Effective Dynamic Models of Metabolic Networks

Michael Vilkhovoy*, Mason Minot†, Jeffrey D. Varner*
*School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 USA †School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850 USA

Abstract—Mathematical models of biochemical networks are useful tools to understand and ultimately predict how cells utilize nutrients to produce valuable products. Hybrid cybernetic models in combination with elementary modes (HCM-EM) is a tool to model cellular metabolism. However, HCM-EM is limited to reduced metabolic networks because of the computational burden of calculating elementary modes. In this study, we developed the hybrid cybernetic modeling with flux balance analysis or HCM-FBA technique which uses flux balance solutions instead of elementary modes to dynamically model metabolism. We show HCM-FBA has comparable performance to HCM-EM for a proof of concept metabolic network and for a reduced anaerobic E. coli network. Next, HCM-FBA was applied to a larger metabolic network of aerobic E. coli metabolism which was infeasible for HCM-EM (29 FBA modes versus more than 153,000 elementary modes). Global sensitivity analysis further reduced the number of FBA modes required to describe the aerobic E. coli data, while maintaining model fit. Thus, HCM-FBA is a promising alternative to HCM-EM for large networks where the generation of elementary modes is infeasible.

Index Terms—Metabolic models, flux balance analysis, cybernetic models

I. INTRODUCTION

Biotechnology harnesses the power of metabolism to produce products that benefit society. Constraints based models are important tools to understand and ultimately to predict how cells utilize nutrients to produce products. Constraints based methods such as flux balance analysis (FBA) [1] and network decomposition approaches such as elementary modes (EMs) [2] or extreme pathways (EPs) [3] model intracellular metabolism using the biochemical stoichiometry and other constraints such as thermodynamical feasibility under pseudo-steady state conditions. FBA has been used to efficiently estimate the performance of metabolic networks of arbitrary complexity, including genome scale networks, using linear programming [4]. On the other hand, EMs (or EPs) catalog all possible metabolic behaviors such that any flux distribution predicted by FBA is a convex combination of the EMs (or EPs) [5]. However, the calculation of EMs (or EPs) is computationally expensive and currently infeasible for genome scale networks [6].

Cybernetic models are an alternative to the constraints based approach which hypothesize that metabolic control is the output of an optimal decision. Cybernetic models have predicted mutant behavior [7, 8], steady-state multiplicity [9], strain specific metabolism [10], and have been used in bioprocess control applications [11]. Hybrid cybernetic models (HCM) have addressed earlier shortcomings of the approach by integrating cybernetic optimality concepts with EMs. HCMs dynamically choose combinations of biochemical modes (each catalyzed by a pseudo enzyme whose expression is controlled by an optimal decision) to achieve a physiological objective (Fig. 1A). HCMs generate intracellular flux distributions consistent with other approaches such as metabolic flux analysis (MFA), and also describe dynamic extracellular measurements [12]. However, HCMs are restricted to networks which can be decomposed into EMs (or EPs).

In this study, we developed the hybrid cybernetic modeling with flux balance analysis (HCM-FBA) technique. HCM-FBA is a modification of the hybrid cybernetic approach of Ramkrishna and coworkers [12] which uses FBA solutions (instead of EMs) in conjunction with cybernetic control variables to dynamically simulate metabolism. We compared the performance of HCM-FBA to HCM-EM for a prototypical metabolic network along with two E. coli networks. HCM-FBA performed comparably to HCM-EM for the prototypical network and a reduced anaerobic E. coli network, despite having fewer parameters in each case. Next, HCM-FBA was applied to an aerobic E. coli metabolic network that was infeasible for HCM-EM. HCM-FBA described cellmass growth and the shift from glucose to acetate consumption with only a few modes. Global sensitivity analysis allowed us to further reduce the aerobic E. coli HCM-FBA model to the minimal model required to describe the data. Thus, HCM-FBA is a promising approach for the development of reduced order dynamic metabolic models and a viable alternative to HCM-EM, especially for large networks where the generation of EMs is infeasible.

