The many evolutionary fates of a large segmental duplication in mouse

Andrew P Morgan¹, J Matthew Holt², Rachel C McMullan¹, Timothy A Bell¹, Amelia M-F Clayshulte¹, John P Didion¹, Liran Yadgary¹, David Thybert³, Duncan T Odom⁴,⁵, Paul Flicek³,⁵, Leonard McMillan², Fernando Pardo-Manuel de Villena¹

¹ Department of Genetics, Carolina Center for Genome Sciences and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
² Department of Computer Science, University of North Carolina, Chapel Hill, NC
³ European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
⁴ University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, United Kindgom
⁵ Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom

Corresponding author:
Fernando Pardo-Manuel de Villena
5049 Genetic Medicine Building
120 Mason Farm Road CB#7264
Chapel Hill, NC 27599-7264

ABSTRACT

Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127 kbp segmental duplication, R2d, in the house mouse (Mus musculus). De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to non-allelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from 0 in the mouse reference genome to more than 80 in wild mice sampled from around the globe. Heterozygosity for low- and high-copy alleles of R2d2 is associated in cis with meiotic drive, suppression of meiotic crossovers, and copy-number instability, with a mutation rate in excess of 1% per generation in laboratory populations. We identify an additional 57 loci, covering 0.8% of the mouse genome, that have characteristics similar to R2d2: segmental duplication, phylogenetic discordance and low recombination rate. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.
Introduction

Duplication is an important force shaping the evolution of plant and animal genomes: redundant sequence provides both a substrate for evolution and transient relief from selective pressure (Lynch 2000). Like any sequence variant, a duplication first arises in a single individual in a population. Such polymorphisms are commonly called copy-number variants (CNVs) while segregating in the population, and segmental duplications (SDs) once fixed (Chain et al. 2014). The distinction between CNVs and SDs is somewhat arbitrary: tracts of SDs are highly polymorphic in populations in species from Drosophila (Dopman and Hartl 2007) to mouse (She et al. 2008) to human (Bailey and Eichler 2006), indicating that duplicated regions are hotspots for ongoing copy-number variation (CNV). Mutation rates for CNVs -- both gains and losses -- in SD-rich regions may be orders of magnitude higher than in unique sequence (Egan et al. 2007). This inherent instability is associated with speciation: in both the primate (Bailey and Eichler 2006) and mouse lineages, bursts of segmental duplication have preceded dramatic species radiations. Likewise, blocks of conserved synteny in mammals frequently terminate at SDs (Bailey and Eichler 2006), suggesting that SDs mediate the chromosomal rearrangements through which karyotypes diverge and reproductive barriers arise. Characterization of this “churning” in SD-rich regions is key to understanding the evolution of genome structure and function.

Notwithstanding their evolutionary importance, SDs are difficult to analyze. Repeated sequences with period longer than the insert size in a sequencing library and high pairwise similarity are likely to be collapsed into a single sequence during genome assembly. Efficient and sensitive alignment of high-throughput sequencing reads to duplicated sequence requires specialized software (Treangen and Salzberg 2011). Genotyping of sites within SDs is difficult because variants between copies (that is, paralogous variants) are easily confounded with variants within copies between individuals (that is, allelic variants.) Inability to distinguish allelic from paralogous variation similarly hampers any analysis that requires a positional ordering of sites along the genome -- for instance, delineation of haplotype blocks.

Paralogy also complicates phylogenetic inference. Ancestral duplication followed by differential losses along separate lineages yields a local phylogeny that is discordant with the genome-wide phylogeny (Goodman et al. 1979). Within each duplicate copy, local phylogenies for adjacent intervals may also be discordant due to non-allelic gene conversion between copies (Nagylaki and Petes 1982) -- despite the fact that such loci have reduced rates of crossing-over (Liu et al. 2014). The extremely high rate of gene conversion between palindromic repeats in the male-specific regions of mouse and human Y-chromosomes provide a dramatic example of this phenomenon (Hallast et al. 2013). As a result, over some fraction of the genome, individuals from the same species may be more closely related to an outgroup species than they are to each other.

In this manuscript we present a detailed analysis of one such paralogous sequence, R2d, in the house mouse Mus musculus. R2d is a 127 kbp unit which contains the protein-coding gene Cwc22. Although the C57BL/6J reference strain and other classical laboratory strains have a single copy of the R2d sequence (in the R2d1 locus), the wild-derived CAST/EiJ, ZALENDE/EiJ, and WSB/EiJ strains have an additional 1, 16 and 33 copies respectively in the R2d2 locus. R2d2 is the responder locus in a recently-described meiotic drive system on mouse chromosome 2 but is absent from the mouse reference genome (Waterston et al. 2002; Didion et al. 2015, 2016). We draw on a collection of species from the genus Mus sampled from around the globe to reconstruct the sequence of events giving rise to the locus’ present structure (Figure 1). Using novel computational tools built around indexes of raw high-throughput sequencing reads, we explore patterns of sequence divergence across the locus and perform local de novo assembly of phased haplotypes.
Both phylogenetic analyses and estimation of mutation rate in laboratory mouse populations reveal that R2d and its surrounding region on chromosome 2 are exceptionally unstable in copy number. Cycles of duplication, deletion, retrotransposition and non-allelic gene conversion and loss have led to complex phylogenetic patterns discordant with species-level relationships within Mus.

Finally, we identify 57 other loci, covering 0.8% of the mouse genome, which share the features of R2d: elevated local sequence divergence; low recombination rate; and enrichment for segmental duplication. Previous studies of sequence variation in the mouse (Keane et al. 2011) have attributed this pattern to sorting of alleles segregating in the common ancestor of M. musculus and its sister species. We suggest instead that these loci have been subject to independent cycles of duplication and loss along Mus lineages. Marked enrichment for odorant, pheromone, and antigen-recognition receptors supports a role for balancing selection on the generation and maintenance of the extreme level of polymorphism observed at these loci.

