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Summary 
 
The brain generates oscillatory neuronal activity at a broad range of frequencies and the 
presence and amplitude of certain oscillations at specific times and in specific brain 
regions are highly correlated with states of arousal, sleep, and with a wide range of 
cognitive processes. The neuronal mechanisms underlying the generation of brain 
rhythms are poorly understood, particularly for low-frequency oscillations. We recently 
reported that respiration-locked olfactory bulb activity causes delta band (0.5-4 Hz) 
oscillatory neuronal activity in the whisker sensory (barrel) cortex in mice. Furthermore, 
gamma oscillations (30 – 100Hz), which are widely implicated in cognitive processing, 
were power-modulated in synchrony with the respiratory rhythm. These findings link 
afferent sensory activity caused by respiration directly to cortical rhythms associated with 
cognitive functions. Here we review the related literature and present new evidence to 
propose that respiration has a direct influence on oscillatory cortical activity, including 
gamma oscillations, and on transitions between synchronous and asynchronous cortical 
network states (marked by phase transitions). Oscillatory cortical activity, as well as 
phase transitions, has been implicated in cognitive functions, potentially linking 
respiratory phase to cognitive processing. We further argue that respiratory influence on 
cortical activity is present in most, and possibly in all areas of the neocortex in mice and 
humans. We furthermore suggest that respiration had a role in modulating cortical 
rhythms from early mammalian evolution. Early mammals relied strongly on their 
olfactory sense and had proportionately large olfactory bulbs. We propose that to this 
day the respiratory rhythm remains an integral element of dynamic cortical activity in 
mammals. We argue that breathing modulates all cortical functions, including cognitive 
and emotional processes, which could elucidate the well-documented but largely 
unexplained effects of respiratory exercises on mood and cognitive function. 
 
 
Introduction 
 
The rhythm of respiration is one of the fundamental rhythms of life. It is inextricably 
linked to olfaction, a sensory modality of great importance to the evolutionarily earliest 
mammals, which possessed correspondingly large olfactory bulbs (Rowe et al., 2011). 
Neurons in the olfactory bulb, at the first central processing stage of odors, rhythmically 
increase and decrease their firing rates with each breath, even in the absences of odors 
(Adrian, 1950; Phillips et al., 2012). Thus, via olfactory bulb output, respiration generates 
a continuous rhythmic neuronal input to the piriform (olfactory) cortex and drives 
respiration-locked firing in piriform cortical neurons (Fontanini and Bower, 2005; 
Fontanini et al., 2003). Respiration-locked oscillations have also been observed in areas 
that receive direct projections from the piriform cortex, such as the prefrontal cortex and 
the hippocampus (Nguyen Chi et al., 2016; Tsanov et al., 2014; Yanovsky et al., 2014). 
Here we review published evidence, as well as present new data supporting the view 
that respiration influences three distinct aspects of cortical neuronal activity - possibly in 
all cortical lobes. We suggest that the functional consequence of respiration-locked 
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cortical activity is a rhythmic modulation of sensory perception, and of motor and 
cognitive functions.  
 Published results, as well as new (unpublished) data from our laboratory show 
that respiration does not only affect neuronal activity at the respiratory frequency but 
also causes phase-locked modulation of the power of gamma band oscillations (30 – 
100 Hz) (Ito et al., 2014) and of the timing of phase transitions (Freeman, 2015; Kozma 
and Freeman, 2016). Based on these findings we suggest that respiration is a source of 
variability of cortical activity and consequently, cortical function. The modulation of the 
power of gamma oscillatory activity has been widely implicated in the performance of a 
broad range of sensory and cognitive tasks (Canolty et al., 2006; Herrmann et al., 2010; 
Kay et al., 2009) and the occurrence of phase transitions in cortical activity has been 
associated with the occurrence of sudden insight or understanding (“aha” moments) 
(Freeman, 2004b, 2015; Kozma and Freeman, 2008; Kozma and Freeman, 2016).  
 Taken together, the evidence we summarize here may require a drastic revision 
of our current conceptions of the physiology of respiration, which are based on gas 
exchange and olfactory sensation. We suggest a radically new view of respiration by 
proposing that respiration directly modulates cognitive brain function by synchronizing 
neuronal activity across large areas of neocortex. Since cognitive processes in turn 
affect respiratory behavior, respiratory modulation of cognitive function indicates the 
presence of an intimate, life-long interaction between mind and body. As a 
consequence, the intentional modulation of respiration may, if fully understood, become 
a powerful tool for the manipulation of cognitive function. At the same time, abnormal 
respiratory rhythms may reflect and/or cause cognitive impairment. This in turn suggests 
that long-term observation of respiratory behavior, similar to ambulatory EKG, may be a 
powerful physiological and psychological diagnostic tool.  
 
 
Respiration locked oscillations in mouse and human cortex 
 
We recorded local field potentials (LFPs) and spike activity in various areas of the 
mouse cortex while simultaneously monitoring respiratory behavior. LFP and spike 
activity was then analyzed to determine whether activity was modulated in phase with 
respiration. LFP activity was averaged aligned with the end of the expiration cycle. 
Whether LFP activity was significantly modulated by respiration was determined using 
bootstrap statistics (Diaconis and Efron, 1983; Efron and Tibshirani, 1993). Surrogate 
LFP averages for bootstrap statistics were created by randomly shuffling respiration 
times and recalculating LFP averages aligned on shuffled respiration times. This process 
was repeated >100 times to determine p = 0.05 significance boundaries (see methods 
section for details). 
 Spike activity was analyzed by cross correlating spike times with end-of-
expiration times. Again, bootstrap statistics were used to determine whether spike rate 
was significantly modulated in phase with respiration. Figure 1 shows respiration locked 
averages of LFP activity and spike respiration cross-correlations for 5 different 
recordings sites, which include the prefrontal, somatosensory, primary motor and visual 
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cortex, and the olfactory bulb. Respiration locked modulation of LFP and spike activity in 
the sensory whisker barrel cortex (asterisk in Fig. 1) has been shown previously (Ito et 
al., 2014).  
 

