plasmidSPAdes: Assembling Plasmids from Whole Genome Sequencing Data

Extended abstract

Dmitry Antipov 1, Nolan Hartwick 2, Max Shen 3, Mikhail Raiko 2, Alla Lapidus 1 and Pavel A. Pevzner 1,2

1Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
2Department of Computer Science and Engineering, University of California, San Diego, USA
3Bioinformatics and Systems Biology Program, Massachusetts Institute of Technology, USA

ABSTRACT

Motivation: Plasmids are stably maintained extra-chromosomal genetic elements that replicate independently from the host cell’s chromosomes. Although plasmids harbor biomedically important genes, such as genes involved in virulence and antibiotic resistance, there is a shortage of specialized software tools for extracting and assembling plasmid data from whole genome sequencing projects.

Results: We present the plasmidSPAdes algorithm and software tool for assembling plasmids from whole genome sequencing data and benchmark its performance on a diverse set of bacterial genomes.

Availability and implementation: PLASMIDSPADES is publicly available at http://spades.bioinf.spbau.ru/plasmidSPAdes/

Keywords: genome assembly, plasmid detection, plasmid assembly.

Contact: d.antipov@spbu.ru

1 INTRODUCTION

Plasmids are common in Bacteria and Archaea, but have been detected in Eukaryotes as well (Gunge et al., 1982). The cells often have multiple plasmids of varying sizes existing together in different numbers of copies per cell. Plasmids are important genetic engineering tools and the vectors of horizontal gene transfer that may harbor genes involved in virulence and antibiotic resistance. Thus, studies of plasmids are important for understanding the evolution of these traits and for tracing the proliferation of drug-resistant bacteria. Since plasmids are difficult to study using Whole Genome Sequencing (WGS) data, biologists often use special biochemical methods for extracting and isolating plasmid molecules for further plasmid sequencing (Williams et al., 2006; Kav et al., 2012). In the case of WGS, when a genome of a bacterial species is assembled, its plasmids often remain unidentified. Obtaining information about plasmids from thousands of genome sequencing projects (without preliminary plasmid isolation) is difficult since it is not clear which contigs in the genome assembly have arisen from plasmids.

Since the proliferation of plasmids carrying antimicrobial resistance and virulence genes leads to the proliferation of drug-resistant-bacterial strains, it is important to understand the epidemiology of plasmids and to develop plasmid typing systems. Carattoli et al. (2014) developed PlasmidFinder software for detecting and classifying variants of known plasmids based on their similarity with plasmids present in plasmid databases. However, PlasmidFinder is unable to identify novel plasmids that have no significant similarities to known plasmids.

Lanza et al. (2014) developed the PLASmid Constellation NET-work (PLACNET) tool for assembling plasmids from WGS data and applied it for analyzing plasmid diversity and adaptation (de Toro et al., 2014) PLACNET uses three types of information to identify plasmids: (i) information about scaffold links and coverage in the WGS assembly, (ii) comparison to reference plasmid sequences, and (iii) plasmid-diagnostic sequence features such as replication initiator proteins. PLACNET combines these three types of data and outputs a network that needs to be further pruned by expert analysis to eliminate confounding data.

While combining all three types of data for plasmid sequencing is important, the focus of this paper is only on using WGS assembly for plasmid reconstruction. We argue that while the analysis of scaffolds in Lanza et al. (2014) is important, there is a wealth of additional information about plasmids encoded in the structure of the de Bruijn graph (constructed from k-mers in reads) that Lanza et al. (2014) do not consider. Recently, Rozov et al. (2015) demonstrated how to use the de Bruijn graphs constructed by the SPADEs assembler (Bankevich et al., 2012) to significantly improve the plasmid assembly (focusing on data generated using plasmid isolation techniques) as well as reconstruction of plasmid sequences from metagenomics datasets. Below we describe a novel novel plasmidSPAdes tool aimed at sequencing of plasmids from the WGS data. Recently, this problem was addressed in the case of long SMRT reads (Conlan et al., 2014) but it remains open for datasets containing short Illumina reads that represent the lion’s share of bacterial sequencing projects.

*to whom correspondence should be addressed.
Dmitry Antipov, email: d.antipov@spbu.ru

April 2016
We show that PLASMID-SPAdes has the potential to massively increase the throughput of plasmid sequencing and to provide information about plasmids in thousands of sequenced bacterial genomes by re-assembling their genomes, identifying their plasmids, and supplementing the corresponding GenBank entries with the plasmid annotations. Such plasmid sequencing efforts are important since many questions about plasmid function and evolution remain open. For example, Anda et al. (2015) recently found a striking example of a bacterium (Aureimonas sp. AU20) that harbors the rRNA operon on a plasmid rather than on the chromosome. Thus, re-sequencing 1000s of bacterial genomes with the goal to reassemble their plasmids will help to answer important questions about plasmid evolution. We illustrate how plasmid-SPAdes contributes to plasmid discovery by analyzing C. freundii CFNIH1 genome with well-annotated plasmids and identifying a new previously overlooked plasmid in this genome as well as discovering 7 new plasmids in ten randomly chosen bacterial datasets in the Short Reads Archive. We further provide the first analysis of accuracy of a plasmid sequencing tool across a wide variety of diverse bacterial genomes.

ACKNOWLEDGMENTS

We are grateful to Anton Korobeynikov and the SPAdes development team for many thoughtful discussions that helped to improve the paper.

The sequence data for Acinetobacter sp. UNC434CL69Tsaw2S2, Butyribrio sp. INlla16, Lachnospiraceae bacterium NK3A20, and Prevotellaceae bacterium HUN156 were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with the user community.

FUNDING

This study was funded by the Russian Science Foundation [grant 14-50-00069]

REFERENCES