RESULTS

R2d was duplicated in the common ancestor of M. musculus and M. spretus

In order to determine when the R2d CNV arose, we used quantitative PCR or depth of coverage in whole-genome sequencing to assay R2d copy number in a collection of samples spanning the phylogeny of the subgenus Mus. Samples were classified as having haploid copy number 1 (two chromosomes each with a single copy of R2d), 2 (at least one chromosome with an R2d duplication) or >2 (both chromosomes with an R2d duplication).

We find evidence for >1 haploid copy in representatives of all mouse taxa tested from the Palearctic clade (Suzuki et al. 2004) (Figure 1 and Supplementary Table 1): 202 of 496 Mus musculus, 1 of 1 M. macedonicus, 2 of 2 M. spicilegus, 1 of 1 M. cypriacus and 8 of 8 M. spretus samples. However, we find no evidence of duplication in species from the southeast Asian clade, which is an outgroup to Palearctic mice: 0 of 2 M. famulus, 0 of 2 M. fragilicauda, 0 of 1 M. cervicolor, 0 of 1 M. cookii and 0 of 1 M. caroli samples. Outside the subgenus Mus, we found evidence for >1 haploid copy in none of the 9 samples tested from subgenus Pyromys. We conclude that the R2d duplication most likely occurred between the divergence of southeast Asian from Palearctic mice (~3.5 million years ago [Mya]) and the divergence of M. musculus from M. spretus (~2 Mya) (Suzuki et al. 2004; Chevret et al. 2005), along the highlighted branch of the phylogeny in Figure 1A. If the R2d duplication is ancestral with respect to M. musculus, then extant lineages of laboratory mice which have a single haploid copy of R2d -- including the reference strain C57BL/6j (of predominantly M. musculus domesticus origin (Yang et al. 2007)) -- represent subsequent losses of an R2d paralog.

Duplication of the ancestral R2d sequence resulted in two paralogs residing in loci which we denote R2d1 and R2d2 (Figure 1B). Only one of these is present in the mouse reference genome, at chr2: 77.87 Mbp; the other copy maps approximately 6 Mbp distal (Didion et al. 2015), as we describe in more detail below. The more proximal copy, R2d1, lies in a region of conserved synteny with rat, rabbit, chimpanzee and human (Muffato et al. 2010) (Supplementary Figure 1); we conclude that it is the ancestral copy.

The sequence of the R2d2 paralog was assembled de novo from whole-genome sequence reads (Keane et al. 2011) from the strain WSB/EiJ (of pure M. m. domesticus origin (Yang et al. 2011)), which has haploid R2d copy number ~34 (Didion et al. 2015). Pairwise alignment of R2d2 against R2d1 is shown in Supplementary Figure 2. The paralogs differ by at least 8 transposable-element (TE) insertions: 7 LINE
elements specific to R2d1 and 1 endogenous retroviral element (ERV) specific to R2d2 (Supplementary Table 2). (Due to the inherent limitations of assembling repetitive elements from short reads, it is likely that we have underestimated the number of young TEs in R2d2.) The R2d1-specific LINEs are all < 2% diverged from the consensus for their respective families in the RepeatMasker database (http://www.repeatmasker.org/cgi-bin/WEARestRepeatMasker), consistent with insertion within the last 2 Ma. The oldest R2d2-specific ERV is 0.7% diverged from its family consensus. TE insertions occurring since the ancestral R2d duplication are almost certainly independent, so these data are consistent with duplication <2 Mya. The R2d unit, minus paralog-specific TE insertions, is 127 kbp in size. R2d units in the R2d2 locus are capped on both ends by (CTCC)n microsatellite sequences, and no read pairs spanning the breakpoint between R2d2 and flankng sequence were identified.

In order to obtain a more precise estimate of the molecular age of the duplication event we assembled de novo a total of 16.9 kbp of intergenic and intronic sequence in 8 regions across the R2d unit from diverse samples and constructed phylogenetic trees. The trees cover 17 R2d1 or R2d2 haplotypes ∼ 13 from inbred strains and 4 from wild mice. The sequence of Mus caroli (haploid copy number 1) is used as an outgroup. A representative tree is shown in Figure 1C. The M. musculus sequences form two clades representing R2d1- and R2d2-like sequence, respectively. Using 5.0 ± 1.0 million years before present (Mya) as the estimated divergence date for M. caroli and M. musculus (Suzuki et al. 2004; Chevret et al. 2005), Bayesian phylogenetic analysis with BEAST (Drummond et al. 2012) yields 1.6 Mya (95% HPD 0.7 – 5.1 Mya) as the estimated age of the duplication event. This estimate is consistent with the conclusion in Figure 1A.

R2d contains the essential gene Cwc22

The R2d unit encompasses one protein-coding gene, Cwc22, which encodes an essential mRNA splicing factor (Yeh et al. 2010). The gene is conserved across eukaryotes and is present in a single copy in most non-rodent species represented in the TreeFam database (http://www.treefam.org/family/TF300510 (Li 2006)). Five groups of Cwc22 paralogs are present in mouse genomes: the copies in R2d1 (Cwc22R2d1) and R2d2 (Cwc22R2d2) plus retrotransposed copies in one locus at chr2: 83.9 Mbp and at two loci on the X chromosome (Figure 2A).

The three retrogenes are located in regions with no sequence homology to each other, indicating that each represents an independent retrotransposition event. The copy on chr2 was subsequently expanded by further segmental duplication and now exists (in the reference genome) in 7 copies with >99.9% mutual similarity. The two retrotransposed copies on chrX are substantially diverged from the parent gene (< 90% sequence similarity), lack intact open reading frames (ORFs), have minimal evidence of expression among GenBank cDNAs, and are annotated as likely pseudogenes (Pei et al. 2012). We therefore restricted our analyses to the remaining three groups of Cwc22 sequences, all on chr2.