 
LFP and spike activity at each recording site were significantly modulated in phase with 
the rhythm of respiration indicating that in mice, respiration is a major contributor to 
cortical delta oscillations. In a previous study we have shown that delta oscillations in the 
mouse sensory whisker barrel cortex are driven mostly by respiration-locked olfactory 
bulb sensory activity (Ito et al., 2014). The spike activity of olfactory bulb output neurons 

	  
Figure 1:  Spike and LFP activity in different areas of the neocortex of awake 
mouse are phase locked to respiration. Blue lines in histograms are cross-
correlations. Dashed green vertical lines mark the end of expiration. Horizontal 
black and red lines represent the predicted median (black) and the 5 and 95%ile 
boundaries (red) of the surrogate data obtained by random shuffling (Bootstrap 
statistics).  Square insert at the bottom left shows an example single unit 
recording in primary motor cortex. A in insert) Raw spike recording with sorted 
single unit spikes shown below. B in insert) Inter-spike interval (ISI) histogram 
showing the typical shape of a singe unit with effects of refractory period. Traces 
above ISI show overlays of the first and last 10 spikes recorded over 300 
seconds.  
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(mitral and tufted cells) is unfailingly modulated in phase with respiration, even in the 
absence of odors (Adrian, 1950; Phillips et al., 2012). This is likely due to the fact that 
olfactory sensory neurons not only detect chemical substances or odors, but are also 
mechano-sensitive and respond the pressure changes associated with the movements 
of air through the nasal cavity during inspiration and expiration (Grosmaitre et al., 2007). 
Removing the olfactory bulb eliminated respiration locked activity in the whisker barrel 
cortex almost entirely (Ito et al., 2014).  
 

 
It is very likely, however, that breathing-related sensory inputs from other sources also 
contribute to respiration-locked cortical oscillations. Amongst those are chemical sensors 
in the blood vessels detecting blood CO2 levels, stretch receptors in the lungs, 
mechano-sensitive cells in the upper airways and stretch receptors of the diaphragm and 
intercostal muscles (Belvisi, 2003; Davenport and Vovk, 2009; Finger et al., 2003; 
Schelegle, 2003; Widdicombe, 2009). Most of this interoceptive sensory activity is 

	  

	  
Figure 2: Electrocorticographic (ECoG) activity in different lobes of human 
neocortex is phase locked to respiration. Four graphs showing averages of 
ECoG signals recorded at the cortical locations indicated by the red arrows. 
Averages were aligned on the times of expiration onset (green dashed vertical 
line). Blue lines in graphs represent ECoG averages; black and red lines 
represent the median, 95%ile and 5%ile boundaries of the surrogate data 
distribution, respectively (see Methods). The image of the brain in the center has 
blue dots marking ECoG recording sites. Arrows link recording sites in the frontal, 
parietal and temporal lobes with the plots of expiration–triggered ECoG averages 
calculated for that site. In all three lobes ECoG activity was significantly 
modulated in phase with breathing (p<0.05), resulting in peak ECoG activity at ~3 
sec before and after expiration onset. The inter-peak interval corresponds to the 
patient’s average respiratory interval of about 6 sec.  
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represented in the anterior insular cortex (Craig, 2002, 2009). In addition to the sensory 
activity caused by respiration, there are also projections from the brain stem to the 
thalamus (Carstens et al., 1990; Krout et al., 2002). Some of these projections likely 
provide respiration-locked input to the thalamus (Chen et al., 1992) introducing a non-
sensory respiration-locked input to the thalamo-cortical circuit. How exactly different 
pathways contribute to cortical respiration-locked activity remains to be determined. At 
the current state of knowledge it seems that in highly olfaction-reliant rodents the 
olfactory bulb is a main driving force. In humans, however, judging by the small size of 
the olfactory bulb compared to the rest of the brain, olfaction is likely to play a lesser role 
in driving respiration-locked cortical activity. 
 Recordings of cortical activity in humans were obtained from epilepsy surgery 
patients, implanted with subdural grid electrodes for the purpose of electrocorticographic 
(ECoG) monitoring and localization of epileptiform activity. The signals recorded with 
subdural grid electrodes correspond to LFP recordings obtained in mice and were 
analyzed and interpreted in the same way. Respiration-triggered averaging of ECoG 
signals from 3 patients showed a significant modulation of ECoG in phase with the 
respiratory cycle at most recording sites. Sites showing respiration locked neuronal 
activity were found in all lobes covered by the subdural grid, namely the temporal, the 
parietal and the frontal. Examples of ECoG averages showing respiration-locked 
modulation over the three lobes are shown in Fig. 2. Most electrode locations were in 
areas of the human brain not involved in olfactory processing. At the time of the writing 
of this manuscript, recordings from the occipital cortex were not available. Recording 
sites for subdural grid electrodes are determined by medical considerations and none of 
the patients in this study required occipital placement of electrodes. We calculated 
respiration-triggered averages of raw ECoG signals for all recordings sites and found 
significant respiration-locked modulation of cortical activity at more than half of the 
recording sites. Together, the results obtained in humans and mice show that 
respiration, likely due to respiration locked sensory inputs, synchronizes neuronal activity 
across large areas of neocortex, at the rhythm of respiration. 
 
 
Respiration locked modulation of gamma power 
 
The cortical rhythms generated at different frequencies are often interdependent. A 
common observation is that high-frequency oscillations show rhythmic increases and 
decreases in amplitude, which are phase locked to the rhythm of a lower frequency 
oscillation. A well- described example of such phase-amplitude coupling is the 
modulation of gamma oscillation (30-100 Hz) amplitude in phase with the slow theta (4-8 
Hz) oscillations (Canolty et al., 2006). The strength of phase locking between gamma 
power and theta phase varies with the specific task performed. Learning and working 
memory in rodents are accompanied by changes in theta-gamma phase-amplitude 
coupling (PAC) in the prefrontal cortex and hippocampus (Li et al., 2012; Tort et al., 
2009), which suggests that theta-gamma PAC reflects cognitive processes. We have 
shown that respiration modulates gamma oscillatory power in the mouse whisker barrel 
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cortex (Ito et al., 2014). Here we asked if this finding extends to other cortical areas and 

other frequency bands. To address this question we performed a PAC analysis based on 
analytic amplitude taken from a Hilbert transform of the band-passed filtered LFP 
signals, to determine which, if any, frequencies of cortical oscillations showed 
respiration-locked amplitude modulation. In mice we found significant modulation of 
gamma amplitude at all cortical sites tested.  
 