II. RESULTS

HCM-FBA was equivalent to HCM-EM for a prototypical metabolic network (Fig. 1). The proof of concept network, consisting of 6 metabolites and 7 reactions (Fig. 1B), generated 3 FBA modes and 6 EMs. Using the EMs and synthetic parameters, we generated test data from which we estimated the HCM-FBA model parameters. The best fit HCM-FBA model replicated the synthetic data (Fig. 1C). The HCM-EM and HCM-FBA kinetic parameters were not quantitatively identical, but had similar orders of magnitude; the FBA approach had 3 fewer modes, thus identical parameter values were not expected. Taken together, the HCM-FBA approach replicated synthetic data generated by HCM-EM, despite having 3 fewer modes. Next, we tested the ability of HCM-FBA to replicate experimental data.

The performance of HCM-FBA was equivalent to HCM-EM for anaerobic E. coli metabolism (Fig. 2A). We constructed an anaerobic E. coli network [12], consisting of 12 reactions
and 19 metabolites, which generated 7 FBA modes and 9 EMs. HCM-EM reproduced cellmass, glucose, and byproduct trajectories using the kinetic parameters reported by Kim et al. [12] (Fig. 2A, points versus dashed). HCM-FBA model parameters were estimated in this study from the Kim et al. data set using simulated annealing. Overall, HCM-FBA performed within 5% of HCM-EM (on a residual standard error basis) for the anaerobic E. coli data (Fig. 2A, solid), despite having 2 fewer modes and 4 fewer parameters (17 versus 21 parameters). Thus, while both HCM-EM and HCM-FBA described the experimental data, HCM-FBA did so with fewer modes and parameters.

HCM-FBA captured the shift from glucose to acetate consumption for a model of aerobic E. coli metabolism that was infeasible for HCM-EM (Fig. 2B). An E. coli metabolic network (60 metabolites and 105 reactions) was constructed from literature [14, 15]. Elementary mode decomposition of this network (and thus HCM-EM) was not feasible; 153,000 elementary modes were generated before the calculation became infeasible. Conversely, flux balance analysis generated only 29 modes for the same network. HCM-FBA model parameters were estimated from cellmass, glucose, and acetate measurements [13] using simulated annealing (Fig. 2B, solid). HCM-FBA captured glucose consumption, cellmass formation, and the switch to acetate consumption following glucose exhaustion. HCM-FBA described the dynamics of a network that was infeasible for HCM-EM, thereby demonstrating the power of the approach for large networks. Next, we demonstrated a systematic strategy to identify the critical subset of FBA modes required for model performance.

Global sensitivity analysis identified the FBA modes essential to model performance (Fig. 3). Total order sensitivity coefficients were calculated for all kinetic parameters and enzyme initial conditions in the aerobic E. coli model. Five of the 29 FBA modes were significant; removal of the most significant of these modes (encoding aerobic growth on glucose) destroyed model performance (Fig. 2B, dotted). Conversely, removing the remaining 24 modes had a negligible effect upon model performance (Fig. 2B, dashed). The sensitivity analysis identified the minimal model structure required to explain the experimental data.

III. Discussion

In this study, we developed HCM-FBA, an effective modeling technique to simulate metabolic dynamics. HCM-FBA uses flux balance analysis solutions (instead of elementary modes) in conjunction with cybernetic control variables to dynamically simulate metabolism. We studied the performance of HCM-FBA on a prototypical metabolic network, along with two E. coli networks. First, we showed that the performance of HCM-FBA and HCM-EM were comparable for the prototypical network and a small model of anaerobic E. coli metabolism. For the anaerobic case, both approaches described the experimental data. However, HCM-FBA (which was within 5% of HCM-EM and slightly better than HCM-EM for lactate secretion) had fewer modes and parameters. Next, HCM-FBA was applied to an aerobic E. coli metabolic network that was not feasible for HCM-EM. Elementary mode decomposition of the aerobic network generated over 153,000 elementary modes, which generated 7 FBA modes and 9 EMs. HCM-EM reproduced cellmass, glucose, and byproduct trajectories using the kinetic parameters reported by Kim et al. [12] (Fig. 2A, points versus dashed). HCM-FBA model parameters were estimated in this study from the Kim et al. data set using simulated annealing. Overall, HCM-FBA performed within 5% of HCM-EM (on a residual standard error basis) for the anaerobic E. coli data (Fig. 2A, solid), despite having 2 fewer modes and 4 fewer parameters (17 versus 21 parameters). Thus, while both HCM-EM and HCM-FBA described the experimental data, HCM-FBA did so with fewer modes and parameters.