The canonical transcript of Cwc22R2d1 (ENSMUST0000065889) is encoded by 21 exons on the negative strand. The coding sequence begins in the third exon and ends in the terminal exon (Figure 2B). Six of the seven protein-coding Cwc22R2d1 transcripts in Ensembl v83 use this terminal exon, while one transcript (ENSMUST0000011824) uses an alternative terminal exon. Alignment of the retrogene sequence (ENSMUST00000178960) to the reference genome demonstrates that the retrogene captures the last 19 exons of the canonical transcript -- that is, the 19 exons corresponding to the coding sequence of the parent gene.

Copy number at R2d2 is highly polymorphic in M. musculus

We previously demonstrated that haploid copy number of R2d ranges from 1 in the reference strain C57BL/6J and classical inbred strains A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ; to 2 in the wild-derived
strain CAST/EiJ; to 34 in the wild-derived strain WSB/EiJ. Using linkage mapping in two multiparental
Diversity Outbred (Svenson et al. 2012), we showed that, for the two strains with haploid copy number
>1, one copy maps to R2d1 while all extra copies map to the R2d2 locus at chr2: 83 Mbp (Didion et al.
2015). Cwc22 was recently reported to have copy number as high as 83 in wild M. m. domesticus (Pezer et
al. 2015).

In order to understand the evolutionary dynamics of copy-number variation at R2d2, we investigated the
relationship between copy number and phylogeny in the R2d2 candidate region. In particular, we sought
evidence for or against a single common origin for each of the derived copy-number states (zero copies or
many copies) at R2d2. The extent of copy-number variation in M. musculus, as estimated on a continuous
scale by qPCR, is shown in Figure 3A; samples are colored according to their copy-number classification
(1, 2 or >2 haploid copies). (Note that the qPCR readout is proportional to copy number on the log scale.)
We confirmed that R2d2 maps to chr2: 83 Mbp by performing association mapping between SNP
genotypes from the MegaMUGA array (Morgan et al. 2016) and the qPCR readout (Figure 3B).

A phylogenetic tree was constructed using SNPs in the region of maximum association (chr2: 82 - 85
Mbp) and is shown in Figure 3C. The topology of the tree reflects predicted relationships: samples cluster
by subspecies and (more loosely) by geography. Samples with a single R2d copy are present in all three
subspecies and in every major branch within M. m. domesticus, supporting the conclusion that the R2d2
paralog has been lost independently in multiple lineages. Several instances of intersubspecific
introgression are evident: M. m. musculus into TW:DAJ (predominantly M. m. castaneus) and C57BR/cdJ
(M. m. domesticus), and M. m. domesticus into CAST/EiJ (M. m. castaneus).

With two exceptions (SPRET/EiJ and TW:MEI; see Discussion), high-copy haplotypes are restricted to M.
m. domesticus. They are present in classical inbred strains (ALR/LtJ, ALS/LtJ, CHMULeJ, and NU/J); in the
ICR:HsD and related CD-1 commercial outbred stocks; in two inbred lines derived from ICR:HsD stock,
HR8 (Swallow et al. 1998) and M16i (Rocha et al. 2004); and in wild-derived strains DDO, RBA/DnJ,
RBB/DnJ, RBF/DnJ, WSA/EiJ, WSB/EiJ and ZALENDE/EiJ. In the wild, high-copy haplotypes are found in
populations from across Europe and in the eastern United States. Although a clade representing mice of
western European origin (highlighted in Figure 3C) is enriched for high-copy haplotypes, the most recent
common ancestor of all samples with high copy number is basal to all M. m. domesticus surveyed.

The most highly associated SNP marker (JAX00494952 at chr2: 83,673,784) has only a weak correlation
\(r^2 = 0.137 \) with (log) copy number. High-copy haplotypes are thus poorly tagged in this dataset, and
their apparently wide phylogenetic distribution in Figure 3C may be artefactual. To investigate further
we turned to a partially overlapping dataset from the higher-density Mouse Diversity Array (MDA;
(Yang et al. 2011)) containing 24 samples with copy number >2 (of which 5 are classical laboratory strains,
7 wild-derived strains, and 7 European wild mice; Supplementary Table 1). In fact all 24 high-copy
samples are identical across a single 21 kbp interval, chr2: 83,896,447 - 83,917,565 (GRCm38/mm10
coordinates) (Figure 3D).

These analyses support a single origin within Mus for alleles with >2 copies and multiple origins for
alleles with 1 copy.

Cwc22 is intact in and expressed from all R2d paralogs, and fast-evolving in rodents

To identify the coding sequence of Cwc22R2d2 we first aligned the annotated transcript sequences of
Cwc22R2d1 from Ensembl to our R2d2 contig. All 21 exons present in R2d1 are present in R2d2. Then we
used RNA-seq data from adult brain and testis in inbred strains with one or more copies of R2d2 to

\(r^2 = 0.137 \) with (log) copy number. High-copy haplotypes are thus poorly tagged in this dataset, and
their apparently wide phylogenetic distribution in Figure 3C may be artefactual. To investigate further
we turned to a partially overlapping dataset from the higher-density Mouse Diversity Array (MDA;
(Yang et al. 2011)) containing 24 samples with copy number >2 (of which 5 are classical laboratory strains,
7 wild-derived strains, and 7 European wild mice; Supplementary Table 1). In fact all 24 high-copy
samples are identical across a single 21 kbp interval, chr2: 83,896,447 - 83,917,565 (GRCm38/mm10
coordinates) (Figure 3D).

These analyses support a single origin within Mus for alleles with >2 copies and multiple origins for
alleles with 1 copy.