 The same analysis of human ECoG data revealed widespread synchronous 
modulation of gamma amplitude across all three cortical lobes covered with grid 
electrodes in three patients. In one patient (MN, Fig. 5), almost all recording sites 
showed significant modulation in a narrow gamma frequency band. In another patient, 
gamma power modulation was limited to the inferior frontal lobe (MS, Fig. 5). In the third 
patient (RV, Fig. 5) respiration-locked gamma modulation was scattered and seen at 
only few recordings sites. At this point we do not understand what determines whether a 
cortical site shows respiration-locked modulation of gamma activity. But we asked 
whether this modulation had a preferred respiratory phase during which the probability 
for gamma-power increase was highest. We used Moore-Rayleigh statistics to estimate 
the phase during which gamma power had the highest probability of increased 

	  
Figure 3: Phase-amplitude coupling of respiration with neuronal (LFP) 
oscillations in mouse hippocampus, prefrontal cortex and somatosensory 
cortex. Panels show modulograms for two different mice. Left panel: LFP recordings 
were performed at four sites in the hippocampus (Hipp1-4) and at three sites within 
the prefrontal cortex (PFC1-3). Significant respiration-locked power modulation 
(pseudo colors code Moore-Rayleigh p value) were seen only in the prefrontal cortex 
and were most significant for gamma band oscillations. Right panel: LFP recordings 
were performed at two sites in the trunk area of the somatosensory cortex (S1Tr1-2) 
and at three sites in the prefrontal cortex (PFC1-3). Phase amplitude coupling 
occurred across a broad band of frequencies (8 – 100 Hz) at both sites in the 
somatosensory cortex. In the prefrontal cortex phase amplitude coupling was most 
strongly expressed in the gamma range and only observed at two of three recordings 
sites. One recording site also showed respiration-modulated power in the theta/beta 
frequency range. 
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amplitude. The probability of increased gamma power was highest during the resting 
phase of respiration, i.e. the period between two breaths. This finding was consistent 
across both patients with consistent gamma activity modulation (patients MS and MN). 
Mice do not have as pronounced a resting phase between breaths as humans do but 
consistent with the findings in humans the preferred phase for increased probability of 
high gamma power in mice was around the time of transition from expiration to 
inspiration.  
 

	  
 
Figure 4: Phase-amplitude coupling of respiration with neuronal oscillations in 
the human neocortex. Top panel: Subdural electrode locations, shown on a 
rendering of the standard Montreal Neurological Institute (MNI) brain atlas, in 3 
patients with epilepsy who underwent a Phase II epilepsy surgery evaluation. Bottom 
panels: modulograms for each patient showing frequencies (y-axis) with significant 
respiration-locked power modulation (pseudo colors code Moore-Rayleigh p value) 
for each ECoG electrode (x-axis). 
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Respiration locked timing of phase jumps  

In the case of rapidly changing, non-stationary signals, Hilbert analysis can 
provide useful insight into neuronal processes. Hilbert analysis is based on determining 
the analytic signal and its instantaneous frequency, which can be used to describe 
phase synchronization effects in neuronal populations. Sudden changes in phase 
synchronization across cortical areas have been linked to cognitive processing (Kozma 
and Puljic, 2015). In the Hilbert approach, one determines the analytic amplitude and 
analytic phase of complex-valued Hilbert-transformed signals at various frequency 
bands (Kozma et al., 2012). The analytic phase is predominantly a continuous function 
of time, which may, however, show sudden discontinuities (phase jumps). These phase 
jumps mark brief, transient periods, which have been suggested to have cognitive 
significance, possibly associated with moments of sudden insight (“aha” moments) 
(Freeman, 2004a).  
 Here we use Hilbert analysis to identify relationships between respiration and 
phase discontinuities within the ECoG signals. Figure 5 illustrates the results of such 
analysis using a raw LFP signal from an array of 58 surgically implanted, subdural ECoG 
electrodes from an epilepsy patient. Figure 5a shows an example of the raw ECoG/LFP 
signal, while Fig. 5b is the respiratory signal, with inspiration and expiration represented 
by increasing and decreasing voltage, respectively. The respiratory signal has a tri-
phasic sequence consisting of inspiration, expiration and rest, with a total duration of 
around 3 seconds in the example shown. The average number of large phase jumps 

	  
Fig 5. Illustration of the Hilbert analysis method using 58 traces of raw ECoG data and 
the simultaneously recorded respiratory signal. A-C) Three subplots showing A) a single 
raw ECoG signal, B) raw respiratory signal, and C) the integral effect of phase jumps across 58 
subdural grid electrodes. Phase jumps were determined as the discontinuities of the phase of 
the analytic signal exceeding a certain threshold over the gamma band (Freeman, 2009). A 
threshold of 60 degrees was used here. An average value of phase jump 0.1 means that there 
are about 6 phase jumps at a given time, while phase jump value 0.2 means twice as many 
phase jumps (around 12). The individual raw ECoG signal in A) does not exhibit an obvious 
correlation with the respiratory signal (B). However, the integral phase discontinuity value (C) is 
phase-locked to the respiratory signal. D) Phase jump value distribution across four discrete 
phases of the respiratory cycle divided into expiration, first and second half of the resting phase 
(Rest 1, Rest 2), and Inspiration. Phase jump activity is significantly increased during the resting 
period.	  
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(exceeding 60 degrees) in the analytic phase across the array is plotted in Fig. 5C. 
There is statistically significant correlation between the number phase jumps and the 
respiratory phase. This is emphasized in Fig. 5D, where the average phase jump values 
are depicted for the expiration, rest (part 1&2), and inspiration phases. 
 
A simple graph theory model of respiratory modulation of cortical activity 
 
INSERT BOX: BASIC GRAPHY THEORY TERMINOLOGY 
 

For general concepts of graph theory, see, e.g., (Erdos and Renyi, 1960; Watts and Strogatz, 1998; 
Newman and Watts, 1999; Benjamini and Berger, 2001; Albert and Barabasi, 2002; Bollobas et al., 2007). 
Graph theoretical approaches have been used successfully since the early 2000’s to model properties of 
brain networks (Sporns et al., 2005; Reijneveld et al., 2007; Bollbas et al., 2009; (Gallos et al., 2012; 
Reijneveld et al., 2007; Turova and Villa, 2007). A review of the literature on graph theory approaches to 
brain structure and dynamics is given, e.g., in (Kozma and Freeman, 2016).  

Here we summarize the graph terminology used in this study for describing the model for the 
respiratory modulation of cortical activity.  

• Graph: A mathematical object G(n, M), with a collection of n vertices (nodes) with M edges 
(connections) between some pairs of the vertices. 

• Path: A path between two nodes is the sequence of edges starting in one node and ending in the 
other. The number of nodes along the path measures path length. 

• Distance: Distance between two nodes is the length of the shortest path between them. 
• Diameter: Diameter of a graph G is the length of the longest distance between any pairs of its 

edges. 
• Connectedness - A graph is connected if it contains a path between any two vertices.  
• Degree of a node - The number of edges connected to that node.  
• Random graph - Graphs when the vertices and or edges are selected in some random way. In the 

Erdos-Renyi random graph (Erdős and Rényi, 1960), the numbers n of vertices and M of edges are 
given, and the random graph is chosen uniformly from among all graphs with vertex set {1,2,...n} 
and M edges. 

• Giant component - A component of the graph, which contains a constant (high) fraction of the 
nodes. 

• Geometric graph - Has its nodes placed in the (Euclidean) space. Here we consider 2-dimensional 
planar geometry. 	  

