Gastruloids and their trajectories through the PCA plot, we were able to discern the subtle and major differences each experimental treatment had upon the patterning and morphology of the Gastruloids compared with the internal control (i.e. 48-72h Chi pulse). Each experimental replicate included this internal control for quality control and to provide a matched baseline for morphology
and Gastruloid progression.

In general, PCA of Gastruloids in control conditions revealed distinct clusters which corresponded to the time-point and the trajectories of these clusters through the plot were reproducible throughout replicate experiments (Figs. 7B, 8B, 9B, right panels). Gastruloids from early time-points were found to cluster tightly together (48h AA; red) with the final time-point (120h; white) being the most dispersed; this may reflect heterogeneity between individual Gastruloids as they reach the end of their ability to be cultured for longer durations due to their increasing mass and propensity to adhere to the bottom of the wells at later times [15].

In all experiments (Figs. 2A-C, 7B, 8B, 9B) and in agreement with previous observations [13], at 48h AA prior to the Chi pulse, a slight polarisation in the assumed-posterior region of the Gastruloids was observed which transiently increased in expression over time, peaking at 96h AA (Fig. 7B). Importantly, this pattern of expression is highly reproducible and allows us to use their expression as a landmark for the effect of the treatment on the initial patterning event. Additionally, their reproducibility allows us to use the standard deviation within each experiment as a measure of the effect of the treatment. In the description of the data below, we refer to the treatment before the Chi pulse as pre-treatment.

3.6 Nodal and FGF signalling are required for the symmetry breaking event

BMP signalling Pre-treatment with BMP4 did not alter the expression levels or localisation of T/Bra::GFP at 48h AA (Fig. 7B). However following the addition of Chi, BMP4 pre-treatment enhanced the expression of T/Bra::GFP throughout the whole Gastruloid compared to the control, although by 96h, this was rapidly down-regulated and the expression pattern was essentially identical to the control by 120h AA (Fig. 7B, left panel). Progression of Gastruloid development following DMH1 pre-treatment was essentially identical to the control, although by 120h, DMH1 pre-treated Gastruloids were unable to maintain the expression of T/Bra::GFP (Fig. 7B, left panel). Whereas BMP4 pre-treatment showed a similar PCA distribution pattern to the controls over time with a slight increase in the spread in the second principal component at 48h AA, DMH1 pre-treatment resulted in a less coherent grouping of individual Gastruloids as time progressed (Fig. 7C).

These data suggest that BMP signalling is not involved in the early patterning of the Gastruloids, although as shown by DMH1 pre-treatment, the presence of low levels at these early stages (Fig. 6) may impact the ability to sustain T/Bra::GFP expression at later time-points.

Nodal signalling Nodal pre-treatment (Fig. 7B) resulted in a similar fluorescence profile over time to that of the controls in terms of the fluorescence expression profile and the standard deviations between individual Gastruloids with no enhancement of the reporter at 48h, although, similar to BMP4 pre-treatment, Nodal pre-treatment resulted in a global up-regulation of T/Bra::GFP at 72h (Fig. 7B, left panel). Inhibition of Nodal signalling with SB43 completely abolished the expression of T/Bra::GFP, where only a small proportion of Gastruloids showed any expression at 96-120h AA (Fig. 7B, left panel), as well as a compromised pattern of growth, resulting in Gastruloids with a shorter final length. PCA revealed that although Nodal pre-treatment did not have a great effect on the overall trajectory of time-point clusters through the plot, there was an increase in the spread of the data points in both PC1 and PC2 at 48h AA (Fig. 7B, right panel). Inhibition of Nodal signalling with SB43 pre-treatment resulted in a complete disruption in the trajectories within the PCA, reflecting the observations with the fluorescence analysis (Fig. 7B, C).

As the Gastruloids show such a distinct phenotype following Nodal inhibition prior to the Chi pulse, these data reveal the absolute requirement for Nodal signalling in the initial patterning of Gastruloids.

FGF/MAPK signalling To assess the role of FGF signalling, we pre-treated Gastruloids with either recombinant FGF2 or PD03 (MEK1/2 inhibitor) prior to the Chi pulse (Fig. 8A). Pre-treatment with FGF2 resulted in a T/Bra::GFP fluorescence profile with slightly increased heterogeneity between individual Gastruloids at 48h AA compared with the vehicle control (Fig. 8B, left panel). By 72h AA, the expression of T/Bra::GFP following FGF2 pre-treatment was essentially identical to the vehicle control, however, at 96h, FGF pre-treatment resulted in a higher maximum fluorescence than the control with the pole of expression less well defined (i.e. the expression was spread over a larger posterior region: Fig. 8B, left panel). This increased expression levels of the T/Bra::GFP reporter was maintained at 120h AA and although the region of expression had become more localised to the posterior region, the expression levels were augmented with respect to the controls (Fig. 8B, left panel). Interestingly, although inhibition of FGF signalling by PD03 pre-treatment had little effect on the expression of T/Bra::GFP within the Gastruloids between 48 and 72h, Gastruloids at later time-points (96-120h AA) were severely retarded in their ability to up-regulate the reporter to the same extent as either the control or FGF2 pre-treatment condition (Fig. 8B, left panel). In both pre-treatment conditions, the gradual increase in the length of the T/Bra::GFP Gastruloids was not significantly altered over time when compared to the control (Fig. 8B, left panel).

In addition to the T/Bra::GFP cell line, we utilised an FGF reporter (Sprty4::H2B-Venus) mouse ESC line to assess FGF/MAPK signalling and assessed its expression following pre-treatment with either FGF2 or
Figure 8: Effect of modulating Wnt, FGF and Nodal/BMP signalling prior to the Chi pulse. (A) Schematic representation of the experimental design (see Fig. 7 legend). (B,C) Individual Gastruloids treated as labelled were imaged by wide-field fluorescence microscopy and quantitatively analysed for the fluorescence (left panel), length (middle panel), and their Area, circularity, perimeter and roundness measured (not shown). Principal Component Analysis (right) was used to reduce the dimensions of the data, revealing distinct clusters which corresponded to the specific time-points. The fluorescence plots of the left of (B) and (C) were normalised to the maximum fluorescence of the control, and the maximum length of each Gastruloid was rescaled to 1 unit. Horizontal dashed lines at 72 and 96h AA in B indicate the maximum fluorescence of the Chi pulse condition.