Cwc22 is intact in and expressed from all R2d paralogs, and fast-evolving in rodents

To identify the coding sequence of Cwc22R2d2 we first aligned the annotated transcript sequences of
Cwc22R2d1 from Ensembl to our R2d2 contig. All 21 exons present in R2d1 are present in R2d2. Then we
used RNA-seq data from adult brain and testis in inbred strains with one or more copies of R2d2 to
identify several novel transcript isoforms specific to R2d2 (Figure 4A). First, we find evidence for frequent retention of the 12th and 18th introns in Cwc22R2d2 transcripts. The latter event can be explained by an A>G mutation at the 5′ splice donor site of exon 17 in Cwc22R2d2. No variants were identified in the splice donor or acceptor sites for the 12th intron, but mis-splicing of this intron may be related to the presence of an ERV insertion (Figure 4A). Both intron-retention events would create an early stop codon. Second, we find evidence for a novel 3′ exon that extends to the boundary of the R2d unit and is used exclusively by Cwc22R2d1 (Figure 4A).

We estimated the expression of the various isoforms of Cwc22R2d1, Cwc22R2d2 and retro-Cwc22 in adult brain (8 replicates on 3 inbred strains) and testis (a single replicate on 23 inbred strains) using RNA-seq and the kallisto package (Bray et al. 2015). Briefly, kallisto uses an expectation-maximization (EM) algorithm to accurately estimate the abundance of a set of transcripts by distributing the “weight” of each read across all isoforms with whose sequence it is compatible. Cwc22 is clearly expressed from all three paralogs in both brain and testis (Figure 4B). However, both the total expression and the pattern of isoform usage differ by tissue and copy number.

Next, we created a multiple sequence alignment and phylogenetic tree of Cwc22 cDNAs and predicted amino acid sequences from Cwc22R2d1, Cwc22R2d2, retro-Cwc22, and Cwc22 orthologs in 19 other placental mammals, plus opossum, platypus and finally chicken as an outgroup (Supplementary Figure 3). Ignoring the effects of retained introns in Cwc22R2d2, an open reading frame (ORF) is maintained in all three Cwc22 loci in mouse, including the retrogene. Information content of each column along the alignment (Supplementary Figure 4) reveals that sequence is most conserved in two predicted conserved domains, MIF4G and MA3, required for Cwc22’s function in mRNA processing (Yeh et al. 2010).

Maintenance of an ORF in all Cwc22 paralogs for >2 My is evidence of negative selection against disrupting mutations in the coding sequence, but long branches within the rodent clade in Supplementary Figure 3 suggest that Cwc22 may also be under relaxed purifying selection in rodents. The rate of evolution of Cwc22 sequences in mouse is faster than in the rest of the tree ($\chi^2 = 4.33, df = 1, p = 0.037$ by likelihood ratio test).

Phylogenetic discordance in R2d1 is due to non-allelic gene conversion

The topology of trees across R2d is generally consistent: a long branch separating the single M. caroli sequence from the M. musculus sequences, and two clades corresponding to R2d1- and R2d2-like sequences. However, we observed that the affinities of some R2d paralogs change along the sequence (Figure 5A), a signature of non-allelic (i.e. inter-locus) gene conversion. To investigate further, we inspected patterns of sequence variation in whole-genome sequencing data from 16 wild-caught mice, 5 wild-derived strains, and 5 classical inbred strains of mice with a single R2d copy (at R2d1). We identified tracts of R2d2-like sequence as clusters of derived variants shared with our R2d2 contig, and confirmed that they are physically contiguous with neighboring R2d1 sequence by finding read pairs spanning the junction between R2d1- and R2d2-like sequence.

This analysis revealed non-allelic gene conversion tracts on at least 9 chromosomes (Figure 5B). The conversion tracts range in size from approximately 1.2 kbp to 127 kbp (the full length of the R2d unit). We require the presence of R2d1- or R2d2-diagnostic alleles at two or more consecutive variants to declare a conversion event, and these variants occur at a rate of approximately 1 per 50 bp, so the smallest conversion tracts we could detect are on the order of 100 bp in size. Nonetheless, the conversion tracts we detected are orders of magnitude longer than the 15 to 750 bp reported in recent studies of allelic gene conversion at recombination hotspots in mouse meiosis (Cole et al. 2010, 2014).
Four conversion tracts partially overlap the Cwc22 gene to create a sequence that is a mosaic of R2d1- and R2d2-like exons (Figure 5B). Recovery of Cwc22 mRNA in an inbred strain with a mosaic sequence (PWK/PhJ, see section “Cwc22 is intact and expressed” below) indicates that transcription remains intact. The presence of both R2d1- and R2d2-like sequence in extant M. musculus lineages with a single copy of R2d reinforces our conclusion that the duplication is indeed ancestral to the divergence of M. musculus and that the reduction to haploid copy number 1 is a derived state.

In addition to exchanges between R2d1 and R2d2, we identified an instance of exchange between R2d2 and the adjacent retrotransposed copy of Cwc22 in a single M. m. domesticus individual from Iran (IR:AHZ_STND:015; Supplementary Figure 6). A 30 kbp fragment corresponding to the 3' half of Cwc22R2d2 was transposed into the retro-Cwc22 locus, apparently mediated by homology between the exons of Cwc22R2d2 and retro-Cwc22.

The genomic region containing R2d2 is structurally unstable but has low sequence diversity

The extent of copy-number polymorphism and the frequency of non-allelic gene conversion involving R2d2 suggest that it is relatively unstable. Consistent with these observations, we find that the rate of de novo copy-number changes at R2d2 is extremely high in laboratory populations (Figure 6). In 183 mice sampled from the Diversity Outbred (DO) population we identified and confirmed through segregation analysis 8 new alleles, each with distinct copy number and each occurring in an unrelated haplotype (Supplementary Table 3). The DO is an outbred stock derived from eight inbred founder strains and maintained by random mating with 175 breeding pairs; at each generation, one male and one female offspring are sampled from each mating and randomly paired with a non-sibling to produce the next generation (Svenson et al. 2012). Without complete pedigrees and genetic material from breeders a direct estimate of the mutation rate in the DO is not straightforward to obtain. However, since the population size is known, we can make an analogy to microsatellite loci (Moran 1975) and estimate the mutation rate via the variance in allele sizes: 3.2% (95% bootstrap CI 1.1% – 6.0%) per generation.