 
Figure 6. Illustration of a geometric graph defined over the 2-
dimensional square lattice of size 7x7. The 4 local edges of node u are 
marked with bold black lines. There is a long edge between node u and v 
shown in green. The probability of the long edge is given by pd, as defined 
in the model description of the main text. 
 
 
 
 
 

An example of a geometric graph defined on the 2-dimensional plane is shown in Fig. 6. Note that the 
vertices of this graph are placed on a square lattice. Each vertex has a short edge (undirected) to its direct 
neighbor, all together 4 edges. In addition to these short edges, the diagram shows some additional long 
edges that are selected randomly between two vertices that are not direct neighbors on the square lattice 
grid.  
 
END OF BOX: BASICS GRAPH THEORY FOR BRAINS 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2016. ; https://doi.org/10.1101/049007doi: bioRxiv preprint 

https://doi.org/10.1101/049007
http://creativecommons.org/licenses/by-nc-nd/4.0/


In order to determine biologically plausible conditions that would allow a neo-
cortex-like network to support experimentally observed properties of large-scale 
oscillations, we explored the parameter space of a simple graph theoretical model of the 
neocortex. Here we focus on the respiratory modulation of gamma power, while other 
observations, such as the timing of phase jumps being phase-locked to respiration, will 
be the objective of future studies. Our results show that the influence of respiratory 
phase on the modulations of the gamma power can be reproduced in our graph 
theoretical model within biologically meaningful parameters describing network 
connectivity and excitation-inhibition balance. 

When using a graph theoretical approach, we view brains as large-scale 
networks, with some nodes and edges connecting the nodes (see box “Basics of graph 
theory for brains”). According to the adopted population model, the nodes are not 
representative of individual neurons, but of populations of thousands of neurons (up to 
about 10,000) which correspond to granules of neurons (Freeman, 1975; Kozma and 
Freeman, 2009). Edges between the nodes indicate connections between neuronal 
populations. Depending on the goal of the study, the connections may correspond to 
structural or functional links between neuronal populations. In our case, connections 
mean that the populations influence each other. Most of the edges are relatively short 
reflecting the fact that neuronal connections via axons are concentrated around their 
dendritic arbor. There are however, longer connections extending beyond the direct 
neighborhood of the nodes. The number of such longer connections is relatively low, 
nevertheless, they play crucial role in the propagation of neural activity between distant 
cortical areas (Kozma and Puljic, 2015).  

We consider graphs in a two-dimensional planar geometry, corresponding to the 
cortical sheet (Freeman et al., 2009). In mathematical terms, we define a graph using a 
2-dimensional square lattice of 𝑁×𝑁  points folded into a torus, and denote it as ℤ!! . The 
points of the lattice give the vertices of the random graph. The edges of the generated 
graph 𝐺ℤ!! ,!! include the regular edges of the lattice, and some additional edges selected 
randomly. The random edges are selected between two nodes with probabilities 𝑝! that 
are defined with respect to the lattice graph distance 𝑑 of vertices to be joined. The 
distribution of the long edges reflects the biological fact there are many more short 
connections than long ones in the neural tissue: 

𝑝! =
𝑘

𝑁𝑑!
 

where α is the exponent of a power-law long edge distribution; for simplicity, here we use 
the value 𝛼 = 1. The regular edges of the lattice model the local connections between 
neural nodes, while the additional long edges model non-local connections mediated by 
long axons.  

On the constructed graph, we consider the propagation of activity in the presence 
of excitatory and inhibitory effects. As the starting step, a full mathematical analysis of 
the activation process on 𝐺ℤ!! ,!! in the presence of purely excitatory nodes has been 
given. The main result in (Janson et al., 2016) determines all stable and unstable fixed 
points, which provide the critical initial probability values 𝑝! indicating phase transitions. 
That is, in case of initializing the process below critical values, the system will die out; all 
nodes eventually will become inactive. On the other hand, in case of initializing the 
process above critical values, the system will completely recover. Next we consider 
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models with inhibition. The results (Kozma et al., 2016) show the presence of parameter 
regions with convergent behavior (fixed point), as well as multiple fixed points (stable 
and unstable), indicating oscillations. The oscillations inherent in coupled excitatory-
inhibitory (E-I) populations describe the generation of gamma oscillations in the cortical 
neuropil. 

We modeled respiratory effects by periodic perturbations in the form of varying 
probability of the initial activation of the populations. In order to investigate the effect of 
respiratory modulation of gamma power in mouse brains, we modeled an intrinsic 
oscillation in the E-I population, which was 8-10 times faster than the respiratory rhythm. 
This corresponds to the fact that respiration at theta rates in the mouse (~3-4 Hz) is 
about 10 times slower than the dominant gamma rate of cognitive processing.  

Our simple model, which reproduced respiration-induced modulation of gamma 
fluctuations, has several key parameters: the density of long connections 𝜆 , the 
proportion of excitatory nodes 𝜔 , and the magnitude of the driving respiratory 
modulation (RA). 𝜆 = 0 means the absence of long connections; ω changes between 0 
(pure inhibition) and 1 (pure excitation). In the introduced mean-field model, one has to 
solve the coupled system of fixed-point equations for the density of excitatory (𝑥) and 
inhibitory (𝑦) populations  

 
𝑓!   𝑥, 𝑦 = 𝑥,
𝑓! 𝑥, 𝑦 = 𝑦.  

 
𝑓!   in the first equation describes the transition of the densities of active excitatory nodes, 
while 𝑓!   in the second equation models the transition of densities of inhibitory nodes. 
The actual forms of these functions are quite complex consisting of several components, 
for details, see (Janson et al., 2016).  For illustration, we show a relatively simple 
component in mean-field approximation, describing the probability that an active 
inhibitory node remains active following an update step:  

 

𝑓!! 𝑥, 𝑦,𝜔 =
𝜆!𝑒!!

𝑛!

!!!!

!!!

   ⋅
𝑛 + 4
𝑖 − 1

𝜔𝑥 + 1 − 𝜔 𝑦 !!! 1 − 𝜔𝑥 − 1 − 𝜔 𝑦 !!!!!
!!!

!!!

 

 
Here 𝑘 is a threshold parameter of the model describing the likelihood that the 

activity of the neighbors will impact the activity of a given node. In other words, 𝑘 is the 
sensitivity of the nodes to input effects. The above equation incorporates the 
mathematical result (Janson et al., 2016; Kozma et al., 2015) that the degree distribution 
of the nodes in graph 𝐺ℤ𝑵𝟐 ,𝒑𝒅 can be approximated well with Poisson (Barbour et al., 
1992) statistics for large system size (𝑁). 

Numerical evaluations show the parameter regions where limit cycles are present 
(Fig. 7, deep blue region). Dampened oscillations are observed in the light blue regions, 
while pale color shows rapid convergence to fixed-point regime. By properly tuning the 
parameters of the model, we can produce sustained oscillations describing the gamma 
regime of excitatory-inhibitory populations. 