PD03 (Fig. S2). Vehicle treatment resulted in a gradual increase in the FGF reporter over time with a slight bias towards the posterior region at 48 and 72h AA (Fig. S2), with a burst of expression throughout the whole Gastruloids at 96h AA. Interestingly, FGF2 pre-treatment did not have an effect on the average amplitude of the fluorescence between 48 and 72h AA, although posterior pole of expression was more defined than the control, and treatment with PD03 resulted in a gradual decline of reporter expression over time (Fig. S2). By 96h Gastruloids pre-treated with FGF2 resulted in much higher levels at 96h than the control. Importantly, the large increase and decrease in expression levels of the reporter following FGF2 or PD03 pre-treatment respectively occurred at the same time as the broadening and reduction (respectively) of the T/Bra::GFP. These data suggest that although FGF signalling does not impact the initial patterning of the Gastruloids, it is involved in the maintenance of T/Bra::GFP expression at later stages.

Analysis of the Gastruloids using PCA revealed FGF2 pre-treatment to be broadly similar to the controls, with discrete clusters corresponding to the time interval following the same trajectory set out by the controls (Fig. 8B, right panel). However, FGF2 pre-treatment resulted in a more rapid progression, where earlier time-points (e.g. 72h AA) occupied the regions reserved for the 96h time-point (as defined by the controls; Fig. 8B, right panel). In addition, the heterogeneity between Gastruloids was greatly reduced and the clustering appeared tighter than the controls (Fig. 8B, right panel). Conversely, PD03 pre-treatment greatly disrupted both the usual progression, indicating the requirement of FGF2 for correct passage.
Figure 9: Quantitative analysis of T/Bra::GFP Gastruloids reveals defective pattern formation upon Wnt/β-Catenin disruption between 24 and 48h. (A) A schematic of the experimental design for Gastruloid stimulation. Gastruloids, aggregated in N2B27 (green shading) were pulsed with either DMSO, the Porcupine inhibitor IWP3 or the Tankyrase inhibitor XAV939 between 24 and 48h AA. Following wash-off of these factors (see materials and methods), all Gastruloids were treated with a pulse of Chi (48-72h AA) followed by sustained culture in N2B27. Gastruloids were imaged by wide-field fluorescence microscopy and quantitatively analysed for the fluorescence (B, left panel), length (B, middle panel) and their Area, circularity, perimeter and roundness. Principal Component Analysis (B, right panel) revealed that the discrete clusters that corresponded to the time-point in DMSO conditions were heavily disrupted following IWP3 or XAV939 pre-treatment. The fluorescence in (B) was normalised to the maximum fluorescence of the DMSO control. In addition, the length of each Gastruloid was rescaled so the maximum length had a value of 1 unit. Horizontal dashed lines at 72 and 96h AA in B indicate the maximum fluorescence of the Chi pulse condition.

Taken together, these results indicate that FGF signalling has limited effect on the either initial patterning of the Gastruloid, the up-regulation of T/Bra::GFP fluorescence or progression of the Gastruloids, however the low, endogenous levels that are present at these early time-points are essential for constraining the domain of expression at the posterior region and the maintenance of increased expression at later time-points. It may be the case that FGF signalling is acting to lower the threshold of the response.

Wnt/β-Catenin signalling To assess the effect of Wnt/β-Catenin signalling, we pre-treated Gastruloids with the recombinant proteins Wnt3a or DKK1. (Fig. 8) or small molecule inhibitors (IWP3: to inhibit the secretion of all Wnts [35]; XAV939; to increase β-Catenin degradation through tankyrase inhibition[36]; Fig. 9).

Treatment with Wnt3a resulted in a slightly enhanced posterior activation of T/Bra::GFP at 48h AA compared with the vehicle control (0.1% BSA in PBS) which continued into the 72h time-point (Fig. 8B). As time progressed, the Wnt3a pre-treated Gastruloids showed a narrower region of T/Bra::GFP expression, with the peak expression occurring more posteriorwise than the vehicle control, displaying less variation between individual Gastruloids (Fig. 8B). Although peak T/Bra::GFP expression occurred at 96h AA following both vehicle and Wnt3a pre-treatment, Wnt3a tended to increase the fluorescence of the reporter to a greater extent than the control(Fig. 8B). Interestingly, whereas control Gastruloids generally reduced T/Bra::GFP expression by 120h, Wnt3a pre-treatment maintained the expression, and appeared to confine its expression to a narrower region within the posterior, albeit with a higher standard deviation(Fig. 8B).

Inhibition of LRP6-mediated Wnt signalling by pre-treatment with recombinant Dkk1 resulted in an identical expression profile of T/Bra::GFP to vehicle control at 48h, however following Chi stimulation the fluorescence activation usually observed at 72h AA following vehicle or Wnt3 pre-treatment was abolished in the Dkk1-pre-treated Gastruloids (Fig. 8B). By 96h, the expression of the reporter had recovered, displaying maximum fluorescence at similar levels to the vehicle and Wnt3a conditions, however, the heterogeneity between individual Gastruloids was greatly increased.
and the polarisation was less defined (i.e. the fluorescence was less concentrated at the posterior region; Fig. 8B). After 120h in culture, the fluorescence of Dkk1 pre-treated Gastruloids was broadly similar to the Wnt3a pre-treatment with a much higher degree of variation between individual Gastruloids than the vehicle control (Fig. 8B).

Pre-treatment with either IWP3 or XAV939 delayed the onset and magnitude of T/Bra::GFP expression in a similar manner to that of Dkk1 (Fig. 9B, left panel). In some replicate experiments in the XAV939-pre-treated Gastruloids, the fluorescence expression, although still generally located posteriorly, displayed a greater degree of variation with respect to the DMSO control (data not shown). Similar to the Dkk1 pre-treated Gastruloids, by 96 and 120h AA, the pattern of T/Bra::GFP fluorescence was broadly similar to the controls although a greater degree of variation was observed between the Gastruloids pre-treated with XAV939 and IWP3 and a slightly lower average expression level (Fig. 9B, left panel). Interestingly, Gastruloids pre-treated with IWP3 (which inhibits all Wnt secretion) was unable to maintain the expression of the reporter at 120h compared with Dkk1 inhibition (inhibits at the level of LRP6), suggesting a requirement for non-canonical Wnts in the maintenance of T/Bra::GFP fluorescence.

Comparison of the lengths of the Gastruloids following either vehicle, Wnt3a or Dkk1 pre-treatment showed no differences in the progression of the average lengths, however Wnt3a pre-treatment reduced the heterogeneity between individual Gastruloids whereas Dkk1 pre-treatment resulted in a greater variation at 120h. However, there was a slight disruption in the maximum lengths obtained at 120h AA following IWP3 or XAV939 pre-treatment, with a slightly lower average length and a larger spread of final lengths (Fig. 9B, right); this was more pronounced with XAV939 pre-treatment.