HCM-FBA captured the shift from glucose to acetate consumption for a model of aerobic E. coli metabolism that was infeasible for HCM-EM (Fig. 2B). An E. coli metabolic network (60 metabolites and 105 reactions) was constructed from literature [14, 15]. Elementary mode decomposition of this network (and thus HCM-EM) was not feasible; 153,000 elementary modes were generated before the calculation became infeasible. Conversely, flux balance analysis generated only 29 modes for the same network. HCM-FBA model parameters were estimated from cellmass, glucose, and acetate measurements [13] using simulated annealing (Fig. 2B, solid). HCM-FBA captured glucose consumption, cellmass formation, and the switch to acetate consumption following glucose exhaustion. HCM-FBA described the dynamics of a network that was infeasible for HCM-EM, thereby demonstrating the power of the approach for large networks. Next, we demonstrated a systematic strategy to identify the critical subset of FBA modes required for model performance.

Global sensitivity analysis identified the FBA modes essential to model performance (Fig. 3). Total order sensitivity coefficients were calculated for all kinetic parameters and enzyme initial conditions in the aerobic E. coli model. Five of the 29 FBA modes were significant; removal of the most significant of these modes (encoding aerobic growth on glucose) destroyed model performance (Fig. 2B, dotted). Conversely, removing the remaining 24 modes had a negligible effect upon model performance (Fig. 2B, dashed). The sensitivity analysis identified the minimal model structure required to explain the experimental data.
Fig. 3. Global sensitivity analysis of the aerobic E. coli model. Total order variance based sensitivity coefficients were calculated for the biomass yield on glucose and acetate. Sensitivity coefficients were computed for kinetic parameters and enzyme initial conditions (N = 183,000). Error bars represent the 95% confidence intervals of the sensitivity coefficients.

modes. Conversely, the HCM-FBA approach described cell mass growth and the shift from glucose to acetate consumption with only 29 FBA modes. Global sensitivity analysis further showed that only 5 of the 29 FBA modes were critical to model performance. Removal of these modes crippled the model, but removal of the remaining 24 modes had a negligible impact. Thus, HCM-FBA is an alternative approach to HCM-EM, especially for large networks where the generation of elementary modes is infeasible.

HCM-FBA is a promising approach to model large metabolic networks where elementary modes calculations are infeasible. However, there are additional studies that should be performed. First, the intracellular flux distribution predicted by HCM-FBA should be compared to HCM-EM and to flux measurements calculated using MFA or FBA in combination with carbon labeling. HCM-EM predicted intracellular fluxes that were similar to MFA results [12]; however, the fluxes predicted by HCM-FBA have not yet been validated. Next, the performance of HCM-FBA should be compared to lumped hybrid cybernetic models (L-HCM). L-HCMs, which combine elementary modes into mode families based upon metabolic function [10, 16], have been applied to an E. coli network with 67 reactions and a Saccharomyces cerevisiae network with 70 reactions; both cases had satisfactory fits to extracellular experimental data. However, while L-HCM reduces the dimension of possible alternative modes that must be considered, it still requires the calculation of an initial set of modes. For metabolic networks of even moderate size, EM (or EP) decomposition may not be possible. On the other hand, the generation of flux balance solutions (convex combinations of the elementary modes or extreme pathways) is trivial, even for genome scale metabolic networks. Thus, HCM-FBA opens up the possibility for dynamic genome scale models of bacterial and perhaps even of mammalian metabolism.