Structural instability in this region of chr2 extends outside the R2d2 locus itself. Less than 200 kbp distal to R2d2 is another segmental duplication (Figure 7) -- containing a retrotransposed copy of Cwc22 -- which is present in 7 tandem copies in the reference genome. That region, plus a further 80 kbp immediately distal to it, is copy-number polymorphic in wild M. m. domesticus and wild M. m. castaneus (Figure 7). Instability of the region over longer timescale is demonstrated by the disruption, just distal to the aforementioned segmental duplication, of a syntenic block conserved across all other mammals (Supplementary Figure 1).

Despite the high mutation rate for structural variants involving R2d2 and nearby sequences, sequence diversity at the nucleotide level is modestly reduced relative to diversity in R2d1 and relative to the genome-wide average in M. m. domesticus. In an approximately 200 kbp region containing the R2d2 insertion site at its proximal end, \(\hat{\theta} \) (an estimator of average heterozygosity) in M. m. domesticus reduced from approximately 0.3% (comparable to previous reports in this subspecies, (Salcedo et al. 2007)) to nearly zero (Figure 7). Divergence between M. musculus and M. caroli is similar to its genome-wide average of ~ 2.5% over the region.

Estimation of diversity within a duplicated sequence such as R2d is complicated by the difficulty of distinguishing allelic from paralogous variation. To circumvent this problem we split our sample of 26 wild M. m. domesticus into two groups: those having R2d1 sequences only, and those having both R2d1 and R2d2 sequences. Within each group we counted the number of segregating sites among all R2d2 copies, using nearby fixed differences between R2d1 and R2d2 to phase sites to R2d2 (see Methods for
Churning of segmental duplications affects 0.8% of the mouse genome

The superposition of segmental duplication, non-allelic gene conversion, and recurrent loss -- which we collectively term “churning” -- of R2d paralogs mimics incomplete lineage sorting at R2d1. That is, the time to most recent common ancestor of R2d1 haplotypes within the single-copy M. musculus samples is ~2 Mya, much older than the separation of the three M. musculus subspecies (Figure 5). We hypothesized that churning affects other segmentally duplicated sequences, and sought evidence for it at other loci in the mouse genome. To do so we identified regions where the divergence between sequenced samples and the reference genome assembly substantially exceeds what is predicted by those samples’ ancestry. Because churning is likely to involve sequence that, like R2d2, is absent from the reference genome assembly, we developed a simple method to estimate divergence from unaligned reads. Briefly, we estimated the proportion of short subsequences (k-mers, with k = 31) from windows along the reference assembly for which no evidence exists in the reads generated for a sample. This quantity can be rescaled to approximate the divergence between the reference sequence and the template sequence from which reads were generated (see Methods). Applied genome-wide to 31 kbp (= 1000×k) windows, this method captures the distribution of sequence divergence between the reference assembly (chiefly M. m. domesticus in origin) in representative samples from the three subspecies of M. musculus and the outgroups M. spretus and M. caroli (Figure 8).

Divergent regions were identified by fitting a hidden Markov model (HMM) to the windowed divergence profiles for 7 wild or wild-derived samples with available whole-genome sequence (Figure 8 and Supplementary Table 4). This analysis revealed a striking pattern: over most of the genome, the divergence estimates hover around the genome-wide expectation, but high-divergence windows are clustered in regions 100 kbp to 5 Mbp in size. Our method does not capture signal from structural variation (besides deletions, see Methods) or heterozygosity, and so probably underestimates the true level of sequence divergence. The union of these divergent regions across all 7 M. musculus samples analyzed covers 0.82% of the reference genome (mean 0.58% per sample). Divergent regions are enriched for segmental duplications: 39.0% of sequence in divergent regions is comprised of segmental duplications versus a median of 3.4% (central 99% interval 0.2% – 16.7%) in random regions of equal size (p < 0.001). Yet divergent regions are more gene-dense than the genomic background: they contain 3.6×10⁻² genes/kbp relative a median 1.6×10⁻² genes/kbp (central 99% interval 1.1×10⁻² -- 2.7×10⁻² genes/kbp) genome-wide (p < 0.001). Divergent regions are strongly enriched for genes related to odorant and pheromone sensing (p = 1.3×10⁻⁸) and adaptive immunity (p = 3.1×10⁻³).

As a prototypical example we focus on a divergent region at chr4: 110 - 115 Mbp (Figure 8). This region contains the 11 members of the Skint family of T-cell-borne antigen receptors. The first member to be described, Skint1, functions in negative selection in the thymus of T-cells destined for the epidermis (Boyden et al. 2008). Coding sequence from 23 inbred strains (including CAST/EiJ, WSB/EiJ, PWD/PhJ and SPRET/EiJ) was reported in Boyden et al. (2008). A phylogenetic tree constructed from those sequences, plus M. caroli and rat as outgroups, reveals the expected pattern of “deep coalescence” (Figure 8): the M. m. domesticus sequences are paraphyletic, and some (group A) are more similar to SPRET/EiJ (M. spretus) than to their subspecific congener (group B). Although the level of sequence divergence in the Skint1 coding sequence was attributed to ancestral polymorphism maintained by balancing selection in the original report, selection would not be expected to maintain diversity in both coding and non-coding sequence equally as we observe in Figure 8. The best explanation for the observed pattern of diversity at
Skint1 is therefore that groups A and B represent paralogs descended from an ancestral duplication followed by subsequent deletion of different paralogs along different lineages (Figure 8). This conclusion is supported by the structure of the Skint region in the mouse reference genome assembly, which reflects the superposition of many duplications and rearrangements (Figure 8).