 PCA analysis of Gastruloids pre-treated with Wnt3a and Dkk1 revealed similar trajectories to their control (Fig. 8B, 9B). Interestingly, Gastruloids pre-treated with Wnt3a from the 72 and 96h time-points were able to explore region usually reserved for the 96h and 120h time-points respectively (Fig. 8B, 9B), suggesting that Wnt pre-treatment may enhance the response to Chi. A number of subtle differences between the methods of Wnt inhibition by Dkk1, IWP3 or XAV939 pre-treatment was also revealed by the PCA analysis (Fig. 8B, 9B). Whereas pre-treatment with Dkk resulted in a similar trajectory to the control (although with a greater shift in the positive direction in PC1 at 72h AA), the trajectories of IWP3 and XAV939 pre-treated Gastruloids was greatly disrupted compared to the controls and the data-points which correspond to specific time intervals were less coherently clustered (Fig. 9B). Prior to Chi stimulation, the clustering of the 48h time-point of both IWP3 and XAV939 was dispersed along the PC2 to a greater extent than the control which was unable to be recovered after the Chi pulse (72h). By 96h, IPWP3 and XAV939 pre-treated aggregates had largely recovered in terms of their positioning relative to the control, however XAV939 had not fully recovered and data-points corresponding to individual Gastruloids were spread throughout PC1, occupying regions reserved for earlier time-points (Fig. 9B). After 120h in culture, neither IWP3 or XAV939 pre-treated Gastruloids were able to reach the same region of the PCA as the controls; this is reflected in the fluorescence traces which were unable to maintain T/Bra::GFP expression to the same extent as the control (Fig. 9B). These data suggest that the effects of IPW3 and XAV939 are greater than Dkk1-mediated Wnt inhibition, when many of the variables (length, fluorescence, roundness, area etc.) are taken into account. This further suggests a requirement of ‘non-canonical’ (i.e. β-Catenin-and LRP6-independent) Wnt signalling at later stages, the secretion of which was inhibited by IWP3. Upon closer inspection of the expression of the T/Bra::GFP reporter within the Gastruloids, we found that whereas T/Bra::GFP expression is maintained at the elongating tip of the control Gastruloid (as previously described), treatment with IWP3 resulted the expression of the reporter along a mid-line region of a small subset of Gastruloids per experimental replicate (Fig. S3, indicated by white arrows); this phenotype was less pronounced in XAV939 pre-treatment conditions. Only one Gastruloid with Dkk pre-treatment showed this phenotype (data not shown).

Section summary Although there was slight variation between replicates (in terms of expression levels and the internal standard deviations), these observations indicate that whereas BMP and FGF signalling has minimal effect at the onset of the initial patterning event, Nodal signalling is absolutely essential to allow the not only the expression of T/Bra::GFP but possibly its correct placement within the aggregate and Wnt/β-Catenin signalling is required in this early period (24-48h AA) for the correct timing of expression. The requirement of BMP signalling later in the Gastruloid development suggests two fundamental stages of Gastruloid development: one base on establishing the pattern which is Nodal and Wnt dependent and the second on its growth, and elongation involving a late requirement of both FGF2 and BMP signalling, and ‘non-canonical’ (e.g. LRP6-independent) Wnt signalling. In addition, these results clearly demonstrate the reproducibility of the Gastruloid phenotype not only within experiments but throughout replicate experiments; this measure of both intra- and inter-experimental reproducibility has not to our knowledge been demonstrated other organoid culture techniques [37].

4 Discussion

In the mouse, the anteroposterior axis is established early in the cup-shaped zygote through the localisation of Nodal, BMP and Wnt signalling to a proximoposterior region of the embryo that becomes the
posterior pole, where gastrulation is initiated as reflected in the expression of T/Bra (Fig. 1). Here we have shown that Gastruloids, embryonic organoids derived from small aggregates of mouse ESCs, undergo symmetry-breaking and gene expression polarisation in a manner that mirrors events in embryos [13–15, 37]. However, in contrast with embryos that use a sequence of interactions between extraembryonic and embryonic tissues to pattern themselves, Gastruloids are composed only of embryonic tissue and reveal an intrinsic capacity for axial organisation that is driven by interactions between Nodal and Wnt signalling. Analysis of signalling reporters in the Gastruloids reveals clear Wnt/β-Catenin and Nodal/Smad2/3 activity from 24-48h AA which often becomes localised to one pole of the aggregate and correlates with the onset and localisation of T/Bra expression. Furthermore, as in the embryo, this pattern of T/Bra expression is dependent on Nodal and Wnt signalling: exposure of Gastruloids to inhibitors of these pathways between 24 and 48h AA abolishes or reduces these patterns.

The absence of extraembryonic tissues is reflected in the absence of expression of Trophoderm and Visceral Endoderm markers (BMP4, Cerberus or Dkk1) and the absence of BMP reporter activity (Figs. 3, 6). Furthermore, addition of BMP to the culture, has little effect on the patterning process other than a transient increase in the levels of T/Bra through alterations of Nodal and Wnt signalling (data not shown). In the embryo, BMP is deployed in the Extraembryonic Ectoderm and regulates the expression of Nodal and Wnt3 in the proximal part of the embryo [38, 39]; a similar effect has been reported in differentiating ESCs [40, 41] and can account for the observed effect BMP on the Gastruloids.

The strict dependence of Nodal and Wnt expression on BMP signalling in the embryo and the requirement for their antagonists in the symmetry-breaking event, raise questions about the molecular origin of polarity in our experiments. In the embryo Nodal plays a key role in the establishment of AP polarity [42, 43] and this also appears to be the case in the Gastruloids where in the absence of Nodal signalling there is neither localisation of T/Bra:GFP expression nor clear polarisation of the Gastruloid. Furthermore, in the embryo successive patterns of Nodal expression outline the emergence of the AP axis: it is first expressed throughout the E4.5 blastocyst and the E5.5 epiblast, where it then becomes restricted, first to its proximo-posterior region and shortly afterwards, in a Wnt/β-Catenin signalling dependent manner, to the Primitive Streak [44]. The patterns of Nodal expression in the Gastruloids are reminiscent of these: an onset of low ubiquitous expression coincident with the extinction of Nanog expression, a Wnt/β-Catenin dependent rise between 48 and 72h AA and then a restriction to the elongating region (Fig. 4). These patterns of Nodal expression are associated with Smad2/3 activity (Fig. 5). Interestingly, around 96h AA we observe the emergence of a spot of Nodal expression at the anterior border of the elongating region which could correspond to a structure similar to the node in the embryo [45, 46]. This possibility is supported by the observation of Smad2/3 reporter activity between 96 and 120h AA on one side of the Gastruloid (see Fig. 4, 5); in some instances it is possible to see a similar but faint pattern of Nodal expression (data not shown). This pattern of activity is reminiscent of the Left-Right asymmetry expression of Lefty and Nodal in the embryo [47] and suggests that the Gastruloids not only develop an AP axis but also exhibit bilateral asymmetry.