IV. MATERIALS AND METHODS

The HCM-FBA approach is a modification of HCM-EM, where elementary modes are replaced with flux balance analysis solutions. Thus, extracellular variables are dynamic while intracellular metabolites are at a pseudo steady state. The abundance of extracellular species \(i\) (\(x_i\)), the pseudo enzyme \(e_l\) (catalyzes flux through mode \(l\)), and cell mass are governed by:

\[
\begin{align*}
\frac{dx_i}{dt} &= \sum_{j=1}^{R} \sum_{l=1}^{L} \sigma_{ij} z_{jl} q_l (e, k, x) c \\
\frac{de_l}{dt} &= \alpha_l + r_{El} (k, x) u_l - (\beta_l + r_G) e_l \\
\frac{dc}{dt} &= r_G c
\end{align*}
\]

where \(R\) and \(M\) denote the number of reactions and extracellular species in the model and \(L\) denotes the number of FBA modes. The quantity \(\sigma_{ij}\) denotes the stoichiometric coefficient for species \(i\) in reaction \(j\) and \(z_{jl}\) denotes the normalized flux for reaction \(j\) in mode \(l\). If \(\sigma_{ij} > 0\), species \(i\) is produced by reaction \(j\); if \(\sigma_{ij} < 0\), species \(i\) is consumed by reaction \(j\); if \(\sigma_{ij} = 0\), species \(i\) is not connected with reaction \(j\). Extracellular species balances were subject to the initial conditions \(x(t_0) = x_0\) determined from experimental data. The term \(q_l (e, k, x)\) denotes the specific uptake/secretion rate for mode \(l\) where \(e\) denotes the pseudo enzyme vector, \(k\) denotes the unknown kinetic parameter vector, and \(x\) denotes the extracellular species vector; \(q_l (e, k, x)\) is the product of a kinetic term \((\tilde{q}_l)\) and a control variable governing enzyme activity. Flux through each mode was catalyzed by a pseudo enzyme \(e_l\), synthesized at the regulated specific rate \(r_{El} (k, x)\), and constitutively at the rate \(\alpha_l\). The term \(u_l\) denotes the cybernetic variable controlling the synthesis of...
enzyme l. The term β_l denotes the rate constant governing non-specific enzyme degradation, and r_G denotes the specific growth rate through all modes. The specific uptake/secretion rates and the specific rate of enzyme synthesis were modeled using saturation kinetics. The specific growth rate was given by:

$$r_G = \sum_{l=1}^{L} z_{\mu l} q_l (e, k, x)$$

where $z_{\mu l}$ denotes the growth flux μ through mode l. The control variables u_l and v_l, which control the synthesis and activity of each enzyme respectively, were given by:

$$u_l = \frac{z_{sl} q_l}{\sum_{l=1}^{L} z_{sl} q_l}$$

$$v_l = \frac{z_{sl} q_l}{\max_{l=1, \ldots, L} z_{sl} q_l}$$

where z_{sl} denotes the uptake flux of substrate s through mode l. The model equations were implemented in Julia (v.0.4.2) [17] and solved using SUNDIALS [18]. The model code for each case study is available at http://www.varnerlab.org.

Elementary mode and flux balance analysis: Elementary modes were defined as the solution flux vector through the network connecting substrate uptake to cellmass and extracellular product formation. The FBA problem was formulated as:

$$\min_k \sideset{\sum_{\tau=1}^{T}}{\sum_{j=1}^{S}} \left(\hat{x}_j (\tau) - x_j (\tau, k) \right)^2$$

where $\hat{x}_j (\tau)$ denotes the measured value of species j at time τ, $x_j (\tau, k)$ denotes the simulated value for species j at time τ, and $\omega_j (\tau)$ denotes the experimental measurement variance for species j at time τ. The outer summation is with respect to time, while the inner summation is with respect to state. The model residual was minimized using simulated annealing implemented in the Julia programming language.

References