DISCUSSION

In this manuscript we have reconstructed in detail the evolution of a multi-megabase segmental duplication (SD) in mouse, R2d2. Our findings demonstrate the challenges involved in accurately interpreting patterns of polymorphism and divergence within duplicated sequence.

SDs are among the most dynamic loci in mammalian genomes. They are foci for copy-number variation in populations, but the sequences of individual duplicates beyond those present in the reference genome are often poorly resolved. Obtaining the sequence of this “missing genome,” as we have done for R2d2, is an important prerequisite to understanding the evolution of duplicated loci. Since each paralog follows a partially independent evolutionary trajectory, individuals in a population may vary both quantitatively (in the number of copies) and qualitatively (in which copies are retained). Cycles of duplication and loss may furthermore lead to the fixation of different paralogs along different lineages. This “churning” leaves a signature of polymorphism far in excess of the genome-wide background, due to coalescence between alleles originating from distinct paralogs. We identify 57 additional regions covering 0.82% of the mouse genome with this property (Figure 8). These regions have gene density similar to unique sequence and are strongly enriched for genes involved in odorant sensing, pheromone recognition and immunity that play important roles in social behavior and speciation (Hurst et al. 2001). Excess polymorphism at these loci has previously been attributed to some combination of incomplete lineage sorting and diversifying selection (White et al. 2009; Keane et al. 2011). Our results suggest that inferences regarding the strength of selection on highly polymorphic loci in regions of genomic churn should be treated with caution.

Accurate deconvolution of recent duplications remains a difficult task that requires painstaking manual effort. We exploited the specific properties of R2d2 in the WSB/EiJ mouse strain -- many highly-similar copies of R2d2 relative to the single divergent R2d1 copy -- to extract and assemble the sequence of R2d2 from short reads (Supplementary Figure 8). With the sequence of both the R2d1 and R2d2 paralogs in hand, we were able to recognize several remarkable features of R2d2 that are discussed in detail below.

Long-tract gene conversion.

Previous studies of non-allelic gene conversion in mouse and human have focused either on relatively small (<5 kbp) intervals within species, or have applied phylogenetic methods to multiple paralogs from a single reference genome (Dumont and Eichler 2013). This study is the first, to our knowledge, with the power to resolve large (>5 kbp) non-allelic gene conversion events on an autosome in a population sample. We identify conversion tracts up to 127 kbp in length, orders of magnitude longer than tracts arising from allelic conversion events during meiosis. Gene conversion at this scale can rapidly and dramatically alter paralogous sequences, including -- as shown in Figure 5 -- the sequences of essential protein-coding genes. This process has been implicated as a source of disease alleles in humans (Chen et al. 2007).

Importantly, we were able to identify non-allelic exchanges in R2d1 as such only because we were aware of the existence of R2d2 in other lineages. In this case the transfer of paralogous R2d2 sequence into R2d1 creates the appearance of deep coalescence among R2d1 sequences. Ignoring the effect of gene conversion
would cause us to overestimate the degree of polymorphism at R2d1 by an order of magnitude, and
would bias any related estimates of population-genetic parameters (for instance, of effective population
size).

Our data are not sufficient to estimate the rate of non-allelic gene conversion between R2d2 and other loci.
At minimum we have observed two distinct events: one from R2d2 into R2d1, and a second from R2d2
into retro-Cwc22. From a single conversion event replacing all of R2d1 with R2d2-like sequence, the
remaining shorter conversion tracts could be generated by recombination with R2d2-like sequence. Because
we find converted haplotypes in both M. m. musculus and M. m. domesticus, the single conversion event
would have had to occur prior to the divergence of the three M. musculus subspecies and subsequently
remain polymorphic in the diverged populations.

The other possibility is that non-allelic gene conversion between R2d2 sequences is recurrent. If this is the
case, it probably also has a role in maintaining sequence identity between paralogs in R2d2 -- an example
of so-called “concerted evolution” (Dover 1982). Provided the rate of gene conversion is high enough
relative to the rate of mutation, gene conversion in multi-copy sequences like R2d2 tends to slow the
accumulation of new mutations (Nagylaki and Petes 1982). New mutations arising in any single copy are
prone to loss not only by drift but also by being “pasted-over” by gene conversion from other intact
copies. The strength of this effect increases with copy number (Melamed and Kupiec 1992).

In this respect, R2d2 appears similar to the male-specific region of the Y chromosome in mouse (Soh et al.
2014) and human (Rozen et al. 2003). The large palindromic repeats on chrY are homogenized by frequent
non-allelic gene conversion (Hallast et al. 2013) such that they have retained >99% sequence identity to
each other even after millions of years of evolution. Frequent non-allelic gene conversion has also been
documented in arrays of U2 snRNA genes in human (Liao 1997), and in rRNA gene clusters (Eickbush
and Eickbush 2007) and centromeric sequences (Schindelhauer 2002; Shi et al. 2010) in several species.

Pervasive copy-number variation.

Clusters of segmental duplications have long been known to be hotspots of copy-number variation
(Bailey and Eichler 2006; Egan et al. 2007; She et al. 2008). Recent large-scale sequencing efforts have
revealed the existence of thousands of multiallelic CNVs segregating in human populations (Handsaker
et al. 2015), including cases of “runaway duplication” restricted to specific haplotypes. R2d2 is another
example of this phenomenon.