The self organised patterning of the Gastruloids is, at first sight, surprising but might reflect a situation, latent in the embryo, which generates asymmetries in gene expression within the E5.0 Epiblast, before the restriction of primitive streak initiation to the proximal posterior part of the embryo [48, 49]. This possibility is supported by some observations. For example, the epiblast of embryos double mutant for Cerl and Lefty1 is not unpatterned and exhibits a residual asymmetry in Nodal expression and, sometimes, double axes [49, 50]; this suggests that the epiblast can pattern itself in the absence of the extraembryonic repressors. Similarly, loss of Dkk1 and gain of function β-Catenin do not alter the axial organisation of the epiblast, though they eliminate the head [51]. It could be argued that there are functional redundancies in the antagonists of Wnt and Nodal signalling and that this explains the partial polarity in Dkk and Cerb/lefty double mutants. However, this does not account for the observed phenotypes and suggests that these antagonisms are not drivers of AP patterning.

Our results argue for an independent and intrinsic self-patterning ability in the epiblast, and we would like to suggest that the role of the visceral endoderm and the extraembryonic ectoderm (trophoeoderm) is not to break the initial symmetry but to bias and stabilise an intrinsic symmetry-breaking event in the epiblast. Crucially, to position the initiation of gastrulation precisely and reproducibly to one end of the proximal part of the conceptus: near the extraembryonic Ectoderm. The notion that within organisms, intrinsic patterning activities of individual structures are biased and contribute in these complex connected structures has been discussed in other related contexts [37]. The reason for this is likely to lie in the fact that the first cells to leave the Primitive Streak will allocate themselves within the Extraembryonic Ectodermal territory to give rise to the allantois and the chorion [52, 53], and that positioning the initiation of gastrulation to the proximal domain of the embryo facilitates these cells to find their target. A process solely determined by a spontaneous symmetry-breaking event would position this point indiscriminately and therefore not contribute efficiently to the general organisation and structure of the conceptus. Thus, it is possible that the interactions between embryonic and extraembryonic tissues during axial specification are related to the interactions between the embryo and the mother more than between the organism and the embryo.
Nodal signalling and AP polarity Our results suggest that symmetry-breaking in Gastruloids is reliant on Nodal that is expressed from the moment of aggregation. Nodal is known to play a critical role in the establishment of the AP axis in all vertebrates [54, 55] and, together with its transcriptional target and feedback inhibitor Lefty1, has been shown to have an intrinsic symmetry-breaking ability [56–58]. Our results suggest that it is this characteristic that probably mediates the symmetry-breaking in the Gastruloids. We observe low levels of Nodal signalling as soon as the aggregate forms and the expression of Nanog, a pluripotency marker, is extinguished. This has been observed in ESCs [59] and might reflect the switch between pluripotency and differentiation. Later, between 24 and 48h AA we detect a range of patterns of the Smad2/3 reporter, with frequent small patches of high levels of activity polarised to one side. We also detect low levels of Lefty1 expression, which is a target of Nodal and its main partner of its self patterning capacity. Furthermore, Nodal is a target of Nodal signalling [57] and also has an input from Wnt signalling [60]; this is also recapitulated here where Wnt/β-Catenin signalling does lead to an increase in Nodal expression (Fig. 4). At 48h AA, we observe patches of low level T/Bra::GFP expression and Wnt/β-Catenin signalling. In the absence of any extrinsic signals, this signalling does lead to an increase in Nodal activity in the embryo and that this is part of the AP axis in vertebrate embryos is marked by the onset of gastrulation (represented by the primitive streak in amniotes) at the posterior midline. Experiments in Xenopus revealed that, in addition to Nodal, Wnt/β-Catenin signalling plays a key role in this process [63–65], and similar requirement has been revealed in chicken embryos, where the initiation of gastrulation requires a synergy between Nodal and Wnt/β-Catenin signalling [66, 67]. Analysis of mouse mutants for elements of Wnt signalling supports this interaction [7, 8]: while gain of function of Wnt signalling can generate an ectopic axis [68, 69], loss of function leads to defects in polarity and axial extension [70]. Nodal and Wnt signalling synergise in the induction of T/Bra expression and the initiation of the primitive streak [66, 67] but, how interactions between these signalling pathways lead to a robust AP axis remains open to discussion. Our experiments provide some insights into the nature of these interactions.

At 48h AA, the patterning of Gastruloids appears to be a stochastic event. Whether a Gastruloid will elongate or not in the next 48 hours appears to correlate with the localisation of β-Catenin/TCF, Smad2/3 signalling and T/Bra expression to one pole of the Gastruloid, and varies from experiment to experiment. Surprisingly, exposure to Chi or Wnt3a for 24h between 48 and 72h AA leads to an almost uniform polarisation of both T/Bra::GFP and Wnt signalling as well as elongation with T/Bra::GFP at the tip of the Gastruloid across a population (Fig. 2, 7). This observation is surprising as there is no polarised exposure to Chi or Wnt and yet, the response is localised and triggers a precisely spatially orientated event. Furthermore, time-lapse imaging of the behaviour of Gastruloids during and after exposure to Chi reveals a transient global response in the form of ubiquitous expression of T/Bra::GFP, which then relaxes to the posterior region of the Gastruloids, to where is was before the signalling pulse (Fig. 2D). It seems as if the only region able to respond would be the one that had been already chosen.

There are several examples in which ubiquitous tonic activation of Wnt signalling results in a localised response or, in many instances, is capable of rescuing a Wnt signalling mutants [71–76]. Furthermore, loss of Wnt signalling reduces but does not abolish the expression of genes under its control [70, 77] and in some instances, has no effect on the pattern [78, 79]. One explanation for these observations is that rather than working as a morphogen or directing the output of a gene regulatory network (GRN), Wnt signalling controls the signal to noise ratio of the processes it is associated with [75, 76]. In the case of the Gastruloids, this would be the Nodal-driven symmetry-breaking process...
and its effect on T/Bra which is a target of Wnt/β-Catenin signalling. In support of this, exposure to the Nodal/ALK4/7 signalling inhibitor SB43 during 24-48h AA abolishes the response to Chi and the polarisation of the aggregate. Furthermore, increases in Wnt/β-Catenin, but not Nodal, signalling will rescue losses of Wnt signalling during the same period. This suggests that Nodal is the main driver of the symmetry-breaking event during 24-48h AA and that Wnt/β-Catenin signalling modulates its effects.