Our results show increased gamma activity during the segment of the respiratory 
cycle with increasing amplitudes (inhalation). On the other hand, gamma activity is 
significantly reduced when the respiratory signal is in the decreasing stage (exhalation). 
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The above results are in agreement with observations made during the ECoG 
experiments with mice. We conclude that our graph-theoretical model using sine 
modulation of soft gamma oscillators is able to reproduce and interpret basic properties 
of the experimentally observed phase-locking between respiration and gamma 
modulation.  

 
 

 
Figure 7. Results of calculations using graph theory models of coupled excitatory-
inhibitory populations. (a) Phase diagram with parameter regions of limit cycle, nonzero fixed 
point, and zero-fixed point regimes; (b) Illustration of the phase-locked amplitude modulation of 
the gamma oscillations (of excitatory population) in response to input (respiratory) perturbations 
of increasing amplitude (RA); w=0.75, lambda=0.01; (a) RA=0.001; (b) RA=0.02; (c) RA=0.03; (d) 
shape of the respiratory sinusoid signal.  
 
 
Discussion 
 
Ongoing fluctuations of neuronal activity have been widely considered random noise that 
introduces variability into neuronal processing, which is averaged out by the brain 
through integration of population activity (Georgopoulos et al., 1986; Lee et al., 1988; 
Maynard et al., 1999; Shadlen and Newsome, 1994). It is now understood that the 
fluctuating component of cortical activity consists of highly structured activity patterns, 
including oscillations at various frequencies, that modulate evoked neuronal responses 
(Arieli et al., 1996; He, 2013; Poulet and Petersen, 2008) and affect sensory perception 
(Boly et al., 2007; Linkenkaer-Hansen et al., 2004; Palva et al., 2013; Sadaghiani et al., 
2009; Vinnik et al., 2012). Ongoing cortical activity is attributed to proprioceptive and 
interoceptive inputs as well as to intrinsically generated activity, which could be related 
to mental processes (Deco et al., 2011; Fox and Raichle, 2007).  
Here we argue that respiration is a long overlooked, major contributor to neuronal 
activity that causes rhythmic modulations of at least three major aspects of cortical 
activity. Based on published and new evidence from both mice and humans, we argue 
that respiration causes 1) slow oscillations of cortical single unit and LFP activity that 
follow the species-specific respiratory rhythm, 2) modulation of the power of gamma 
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oscillations in phase with respiration, and 3) the timing of phase transitions to 
preferentially occur during a specific phase of the respiratory cycle.  
 
Physiological mechanisms of respiration-locked oscillations: 

Respiration creates both conscious and unconscious streams of rhythmic sensory inputs 
to the brain. Consciously accessible sensations of normal, unobstructed breathing 
include odor perception, the mechanical and thermal sensation of air flowing through 
nose, mouth and upper airways, and the proprioception of movements of the chest and 
abdomen. Unconscious sensory signals caused by respiration include interoceptive 
signals from the lungs, diaphragm and internal organs, which represent the mechanical 
consequences of respiratory movements, and the chemosensitive signals from the 
cardiovascular system, which represent breath-by-breath fluctuations of CO2 and 
Oxygen levels in the blood. The sensations and brain activity patterns associated with 
hunger-for-air (Liotti et al., 2001; Macey et al., 2005) are not considered here, as they 
represent an emergency response not related to normal, unobstructed breathing.  

There are also indirect ways cortical areas receive respiration-locked sensory 
input. Eye movements, for example, have been shown to be temporarily phase-locked to 
respiration during sleep (Rittweger and Popel, 1998) as well as in the awake state 
(Rassler and Raabe, 2003). Recently, Ito and colleagues reported saccade related 
changes in LFP oscillation power in four frequency bands, including gamma, in primates 
freely viewing their environment (Ito et al., 2013). This suggests that the retinal flow 
associated with eye movements causes a modulation of power in visual cortical 
oscillations that is partially correlated with respiration. The auditory cortex receives 
auditory input related to respiration caused by the sound of air flowing through the nose 
or mouth. Finally, neurons in the brain stem project broadly to thalamic nuclei (Carstens 
et al., 1990; Krout et al., 2002). These projections likely provide respiration-locked input 
to the thalamus (Chen et al., 1992), introducing a non-sensory respiratory rhythm to the 
thalamo-cortical network.  

Despite this multiplicity of cortical afferents that carry respiration-locked neuronal 
rhythms, the influence of respiration on cortical activity can be subtle. Typically, it cannot 
be assessed without simultaneously measuring respiration and brain activity and then 
relating the neuronal activity to respiration. Such simultaneous measurements are rarely 
performed, which is one likely reason why the influence of respiration on cortical activity 
has remained undetected. A notable exception is a recent study of the effects of sleep 
disordered breathing (SDB) on cortical oscillatory activity(Immanuel et al., 2014). 
Immanuel and colleagues showed that the average power of the EEG signal decreased 
during inspiration and increased during expiration, in a frequency band and sleep stage 
dependent manner, in both healthy subjects and subjects suffering from SDB (Immanuel 
et al., 2014).  

 
While there are many sources of respiration-locked activity, the olfactory system 
deserves special attention, because early mammals relied strongly on their olfactory 
sense and had proportionately large olfactory bulbs (Rowe et al., 2011). Furthermore, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2016. ; https://doi.org/10.1101/049007doi: bioRxiv preprint 

https://doi.org/10.1101/049007
http://creativecommons.org/licenses/by-nc-nd/4.0/


neuronal oscillations, particularly gamma oscillations, are a universal element of odor 
processing in animals as far removed from joint evolutionary ancestors as mammals and 
insects (Kay, 2015). Even though in primates the olfactory sense lost the prime 
importance it has for most other mammals in favor of vision (Gilad et al., 2004), EEG 
studies comparing nasal and oral breathing of room air found that nasal breathing 
elicited significantly different patterns of EEG activity than mouth breathing (Lorig et al., 
1988; Servit et al., 1977). This is in line with our findings related to nasal air flow in mice 
(Ito et al., 2014) and suggests that olfactory bulb activation by nasal airflow also 
contributes to human respiration-related EEG activity. A small group of researchers have 
envisioned the possibility of respiration influencing large-scale brain activity via the 
olfactory system. Freeman and colleagues performed pioneering studies on the 
influence of respiration through olfaction on the rabbit brain (Eeckman and Freeman, 
1990; Kay and Freeman, 1998). Effects of theta-modulation of saccadic signals have 
been described as visual sniffing (Kozma and Freeman, 2001). Fontanini and Bower 
speculated that olfactory bulb respiration-locked oscillations in rodents may propagate 
through the entire cortex (Fontanini and Bower, 2006). However, none of these earlier 
studies anticipated that respiration would modulate the power of gamma oscillations and 
the timing of network state transitions (phase-slips), which suggests a direct link 
between respiratory phase and cognitive brain processes. 