We have surveyed R2d2 copy number in a large and diverse sample of laboratory and wild mice, and
have shown that it varies from 0-1 (the ancestral state) to >80 in certain M. m. domesticus populations
(Figure 7). In a cohort of outbred mice expected to be heterozygous for the WSB/Eij haplotype at R2d2 (33
copies) we estimate that large deletions, >2 Mbp in size, occur at a rate of 3.2% per generation. This
estimate of the mutation rate for CNVs at R2d2 should be regarded as a lower bound. The power of our
copy-number assay to discriminate between copy numbers above ~25 is essentially zero, so that the assay
is much more sensitive to losses than to gains. Even our lower-bound mutation rate exceeds that of the
most common recurrent deletions in human (~1 per 7000 live births) (Turner et al. 2007) and is an order of
magnitude higher than the most active CNV hotspots described to date in the mouse (Egan et al. 2007).
While recurrent copy-number changes are often ascribed to non-allelic homologous recombination, the
recombination rate in the vicinity of R2d2 is dramatically reduced in populations segregating for R2d2
haplotypes with high copy number (Supplementary Figure 7).

A second key observation is that both the recombination rate and the structural mutation rate at R2d2
depend on heterozygosity. In contrast to estimates of mutation rate based on the number of alleles in
outbred populations (1% – 10% per generation), the copy number of R2d2 appears to be stable over at least dozens of generations within inbred strains of mice, including in the Collaborative Cross (Collaborative Cross Consortium 2012). Mutation rate further differs by sex: zero new mutations were observed in 1256 progeny of females heterozygous for a high-copy allele at R2d2 (data not shown).

Taken together, these observations hint at a common structural or epigenetic mechanism affecting the resolution of double-strand breaks in large tracts of unpaired (i.e. hemizygous) DNA during meiosis. Both the obligate-hemizygous sex chromosomes and large unpaired segments on autosomes are epigenetically marked for transcriptional silencing during male meiotic prophase (Laan 2004; Baarends et al. 2005), and are physically sequestered into a structure called the sex body. Repair of double-strand breaks within the sex body is delayed relative to the autosomes (Mahadevaiah et al. 2001) and involves a different suite of proteins (Turner et al. 2004). We hypothesize that these male-specific pathway(s) are error-prone in the presence of non-allelic homologous sequences.

Origin and distribution of a meiotic driver.

Females heterozygous for a high- and low-copy allele at R2d2 preferentially transmit the high-copy allele to progeny, a process called meiotic drive (Didion et al. 2015). Meiotic drive can rapidly alter allele frequencies in laboratory and natural populations (Lindholm et al. 2016), and we recently showed that high-copy alleles of R2d2 (R2d2HC) sweep through laboratory and natural populations despite reducing the fitness of heterozygous females (Didion et al. 2016). These “selfish sweeps” account for the marked reduction in within-population diversity in the vicinity of R2d2 (Figure 7).

The present study sheds additional light on the age, origins and fate of R2d2HC alleles. We find that R2d2HC alleles have a single origin in western Europe. They are present in several different “chromosomal races” -- populations fixed for specific Robertsonian translocations between which gene flow is limited (Hauflé and Searle 1993) -- indicating that they were likely present at intermediate frequency prior to the origin of the chromosomal races within the past 6,000 to 10,000 years (Nachman et al. 1994) and were dispersed through Europe as mice colonized the continent from the south and east (Boursot et al. 1993). The presence of R2d2HC in non-M. m. domesticus samples (SPRET/EiJ, M. spreus from Cadiz, Spain; and TW:MEI, M. m. castaneus from Taiwan) is best explained by recent introgression following secondary contact with M. m. domesticus (Bonhomme et al. 2007; Yang et al. 2011).

A new member of the Cwc22 family.

The duplication that gave rise to R2d2 also created a new copy of Cwc22. Based on our assembly of the R2d2 sequence, the open reading frame of Cwc22R2d2 is intact and encodes a nearly full-length predicted protein that retains the two key functional domains characteristic of the Cwc22 family. Inspection of RNA-seq data from samples with high copy number at R2d2 reveals several novel transcript isoforms whose expression appears to be copy-number- and tissue-dependent. In testis, the most abundant isoform retains an intron containing an ERV insertion (red arrow in Figure 4), consistent with the well-known transcriptional promiscuity in this tissue. The most abundant isoforms in adult brain is unusual in that its stop codon is in an internal exon which is followed by a 7 kbp 3’ UTR in the terminal exon. Transcripts with a stop codon in an internal exon are generally subject to nonsense-mediated decay (NMD) triggered by the presence of exon-junction complexes downstream the stop codon. Curiously, Cwc22 is itself a member of the exon-junction complex (Steckelberg et al. 2012).

That an essential gene involved in such a central biochemical pathway should both escape NMD and be overexpressed more than tenfold is surprising. However, it may be the case that standing levels of Cwc22R2d2 transcript do not reflect levels of the functional Cwc22 protein. Either of the two intron-retention
events in Figure 4 would introduce early stop codons and consequently be subject to NMD or produce a truncated and likely nonfunctional protein. Further studies will be required to determine the distribution of expression of Cwc22 across isoforms, tissues and developmental stages.

Conclusions and future directions

Our detailed analysis of the evolutionary trajectory of $R2d2$ provides insight into the fate of duplicated sequences over short (within-species) timescales. The exceptionally high mutation rate and low recombination rate at $R2d2$ motivate hypotheses regarding the biochemical mechanisms which contribute to observed patterns of polymorphism at this and similar loci. Finally, the birth of a new member of the deeply conserved Cwc22 gene family in $R2d2$ provides an opportunity to test predictions regarding the evolution of duplicate gene pairs.

METHODS

Mice

Wild $M. musculus$ mice used in this study were trapped at a large number of sites across Europe, the United States, the Middle East, northern India and Taiwan (Figure 7A). Trapping was carried out in accordance with local regulations and with the approval of all relevant regulatory bodies for each locality and institution. Trapping locations are listed in Supplementary Table 1. Most samples have been previously published (Didion et al. 2016).