Our results support the hypothesis that a key role of Wnt signalling in developmental events is to act as a filter in cell fate decisions that regulates the ratio of signal to noise of specific processes [75, 76, 80] and suggest that in the Gastruloids, the effect of Wnt/β-Catenin signalling is to stabilise the molecular and cellular events that have taken place during 24-48h AA, principally the activity of Nodal/Smad2/3 activity. Interestingly, application of Chi after disrupting Wnt signalling during this period results in a process with much more variability than the wild type situation (Fig. 9). One interpretation of this observation is that, in the absence of Wnt/β-Catenin signalling, the output of Nodal/Smad2/3 activity is noisy and this is what is amplified by Chi between 48 and 72h AA i.e. Wnt/β-Catenin signalling acts as an amplifier/filter of previous events rather than the driver of the symmetry-breaking, which is likely to be Nodal. This situation is supported by the phenotype of Wnt3 mutant embryos which exhibit initial, weak but localised expression of T/Bra that then progresses (or not) in a stochastic manner [81, 82].

Temporal correspondence between events in Gastruloids and embryos The sequence of transcriptional and signalling events that we have described allows us to align the patterning of the Gastruloids with that of embryos and refine a previous estimate for the relative timing of events [13]. We surmise that the period between 48 and 72h AA corresponds to E5.5-E6.5 in embryos and serves to anchor our time-line. This anchorage is corroborated by the patterns of expression of Nodal, FGF4, 5, Wnt3 and Wnt3a that mirror the events in the embryo during this time period [83, 84] (Fig. 3). Furthermore, we observe re-expression of Nanog in the elongate at 72h AA (Fig. 4E), something that has also been described in the embryo in the nascent mesoderm at the start of Gastrulation [85]. It is in this period that AP polarity is firmly established, T/Bra expression becomes restricted to the proximal posterior region and gastrulation begins [82] and we see analogous events in the Gastruloids (see also van den Brink et al. [13]). The emergence of a node like structure at around 96h makes this time-point equivalent to E7.5 and the emergence of bilaterally asymmetric signalling associated with this structure shortly afterwards buttresses this comparison. Altogether these observations suggest a surprisingly close timing of events and of regulatory interactions between the Gastruloids and embryos that is summarised in Fig. 10.

Symmetry breaking Gastruloids and in mouse embryos Our results show that between 24 and 48h AA, Gastruloids undergo a Nodal dependent symmetry-breaking event that, in collaboration with Wnt signalling, leads to the robust polarised expression
of T/Bra::GFP to one pole which, by comparison with the embryo, we define as the posterior. We surmise that a similar symmetry-breaking event also occurs in the embryo around E5.5 but exploration of this possibility is constrained by the difficulties of working with embryos at this early stage. However, our system allows detailed analysis of the relationship between the different signalling and transcription factor networks which help enlighten these early stages. The suggested correspondence of events suggests that the period between 24 and 48h AA corresponds to between E4.5 and E5.5 and that this period is important for the establishment of the AP axis. While there is evidence for early engagement of Nodal in this process [42–44, 86], our results suggest an involvement of Wnt signalling in AP axis specification which has not been reported before. For example, inhibition of WNT signalling inhibition of Wnt signalling, e.g. with Porcupine mutants, shows no effect in the patterning of the embryo until the onset of gastrulation [87, 88]. This could be interpreted to suggest that the events that we observe in our system are not informative of the events in vivo. However, elements of Wnt signalling are expressed in the embryo from the blastocyst stage [89] and gain and loss of β-Catenin function, as well as of non canonical Wnt signalling, have effects earlier than those of Porcupine mutants [8]. Therefore, there might be a Wnt independent β-Catenin signalling event early in development that affects AP axis formation. We suggest that this is the case and that it is these activities that are revealed in our experiments. Our experimental system provides an opportunity to study this further.

Our results also highlight an important role for FGF signalling in the symmetry-breaking events. Inhibition of MEK signalling compromises the patterning of the Gastruloids in a manner similar to, but not as extreme as, that resulting from inhibition of Nodal signalling: loss of polarity, elongation and T/Bra::GFP expression. As in the case of Nodal signalling, this defect is not rescuable by Chi. On the other hand, exposure to FGF during 24-48h AA increases the domain of T/Bra::GFP expression and interferes, albeit temporarily, with elongation. In the embryo, it is often suggested that FGF signalling is required for the transition from the blastocyst to the epiblast [90–93] but analysis of FGF4, 5, 8, and FGF receptor mutants has not revealed any role in axis establishment though there are clear defects associated with mesoderm establishment and axial elongation [94–96]. Furthermore, exposure of early embryos to FGF leads to an expansion of the T/Bra::GFP expression domain [97] as we observe here (Fig. 8) and is consistent with a role in the onset of gastrulation.

As in the case of Wnt signalling, our results suggest a role of FGF signalling in the symmetry-breaking events which might also be operative but difficult to study in the embryo. Our study also shows that FGF/ERK signalling is closely associated with Wnt/β-Catenin signalling in the induction of T/Bra expression and therefore in the establishment of the Primitive Streak, and that this might be through modulation of the signalling event or through the target [98]. A related function of FGF in mesoderm induction has been described in other vertebrates [99, 100] but this is the first clear evidence that this might also be the case in mammals where it is often more closely associated with the transition from pluripotency to differentiation.

Anteroposterior patterning in Gastruloids and embryos A significant feature of the Wnt/β-Catenin driven patterning of the Gastruloids is the absence of proneural gene expression in the anterior domain [13]. When maintained in N2B27 many Gastruloids will develop Sox1-expressing cells characteristic of neural tissue [13, 14] and this default anterior neural fate is the basis for protocols to generate forebrain and eye cup structures [101–104]. However, after a pulse of Wnt/β-Catenin signalling, Gastruloids are able to generate spinal cord-like tissue because they are able to create Neuromesodermal progenitors, the pool that gives rise to this posterior structure and the paraxial mesoderm [14]. This independence of anterior and posterior development reflects the situation in the embryo where both regions are specified through separate mechanisms and, probably, at different times [105, 106]. This can be observed in, for example, loss of Dkk1 activity or in mutations resulting in a gain of β-Catenin [51, 107, 108] that produce embryos lacking anterior structures, reminiscent of Gastruloids after exposure to high levels of Wnt/β-Catenin signalling. It is noteworthy that gain of function constitutive mutations in the Wnt signalling receptor LR6P or in β-Catenin, although extend the domain of Wnt signalling anteriorly, never cover the whole territory and leave a domain at the anterior most region of the embryo unresponsive [51]. This situation is also very similar to the one Gastruloids experience when they are exposed to high levels of Wnt signalling in which there is a transient ubiquitous response but in the anteriormost region the response is not stabilised.