 
Respiration related sensory activity during unobstructed breathing mainly 

reaches three areas of the cortex: 1) the olfactory cortex and surrounding areas receive 
olfactory bulb input, 2) the somatosensory cortex receiving input from mechanoreceptors 
of chest, the abdominal skin and muscles stretched and moved by respiration and 3) the 
insular cortex receives input from chemoreceptors and mechanoreceptors in the lungs, 
diaphragm and internal organs. Our recordings in mice and humans show that 
respiration-locked activity propagates from these primary sensory areas to parts of the 
cortex that do not receive direct respiration related sensory inputs, such as primary 
motor areas and the primary visual cortex. A likely mode of propagation is through the 
cortico-cortical network itself, possibly involving also cortico-thalamic connections. 
However, the anatomy of axonal connections within the parabulbar and limbic areas 
suggest a number of subcortical regions and neuromodulator systems may also be 
influenced by respiration-driven sensory input. For example, widely projecting 
serotonergic and cholinergic neurons within the rat basal forebrain have been shown to 
rhythmically discharge in phase with respiration (Linster and Hasselmo, 2000; Manns et 
al., 2003; Mason et al., 2007). Stimulation of cholinergic neurons in particular is 
associated with increased neocortical gamma oscillations (Cape and Jones, 2000), a 
mechanism that might contribute to the respiration-locked modulation of gamma power 
described here.  

If respiratory sensory activity propagates in this way through the cortex one 
would predict that sensory activity from other modalities propagates in similar ways, 
modulating neuronal activity in other cortical areas. Evidence that this is indeed the case 
is abundant in the literature. For example, Peterson and colleagues used voltage 
sensitive dye imaging in awake mice to study cortical activity in the primary whisker 
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motor cortex in response to mechanical stimulation of a single mystacial whisker 
(Ferezou et al., 2007). Whisker stimulation caused the expected topographically 
localized sensory response in the primary whisker sensory (barrel) cortex. Within about 
60 ms, however, the initially localized sensory response had propagated throughout 
almost the entire cortex, including the contralateral hemisphere (Ferezou et al., 2007).  

While performing EEG recordings in humans, McDonald et al. showed that an 
auditory stimulus that was otherwise irrelevant to the task, elicited a neuronal response 
in the contralateral primary visual cortex (McDonald et al., 2013). Following up on these 
findings, Feng and colleagues later showed that the visual-cortical response evoked by 
auditory stimulation had functional significance. The amplitude of the auditory-evoked 
visual cortical response predicted the probability of a correct response to a visual 
discrimination task (Feng et al., 2014). Neill and colleagues showed that the behavioral 
state of a mouse, resting or running on a treadmill, had dramatic effects on visual cortical 
activity and visually evoked responses (Niell and Stryker, 2010). We attribute those 
differences to the fact that a walking or running mouse experiences massing 
somatosensory inputs to the cortex, which also spread to the visual cortex and modulate 
neuronal responses to visual stimuli. Taken together these findings show that 
exteroceptive and interoceptive sensory inputs shape ongoing neuronal activity and 
sensory processing in the cortex and that sensory activity propagates through the 
cortical network beyond the boundaries of primary sensory areas.  
 
Physiology and Modeling of respiratory modulation of higher-order cortical activity  
 
It is possible to link the existence of respiration-locked cortical oscillations directly to 
respiration-related sensory inputs to the cortex. However, the phase-locked modulations 
of gamma power and of the timing of phase transitions cannot be directly explained by 
rhythmic respiration-locked sensory inputs entraining cortical activity. These forms of 
respiratory influence on higher-order patterns of cortical activity seem to be emergent 
properties that could depend on a number of factors including the balance of excitation 
and inhibition and their patterns of connectivity within the cortical network. Experimental 
results using various brain-imaging tools evidence the presence of synchronization 
effects. These results lead to the postulation of the existence of functional links between 
cortical regions, e.g., when the correlation between cortical areas exceeds a threshold 
(Bonifazi et al., 2009; Honey et al., 2010; Kim et al., 2013; Sporns et al., 2005; Stam et 
al., 2007). 

To investigate the processes leading to transient synchronization effects in the 
cortex, we used a simple graph theory model inspired by cortical network architecture 
and functions, with a biologically appropriate balance of excitatory and inhibitory neurons 
and mix of short- and long-range connections. Expanding on previous work (Gallos et 
al., 2012; Reijneveld et al., 2007; Turova and Villa, 2007), the present study reveals 
important properties between biologically observed effects of respiration on gamma 
power modulation reproduced by the graph theory model, suggesting that the cortical 
network itself is sufficient to modulate gamma power in phase with the respiratory 
rhythm. This is not to say that other factors, such as cortico-thalamic interactions or the 
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action of neuromodulators have no role but future research will have to determine the 
nature of their involvement.  
 
Functional implications: 
Each of these forms of cortical activity appear to have different functions. Oscillatory 
rhythms that are phase-locked to respiration may help to synchronize large portions of 
the cortical network and create a temporal alignment for slower processes. The calming 
effect of controlled, slow and deep breathing could be due to this respiration-locked 
synchronization of activity across large areas of cortex, an EEG activity pattern 
commonly observed during meditative states (Dillbeck and Bronson, 1981; Gaylord et 
al., 1989). 	   Additional	   evidence	   of	   respiration-‐locked	   synchronization	   of	   cortical	  
oscillatory	  activity	  comes	  from	  a	  study	  of	  EEG	  activity	  during	  meditation	  with	  forced	  
alternate	   nostril	   breathing,	   which	   caused	   an	   increase	   in	   interhemispheric	   beta	  
coherence	  (Stancak	  and	  Kuna,	  1994).	  	  
	   Oscillations of neocortical neuronal activity in the gamma (30 – 100 Hz) 
frequency range, have been strongly implicated in affective and cognitive brain functions 
such as attention (Fries et al., 2001; Laufs et al., 2003; Tallon-Baudry, 2004), sensory 
perception (Engel et al., 2001; Gould et al., 2012; Tallon-Baudry, 2003), decision making 
(Gould et al., 2012; Kay and Beshel, 2010; Nacher et al., 2013; Siegel et al., 2011; van 
Vugt et al., 2012; Wyart et al., 2012), problem solving (Sheth et al., 2009) and memory 
formation (Chauvette et al., 2012; Marshall et al., 2006; Tort et al., 2009).  Respiratory 
modulation of gamma oscillation power is thus likely to influence neuronal processes 
associated with gamma oscillations. There is currently no data to support or refute this 
hypothesis, as monitoring respiration during cognitive tasks is not routinely done. 
However, a similar principle seems to be responsible for the dynamic modulation of 
gamma oscillatory power and synchronization in the primate visual system. Lowet and 
colleagues recently reported that rhythmic synchronization of gamma oscillations 
between areas V1 and V2 and increases in gamma power are phase-locked to 
microsaccades (Lowet et al., 2015). Similar to respiration, rhythmic microsaccades 
generate a visual sensory input that modulates ongoing activity in visual cortical neurons 
(Martinez-Conde et al., 2013). Thus, the ability of sensory inputs to synchronize 
neuronal activity within and between cortical networks and to modulate the power of 
gamma oscillations is likely not limited to respiration. Inputs from other sensory 
modalities might have similar effects. 
 

Detailed analysis of rabbit and human intracranial ECoG signals have revealed 
discontinuities in the analytic phase (which are also called phase transitions) determined 
by Hilbert analysis (Freeman, 2015; Freeman et al., 2006; Freeman and Rogers, 2002). 
Experiments with rabbits trained using classical conditioning paradigm showed that 
these phase sips have cognitive relevance (Freeman, 2004b; Kozma and Freeman, 
2008). Namely, after delivering the conditioned stimulus, the occurrence and duration of 
the qualifying phase transitions correlates with the stimulus, suggesting that phase 
transitions can be viewed as marker of the cognitive activity (classification) performed by 
the rabbits.  
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Phase-slips mark the transitions of cortical network states from synchronous to 
asynchronous and vice versa. Schölvinck and colleagues observed that variability of 
neuronal responses in the primary visual cortex to repeated identical stimuli was caused 
by large scale network activity, which was more variable when the network was in a 
synchronized state vs. an asynchronous state (Schölvinck et al., 2015). Thus, the fact 
that phase-slip timing is coupled to respiration suggests that respiration modulates 
cortical network state-transitions and consequently the variability of sensory processing. 
Sharp wave ripples in the hippocampus, a high-frequency (100 - 200 Hz) oscillatory 
event that synchronizes large populations neurons (Csicsvari et al., 1999), may be 
related to phase transitions. Recently, the role of sharp wave ripples has been outlined 
as prominent synchronous population patterns in the hippocampus, which affect wide 
areas of the cortex (Buzsaki, 2015). Sharp wave ripples influence cognitive functions, 
action planning, and potentially may influence creative thoughts (Ritter et al., 2012). 
Buzsaki emphasizes the complex interaction between sharp waves ripples and theta 
rhythm on modulating gamma oscillations, and they may play a role in the observed 
theta modulation of gamma oscillations in amplitude and phase domains (Buzsaki, 
2015). 

To the best of our knowledge there are no studies that have evaluated cognitive 
processing as a function of respiratory phase. However, interactions between respiration 
and non-respiratory functions have been documented in humans and rodents. In 
humans, for example, phase-locking with respiration has been observed for eye 
movements (Rassler and Raabe, 2003; Rittweger and Popel, 1998), finger movements 
(Ebert et al., 2002; Rassler, 2000; Rassler et al., 1996) and grip-force (Li and Laskin, 
2006). In mice, movements of the mystacial whiskers are phase-locked to respiration 
(Cao et al., 2012; Moore et al., 2013).  

Respiration has also been implicated in the modulation of pain perception. Pain-
studies in humans showed that pain perception is reduced during inspiration (Arsenault 
et al., 2013) and that focused slow breathing reduces the perceived severity of pain 
(Zautra et al., 2010). Other clinical studies have shown that strength of cortico-spinal 
communication assessed with trans-cranial magnetic stimulation (TMS) is modulated in 
phase with respiration (Li and Rymer, 2011). In view of our findings we suggest that 
these interactions between respiration and sensory-motor processes are, at least in part, 
caused by respiration-locked fluctuations of ongoing neuronal activity in motor and 
sensory cortical areas.  

In summary, we propose that ongoing neuronal activity of the neocortex is 
rhythmically modulated by the act of breathing. Respiration-locked neocortical activity is 
caused by afferent sensory inputs, which convey mechanical and chemical signals 
associated with every breath. We described three types of cortical activity that are 
phase-locked to respiration. Two activity types, gamma oscillations and phase 
transitions have been implicated in cognitive function. Our findings open up new vistas of 
the relation of cortical neuronal activity to sensory states of the body that are defined by 
the respiratory cycle. This new physiological role of respiration calls for experimental 
designs to incorporate respiratory information and for future investigations of the 
interactions between respiration and cognitive, sensory and motor processes.  
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Experimental Procedures 

Animal studies:  

Mice 

Experiments were performed on adult male C57BL/6J (B6) mice (> 8 weeks old, 18-25 g 
body weight). Mice were housed in a breeding colony with 12-hour light/dark cycles in 
standard cages housing maximally 5 adult mice with ad libitum access to food and 
water. All experiments were performed during the light cycle (between 12:00 and 17:00 
h). None of the mice had undergone any previous experimental procedure. All animal 
experimental procedures adhered to guidelines approved by the University of 
Tennessee Health Science Center Animal Care and Use Committee. Principles of 
laboratory animal care (NIH publication No. 86-23, rev. 1996) were followed.  

Surgical preparation for awake, head fixed recording 

For surgeries mice were initially anesthetized with 3% Isoflurane (Baxter Pharmaceutical 
Products, Deerfield IL) in oxygen in an incubation chamber, transferred to a stereotaxic 
head mount and anesthesia was continued with 1-2.5% Isoflurane in oxygen through a 
mouthpiece. Isoflurane concentration was controlled with a vaporizer (Highland Medical 
Equipment, CA). The depth of anesthesia was adjusted such that mice failed to show a 
reflex withdrawal of the hind paw to a strong pinch. Blunt ear bars were used to prevent 
damaging of the eardrums. Core body temperature, measured with a rectal 
thermometer, was maintained between 36.5 and 38.0ºC with a feedback controlled 
heating pad (FHC Inc., Bowdoinham, ME).  Surgical techniques were described in detail 
elsewhere (Bryant et al., 2010; Bryant et al., 2009). In brief, a small craniotomy 
(diameter, 1–2 mm) was made over the target region of cortex or the olfactory bulb. The 
exposed but intact dura was covered with Triple Antibiotic (Walgreens, US) to keep it 
moist and reduce the risk of infection. A cylindrical plastic chamber (0.45 cm diameter 
and 8 mm height) was placed over the skull opening and filled with Triple Antibiotic. 
Three small machine screws (1/8’ dome head, 0.8 mm diameter, 2 mm long, Small 
Parts, Inc., Miami Lakes, FL) were secured in the skull bone and metal head post was 
mounted anterior to Bregma. The chamber, head post and skull screws were secured 
into place with dental acrylic, as described earlier. Mice were injected subcutaneously 
with an analgesic (0.05ml Carprofen) to alleviate pain and aid recovery.  