Altogether, these observations suggest that when the AP axis is established the primitive streak specifies mesodermal and endodermal derivatives but that the anterior region of the embryo, that will give rise to the brain, is protected from this fate and delayed in its differentiation. The early suppression of BMP, Nodal and Wnt signalling does not lead to neural fate but rather to a pre-neural state, perhaps simply an epiblast state, protected from becoming primitive streak [109, 110]. This region becomes neural upon the release of antagonists of BMP and Nodal signalling from the prechordal plate and anterior definitive endoderm (ADE) at the end of gastrulation (reviewed in [111]). In a mirror image event, loss of BMP or Nodal signalling leads to embryos with, mostly, anterior neural structures [86, 112]. Failure to generate prechordal plate or the ADE leads to anterior truncations which can be compared to what we observe in our experiments [113, 114].

There is a clear and early subdivision of the aggregate into two domains that will respond differently to signals: Wnt/β-Catenin signalling during 48 and 72h
AA stabilises the expression of T/Bra in the posterior region but it induces Nodal expression throughout the aggregate and, furthermore, there is a transient ubiquitous expression of T/Bra as well as of the Wnt/β-Catenin reporter expression that then relaxes to the pre-pulse situation. As transiently there are high levels of Nodal and Wnt/β-Catenin signalling in the anterior domain and there is no expression of T/Bra, this suggests that the symmetry-breaking event not only leads to a posterior like domain that will develop as in the embryo, but also that it generates an anterior domain that is refractory to this signalling event and upon which Wnt acts. The expression of high levels of the Smad2/3 reporter in this region confirm the increase in Nodal as well as highlight how this domain is refractory to T/Bra expression. On the other hand, this domain of Nodal signalling, provide an explanation for why this domain is also refractory to the neural fate as Nodal/Smad2/3 signalling will protect this domain from neural development. This suggests that Gastruloids have an anterior domain that is refractory to posterior development. It may be in this primed state and will be timely localised provision of BMP and Nodal inhibitors that releases this potential.

Conclusions Our results suggest that the symmetry-breaking event in the mouse embryo results from the self-organising activity of Nodal signalling around E5.0 which is amplified and stabilised at the proximal-posterior region of the embryo by interactions with agonists and antagonists of BMP, Wnt and Nodal itself, between E5.5 and E6.0. These interactions are patterned and lead to localisation of the initiation of gastrulation to a strategic point that allows the first cells that leave the Primitive Streak to invade the Extraembryonic Ectoderm. In the embryo it is likely that the threshold for this is raised by the extraembryonic tissue to ensure the role and outcome of the bias. Probably because of their characteristics, Gastruloids reveal and allow the amplification of this event. We have suggested a similar explanation of a related situation in the patterning of the neural tube in ESC-derived cysts [37]; perhaps there is a principle behind this which should be borne in mind in the development of tissues and organs in culture which may follow different paths than in embryos where their development will be constrained by the need to place them relative to other tissues and organs.

Our results show that the symmetry-breaking events in Gastruloids, an embryonic organoid system, recapitulate the main events in the embryo. Furthermore, their development closely mirrors that of embryos and allows us to position landmarks for an experimental time-line. Because of the ease of their manipulation, Gastruloids represent a good experimental system to explore the mechanisms underlying early developmental events. Here we have used them to reveal novel requirements and interactions for Wnt, Nodal and FGF signalling for symmetry-breaking that are extrapolatable to embryos.

There are other systems in which ESCs can be spatially patterned [115, 116] and each of them can make their own contribution to our understanding of the connection between cell fate assignments and the three dimensional organisation of tissues and organs. The observations that we report here on Gastruloids, particularly their ability to be cultured long term and the observation that in addition to an AP axis they can develop an LR asymmetry and generate a node-like structure, suggest that they might be useful beyond the early stages of development.

Acknowledgements We thank G. Keller for the T/Bra::GFP line, A-K Hadjantonakis for the TLC2 reporter and members of the AMA lab for useful discussions and criticisms. This work is funded by a European Research Council (ERC) Advanced Investigator Award to AMA (DAT, PCH) with the contribution of a Project Grant from the Wellcome Trust to AMA, an Engineering and Physical Sciences Research Council (EPSRC) Studentship to PB-J.
References

5 Supplemental Material

5.1 Generation of Spry4 reporter ES cell line

The Spry4 reporter construct was generated by combining 'knock-out first' targeting arms of the EUCOMM project [24] with a H2B-Venus reporter cassette and a neomycin resistance gene driven from a human β-actin promoter. This construct was integrated by homologous recombination into a cell line carrying a doxycycline-inducible Gata4-mCherry construct described in [25]. The construct used to obtain permanent expression of the H2B-Cerulean marker has been described [25]. To generate reporter lines, approximately 2x10^6 cells were electroporated with 2 µg of the linearised targeting vector, plated onto feeder cells and put under selection one day after electroporation. Resistant colonies were picked after seven days, and PCR-genotyped for correct insertion events (reporter constructs) or visually screened for transgene expression. Karyotypes of the Spry4 reporter lines with the permanent nuclear marker were determined according to standard procedures [117], and clones with a median chromosome count of 40 were selected for experiments. Spry4::H2B-Venus reporter ESCs gave high-contribution chimaeras with germline transmission, confirming that this ES cell line retains full developmental potential.
5.2 Supplementary Figures

Supplementary Figure 1: Quantification of T/Bra and Nanog expression in NodalcondHBE::YFP ESCs. A single z-plane from the confocal images of Gastruloids from Fig. 4 was quantified and the distributions of YFP (Blue), T/Bra (Red) and Nanog (Green) plotted for the different treatments. The horizontal orange lines in each histogram correspond to the mean fluorescence levels.
Supplementary Figure 2: The activity of the Spry4::H2B-Venus reporter in Gastruloids. (A) Schematic representation of the experimental design. Gastruloids were aggregated in N2B27 (green shading) and stimulated pulsed with Chi between 48 and 72h AA following pre-treatment vehicle, FGF2 or PD03 between 24 and 48h AA. (B) The fluorescence levels of individual Spry4::H2B-Venus Gastruloids pre-treated as indicated (red text) were imaged by wide-field microscopy and quantitatively analysed for their fluorescence. The fluorescence plots were normalised to the maximum fluorescence of the control and the length of each Gastruloid was rescaled to have a maximum length of 1 unit.
Supplementary Figure 3: Inhibition of Wnt signalling prior to the Chi pulse results in midline expression in T/Bra::GFP Gastruloids. Gastruloids formed from T/Bra::GFP mouse ESCs were pre-treated with either DMSO (vehicle), IWP3 or XAV939 for 24h before wash-off and stimulation with Chi (see Fig. 9A for experimental set up); the 120h AA time-point is indicated. Notice the extended expression of T/Bra::GFP along the midline of the Gastruloids pre-treated with either IWP3 or XAV939 (indicated by white arrows). Three examples for each condition are shown. Scale bar represents 100 µm.
5.3 Supplemental Tables