Electrophysiological recordings and respiration monitoring in awake mice 

Mice were allowed a 3–4-day recovery period after surgical mounting of a head post and 
recording chamber before recordings sessions started. During these sessions the head 
was held fixed and the body was covered with a loose fitting plastic half-tube (5 cm 
diameter, 10 cm long) to limit movements. Mice typically adapted to the head fixation 
within 30 – 45 min as judged by markedly reduced walking and running movements. The 
experimental setup, head-holding device and recording procedures have been described 
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in detail in a technical publication (Bryant et al., 2009). In short, head fixation involved 
clamping the metal head-post mounted on the mouse’s skull to a metal fixation device, 
using a machine screw. Triple antibiotic paste was then removed from the recording 
chamber and the chamber rinsed and filled with sterile saline solution. Before each 
experiment, mice were allowed to accommodate to the head fixation situation for 30 min 
prior to recordings.  

For extracellular recordings the guiding tubes of a computer-controlled microdrive 
(MiniMatrix, Thomas Recording, Germany) were lowered into the saline-filled recording 
chamber to a distance of less than 2 mm from the dural surface of the brain. The 
stainless steel guiding tubes also serve as reference electrodes and are eclectically 
connected to the brain tissue via the saline solution. Then, 2-5 electrodes (glass 
insulated tungsten/platinum, impedance: 3.5-5.0 MΩ) were slowly advanced through the 
intact dura into the whisker barrel cortex. Electrode movements were controlled with 
micrometer resolution and digitally monitored. Local field potentials and spike signals 
were separated by band pass filtering at 0.1 to 200 Hz and at 200 Hz to 8 kHz , 
respectively, using a hardware filter amplifier (FA32; Multi Channel Systems). Filtered 
and amplified voltage signals were digitized and stored on a computer hard disk (16 bit 
A/D converter; sampling rate, >20 kHz for action potentials, >1 kHz for LFPs) using a 
CED power1401 and Spike2 software (both Cambridge Electronic Design). 

Respiratory behavior was monitored based on temperature changes associated 
with the expiration of warm air. A thermistor (Measurement Specialties Inc., Boston, MA, 
USA) was placed in front of one nostril (or descending trachea in some tracheotomy 
experiments) and breathing cycles could reliably be measured as temperature increased 
and decreased during exhale and inhale movements respectively. Increased 
temperature is represented as positive deflections of the thermistor voltage signal, which 
thus correspond to exhale movements (Figs. 1 and 2). The raw thermistor voltage signal 
was digitized at 1 kHz and stored together with the electrophysiological signals. 

Upon completion of each recording session the Ringer's solution was removed, 
the recording chamber filled with triple antibiotic and the mice were returned to their 
home cages. Each animal typically participated in experiments for 1-2 weeks.  

 

Analysis of local field potentials  

LFP data were collected in awake, head-fixed conditions from 5 intact and 6 olfactory 
bulbectomized mice. Primary analysis involved identification of average shape of LFP 
modulation by respiration by calculating respiration-triggered LFP averages and the 
strength of phase locking between LFP oscillations and respiration using coherence 
analysis. Periods of stable resting respiratory rhythm (<5Hz) were selected for further 
analysis, excluding periods of higher respiratory rates associated with sniffing.  

Respiration triggered averages of LFP activity were calculated by aligning LFP 
signals on inspiration onset times. Whether LFP activity was significantly modulated in 
phase with respiration was determined using bootstrap statistics (Diaconis and Efron, 
1983; Efron and Tibshirani, 1993). To this end, inspiration-onset time markers were 
randomly shifted in time and a new LFP average was calculated. This shuffling of time-
markers and recalculating was repeated >100 times and the resulting population of 
surrogate LFP averages were rank-ordered and the 95 and 5%ile boundaries of the 
surrogate distribution were determined. If the original LFP average exceeded either 
boundary we concluded that the LFP activity was significantly modulated in phase with 
respiration. 
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Analysis of spiking activity 

Single unit spiking activity was recorded together with LFPs. The high frequency spike 
component (300 – 8000Hz) and low frequency LFP component (0.1 – 200Hz) were 
separated by band pass filters prior to sampling the two signals in separate channels. 
Spike events were extracted using a fixed threshold and then sorted based on spike 
shape using an off-line sorting algorithm (Plexon Inc, Dallas, TX). If the signal to noise 
ratio of a spike signal was larger than 4 and the inter-spike-intervals of sorted spike 
trains had a gamma distribution with a refractory period >5 ms we regarded it as a single 
unit. From the respiratory signals we extracted the times of voltage minima, which 
correspond to the end of expiration. Cross-correlation analysis of spike times and times 
of inspiration onsets was performed to determine whether spike activity was modulated 
with the rhythm of respiration. To determine the significance of spike-respiration 
correlations we generated surrogate correlations by randomly shifting the spike train in 
time relative to the respiratory times. The spike train could be shifted in time by any 
random value between 0 sec and the full duration of the recording. All spike times were 
shifted by the same value, preserving the spike interval sequence. The process was 
repeated >100 times, each time calculating the correlation of the shifted spike trains and 
saving the correlation values. From these >100 surrogate correlations we calculated the 
median and the 5th and 95th percentile of the distributions of correlation coefficients at 
each lag time. Correlations were considered significant if the raw correlation coefficient 
values exceeded the 5th or 95th percentile of the surrogate distributions (Fig. 2). 

Human Studies: 

Patients had intracranial electrodes placed as part of their individual epilepsy surgery 
evaluation. In some patients the electrodes were used to precisely define the 
epileptogenic zone prior to surgical removal, in others also for functional mapping of 
eloquent cortex prior to surgery. Patients then underwent continuous video-ECoG 
recordings to capture their typical seizures and to perform functional mapping, if 
necessary. Recordings were typically done for 5-7 days. ECoG signals were band-pass 
filtered (0.1 Hz - 70 Hz) prior to digitization at a sampling rate of 1 kHz.  

Patients wore a respiratory (stretch-sensitive) band around their chest to 
determine respiratory status. The respiratory signal was digitized and registered together 
with ECoG signals. Inspiration (belt stretching) resulted in an increase of a voltage signal. 
The time of transition from voltage increase to decrease (time of peak voltage) thus 
corresponded to the time of transition from inspiration to expiration. This uniquely 
defined feature of the respiration-voltage signal was used as a temporal align for further 
analysis of respiration-locked features of ECoG activity. The ECoG/respiratory data were 
collected from quiet periods on the third day or later after placement of intracranial 
electrodes. 
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