<table>
<thead>
<tr>
<th>Species</th>
<th>Dilution</th>
<th>Cat. Number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachyury</td>
<td>Goat</td>
<td>1:200</td>
<td>sc-17743 Santa Cruz Biotechnologies</td>
</tr>
<tr>
<td>Nanog</td>
<td>Mouse</td>
<td>1:300</td>
<td>14-5761-80 e-Biosciences</td>
</tr>
<tr>
<td>GFP</td>
<td>Rabbit</td>
<td>1:500</td>
<td>A11122 Molecular Probes</td>
</tr>
<tr>
<td>Goat-A633</td>
<td>Donkey</td>
<td>1:500</td>
<td>A21082 Molecular Probes</td>
</tr>
<tr>
<td>Mouse-A568</td>
<td>Donkey</td>
<td>1:500</td>
<td>A10037 Molecular Probes</td>
</tr>
<tr>
<td>Rabbit-A488</td>
<td>Donkey</td>
<td>1:500</td>
<td>A21206 Molecular Probes</td>
</tr>
<tr>
<td>Hoechst3342</td>
<td>n/a</td>
<td>1:1000</td>
<td>H3570 Invitrogen (ThermoFisher)</td>
</tr>
</tbody>
</table>

Table 1: Antibodies used for Gastruloid immunostaining.

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Cells/40µl</th>
<th>48h Diameter (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR8::mCherry</td>
<td>[18] 550</td>
<td>182.7 ±17.3 (n = 83)</td>
</tr>
<tr>
<td>Bra::GFP</td>
<td>[16] 400</td>
<td>161.0 ±26.2 (n = 222)</td>
</tr>
<tr>
<td>IBRE4::mCerulean</td>
<td>[18] 400</td>
<td>152.6 ±12.2 (n = 39)</td>
</tr>
<tr>
<td>NodalF<sup>condHBE-YFP</sup></td>
<td>[17] 500</td>
<td>138.7 ±16.1 (n = 124)</td>
</tr>
<tr>
<td>Spry4::VNP</td>
<td>This work</td>
<td>550</td>
</tr>
<tr>
<td>TLC2</td>
<td>[19, 20] 400</td>
<td>194.9 ±20.7 (n = 56)</td>
</tr>
</tbody>
</table>

Table 2: Cell lines used and numbers of cells required for Gastruloid culture. The average diameter of the Gastruloids at 48h post formation is indicated with the standard deviation and the number of Gastruloids measured from at least two replicate experiments.

<table>
<thead>
<tr>
<th>Small Molecule/Recombinant protein</th>
<th>Working Conc.</th>
<th>Stock Conc.</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI99201</td>
<td>3µM</td>
<td>10mM</td>
<td>Tocris Biosciences</td>
</tr>
<tr>
<td>PD0325901</td>
<td>1µM</td>
<td>10mM</td>
<td></td>
</tr>
<tr>
<td>SB431542</td>
<td>10µM</td>
<td>100mM</td>
<td></td>
</tr>
<tr>
<td>DMH1</td>
<td>0.5nM</td>
<td>5mM</td>
<td></td>
</tr>
<tr>
<td>IWP3</td>
<td>1µM</td>
<td>5mM</td>
<td>R&D systems</td>
</tr>
<tr>
<td>XAV939</td>
<td>1µM</td>
<td>10mM</td>
<td></td>
</tr>
<tr>
<td>Wnt3a</td>
<td>100ng/ml</td>
<td>40µg/ml</td>
<td></td>
</tr>
<tr>
<td>DKK</td>
<td>200ng/ml</td>
<td>100µg/ml</td>
<td></td>
</tr>
<tr>
<td>Nodal</td>
<td>1µg/ml</td>
<td>50µg/ml</td>
<td></td>
</tr>
<tr>
<td>Noggin</td>
<td>500ng/ml</td>
<td>100µg/ml</td>
<td></td>
</tr>
<tr>
<td>Chordin</td>
<td>500ng/ml</td>
<td>200µg/ml</td>
<td></td>
</tr>
<tr>
<td>FGF2</td>
<td>10ng/ml</td>
<td>100µg/ml</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Concentrations of Small molecules and recombinant proteins used in this study. Conc: Concentration
<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer Sequence</th>
<th>Reverse Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axin2</td>
<td>CTAGACTACGGCCTACAGGAA</td>
<td>GCTGGCAGACAGGACATACA</td>
</tr>
<tr>
<td>Bmp4</td>
<td>CTCAAGGGAGTGAGATTGG</td>
<td>ATGCTTGAGACTACGTTGG</td>
</tr>
<tr>
<td>Cer1</td>
<td>GGAACACGACCTAGCTCCA</td>
<td>AGGGTCAGAATTGGCCATTG</td>
</tr>
<tr>
<td>Chordin</td>
<td>GTGCCCTGCTGCTGCTTCTT</td>
<td>AGGAGTTGCTACAGGATIGG</td>
</tr>
<tr>
<td>Dkk1</td>
<td>CACATTGCAACACTCTTTC</td>
<td>CATCCCTCCTTCCAAATAC</td>
</tr>
<tr>
<td>Fgf4</td>
<td>GGGCACTCAGAGAGTAGAGG</td>
<td>ACTTGGCTCAAGCAGTGGG</td>
</tr>
<tr>
<td>Fgf5</td>
<td>GTCATATGACTAGAGAGAGGA</td>
<td>TCAGCTGTTCTTTGAATGGG</td>
</tr>
<tr>
<td>Fgf8</td>
<td>AGGACTAGTACAGAGAGAGG</td>
<td>CATGATGCTTCTTTGAATGGG</td>
</tr>
<tr>
<td>Lefty1</td>
<td>AGGGTGCGAGACCTGTAGCTG</td>
<td>GGAAGCAAAGACACACACAC</td>
</tr>
<tr>
<td>Nodal</td>
<td>AGGCACTGCTCCAGTCCCAAG</td>
<td>GTGCTGCCAGACATCATCTC</td>
</tr>
<tr>
<td>Noggin</td>
<td>CCCATCATTTCCGAGTGAAG</td>
<td>CTCGCTAGAGGTTGTAAG</td>
</tr>
<tr>
<td>ppiA</td>
<td>TTACCCTCAAAAAGCTTCCCTGTG</td>
<td>AACCCCAAAGACTTCAGTGAAGC</td>
</tr>
<tr>
<td>SPRY4</td>
<td>ATGGTGAGTGTCACTCTGT</td>
<td>GGAGGGGAGCTACAGACAC</td>
</tr>
<tr>
<td>T/Bra</td>
<td>GTGGAGCTCAGTCTCTTCCTG</td>
<td>GTCCAGAGGCTATGAGGAG</td>
</tr>
<tr>
<td>Wnt3</td>
<td>CTAATGCTGCGTTGAGAGAGG</td>
<td>ACATGGTAGAGATGAGGAG</td>
</tr>
<tr>
<td>Wnt3a</td>
<td>CATACAGGAGTGTGCCTTGA</td>
<td>AATCGAGTGGGTTGATTG</td>
</tr>
</tbody>
</table>

Table 4: Primer Sequences used for qRT-PCR.

<table>
<thead>
<tr>
<th>Condition</th>
<th>No Expression</th>
<th>Polarised</th>
<th>Ubiquitous</th>
<th>Spherical</th>
<th>Ovoid</th>
<th>Elongated</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>24h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B27</td>
<td>26.8 (21.5)</td>
<td>62.5 (16.1)</td>
<td>10.7 (15.2)</td>
<td>100.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>112</td>
</tr>
<tr>
<td>48h</td>
<td>23.7 (13.2)</td>
<td>74.1 (11.8)</td>
<td>2.2 (3.4)</td>
<td>67.0 (9.4)</td>
<td>33.0 (9.4)</td>
<td>0.0 (0.0)</td>
<td>140</td>
</tr>
<tr>
<td>72h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B27</td>
<td>6.5 (6.6)</td>
<td>89.4 (8.5)</td>
<td>4.1 (4.4)</td>
<td>25.7 (16.4)</td>
<td>55.5 (24.7)</td>
<td>18.8 (14.7)</td>
<td>89</td>
</tr>
<tr>
<td>DMSO</td>
<td>3.6 (--)</td>
<td>89.3 (--)</td>
<td>7.1 (--)</td>
<td>10.7 (--)</td>
<td>85.7 (--)</td>
<td>3.6 (--)</td>
<td>28</td>
</tr>
<tr>
<td>Chi</td>
<td>0 (--)</td>
<td>91.2 (11.7)</td>
<td>8.8 (11.7)</td>
<td>23.3 (18.2)</td>
<td>52.9 (18.1)</td>
<td>23.8 (26.3)</td>
<td>82</td>
</tr>
</tbody>
</table>

Table 5: Expression phenotype of T/Bra::GFP mouse ESCs. The proportion of T/Bra::GFP Gastruloids not expressing the reporter (No Expression) or displaying either Polarised or Ubiquitous expression at 24, 48 and 72h AA when maintained in N2B27 (24, 48, 72h) or following a pulse of DMSO or Chi (72h). The standard deviation is shown in brackets and the number of Gastruloids analysed are shown (n).

<table>
<thead>
<tr>
<th>Condition</th>
<th>No Expression</th>
<th>Polarised</th>
<th>Ubiquitous</th>
<th>Spherical</th>
<th>Ovoid</th>
<th>Elongated</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>24h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B27</td>
<td>26.8 (21.5)</td>
<td>62.5 (16.1)</td>
<td>10.7 (15.2)</td>
<td>100.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>112</td>
</tr>
<tr>
<td>48h</td>
<td>23.7 (13.2)</td>
<td>74.1 (11.8)</td>
<td>2.2 (3.4)</td>
<td>67.0 (9.4)</td>
<td>33.0 (9.4)</td>
<td>0.0 (0.0)</td>
<td>140</td>
</tr>
<tr>
<td>72h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B27</td>
<td>6.5 (6.6)</td>
<td>89.4 (8.5)</td>
<td>4.1 (4.4)</td>
<td>25.7 (16.4)</td>
<td>55.5 (24.7)</td>
<td>18.8 (14.7)</td>
<td>89</td>
</tr>
<tr>
<td>DMSO</td>
<td>3.6 (--)</td>
<td>89.3 (--)</td>
<td>7.1 (--)</td>
<td>10.7 (--)</td>
<td>85.7 (--)</td>
<td>3.6 (--)</td>
<td>28</td>
</tr>
<tr>
<td>Chi</td>
<td>0 (--)</td>
<td>91.2 (11.7)</td>
<td>8.8 (11.7)</td>
<td>23.3 (18.2)</td>
<td>52.9 (18.1)</td>
<td>23.8 (26.3)</td>
<td>82</td>
</tr>
</tbody>
</table>

Table 6: Pearson Correlation Coefficients between a) Nodal and Brachyury, b) Nodal and Nanog and c) Brachyury and Nanog in the Nodal_{condHBE::YFP} mouse ESC line at 24, 48 and 72h with or without a pulse of Chi on day 3. Values to 3d.p., correlations from one representative Gastruloid.

<table>
<thead>
<tr>
<th>Condition</th>
<th>No Expression</th>
<th>Polarised</th>
<th>Ubiquitous</th>
<th>Spherical</th>
<th>Ovoid</th>
<th>Elongated</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>24h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B27</td>
<td>26.8 (21.5)</td>
<td>62.5 (16.1)</td>
<td>10.7 (15.2)</td>
<td>100.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>112</td>
</tr>
<tr>
<td>48h</td>
<td>23.7 (13.2)</td>
<td>74.1 (11.8)</td>
<td>2.2 (3.4)</td>
<td>67.0 (9.4)</td>
<td>33.0 (9.4)</td>
<td>0.0 (0.0)</td>
<td>140</td>
</tr>
<tr>
<td>72h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B27</td>
<td>6.5 (6.6)</td>
<td>89.4 (8.5)</td>
<td>4.1 (4.4)</td>
<td>25.7 (16.4)</td>
<td>55.5 (24.7)</td>
<td>18.8 (14.7)</td>
<td>89</td>
</tr>
<tr>
<td>DMSO</td>
<td>3.6 (--)</td>
<td>89.3 (--)</td>
<td>7.1 (--)</td>
<td>10.7 (--)</td>
<td>85.7 (--)</td>
<td>3.6 (--)</td>
<td>28</td>
</tr>
<tr>
<td>Chi</td>
<td>0 (--)</td>
<td>91.2 (11.7)</td>
<td>8.8 (11.7)</td>
<td>23.3 (18.2)</td>
<td>52.9 (18.1)</td>
<td>23.8 (26.3)</td>
<td>82</td>
</tr>
</tbody>
</table>