Tissue samples from the progenitors of the wild-derived inbred strains ZALENDE/EiJ ($M. m. domesticus$), TIRANO/EiJ ($M. m. domesticus$) and SPRET/EiJ ($M. spretus$) were provided by Muriel Davison, as described in Didion et al. (2016).

Tissue samples from the high running (HR) selection and intercross lines were obtained as described in Didion et al. (2016).

Female Diversity Outbred mice used for estimating mutation rates at $R2d2$ were obtained from the Jackson Laboratory and housed with a single FVB/NJ male. Progeny were sacrificed at birth by cervical dislocation in order to obtain tissue for genotyping.

All live laboratory mice were handled in accordance with the IACUC protocols of the University of North Carolina at Chapel Hill.

DNA preparation

High molecular weight DNA. High molecular weight DNA was obtained for samples genotyped with the Mouse Diversity Array or subject to whole-genome sequencing. Genomic DNA was extracted from tail, liver or spleen using a standard phenol-chloroform procedure (Sambrook and Russell 2006). High molecular weight DNA for most inbred strains was obtained from the Jackson Laboratory, and the remainder as a generous gift from Francois Bonhomme and the University of Montpellier Wild Mouse Genetic Repository.

Low molecular weight DNA. Low molecular weight DNA was obtained for samples to be genotyped on the MegaMUGA array (see “Microarray genotyping” below). Genomic DNA was isolated from tail, liver, muscle or spleen using Qiagen Gentra Puregene or DNeasy Blood & Tissue kits according to the manufacturer’s instructions.
Whole-genome sequencing and variant discovery

Inbred strains. Sequencing data for inbred strains of mice except ZALENDE/EiJ and LEWES/EiJ was obtained from the Sanger Mouse Genomes Project website (ftp://ftp-mouse.sanger.ac.uk/current_bams) as aligned BAM files. Details of the sequencing pipeline are given in Keane et al. (2011). Coverage ranged from approximately 25X to 50X per sample.

The strains LEWES/EiJ and ZALENDE/EiJ were sequenced at the University of North Carolina High-Throughput Sequencing Facility. Libraries were prepared from high molecular weight DNA using the Illumina TruSeq kit and insert size approximately 250 bp, and 2x100bp paired-end reads were generated on an Illumina HiSeq 2000 instrument. LEWES/EiJ was sequenced to approximately 12X coverage and ZALENDE/EiJ to approximately 20X. Alignment was performed as in Keane et al. (2011).

Wild mice. Whole-genome sequencing data from 26 wild M. m. domesticus individuals described in Pezer et al. (2015) was downloaded from ENA under accession #PRJEB9450. Coverage ranged from approximately 12X to 20X per sample. An additional two wild M. m. domesticus individuals, IT175 and ES446, were sequenced at the University of North Carolina to approximate coverage 8X each. Raw reads from an additional 10 wild M. m. castaneus described in Halligan et al. (2013), sequenced to approximately 20X each, were downloaded from ENA under accession #PRJEB2176. Reads for a single Mus caroli individual sequenced to approximately 40X were obtained from ENA under accession #PRJEB2188. Reads for each sample were realigned to the mm10 reference using bwa-mem v0.7.12 with default parameters (Li 2013). Optical duplicates were removed with samblaster (Faust and Hall 2014).

Variant discovery. Polymorphic sites on chromosome 2 in the vicinity of R2d2 (Figure 7) were called using freebayes v0.9.21-19-gc003c1e (Garrison and Marth 2012) with parameters “--standard-filters” using the Sanger Mouse Genomes Project VCF files as a list of known sites (parameter “--@”). Raw calls were filtered to have quality score > 30, root mean square mapping quality > 20 (for both reference and alternate allele calls) and at most 2 alternate alleles.

Copy-number estimation

R2d copy number was estimated using qPCR as described in Didion et al. (2016). Briefly, we used commercial TaqMan assays against intron-exon boundaries in Cwc22 (Life Technologies assay numbers Mm00644079_cn and Mm00053048_cn) to determine copy number relative to reference genes Tert (cat. no. 4458368, for target Mm00644079_cn) or Tfr2 (cat. no. 4458366, for target Mm00053048_cn). Cycle thresholds for Cwc22 relative to the reference gene were normalized across assay batches using linear mixed models with batch and target-reference pair treated as random effects. Control samples with known haploid R2d copy numbers of 1 (C57BL/6J), 2 (CAST/EiJ), 17 (WSB/EiJxC57BL/6J)F1 and 34 (WSB/EiJ) were included in each batch.

Samples were classified as having 1, 2 or >2 haploid copies of R2d using linear discriminant analysis. The classifier was trained on the normalized cycle thresholds of the control samples from each plate, whose precise integer copy number is known, and applied to the remaining samples.

Microarray genotyping

Genome-wide genotyping was performed using MegaMUGA, the second version of the Mouse Universal Genotyping Array platform (Neogen/GeneSeek, Lincoln, NE) (Morgan et al. 2016). Genotypes were called using the GenCall algorithm implemented in the Illumina BeadStudio software (Illumina Inc, Carlsbad, CA). For quality control we computed, for each marker i on the array: $S_i = X_i + Y_i$, where X_i and Y_i are...
the normalized hybridization intensities for the two alleles. The expected distribution of Si was computed
from a large set of reference samples. We excluded arrays for which the distribution of Si was
substantially shifted from this reference; in practice, failed arrays can be trivially identified in this manner
(Morgan et al. 2016). Access to MegaMUGA genotypes was provided by partnership between the
McMillan and Pardo-Manuel de Villena labs and the UNC Systems Genetics Core Facility.

Additional genotypes for inbred strains and wild mice from the Mouse Diversity Array were obtained
from Yang et al. (2011).

De novo assembly of R2d2

Raw whole-genome sequencing reads for WSB/EiJ from the Sanger Mouse Genomes Project were
converted to a multi-string Burrows-Wheeler transform and associated FM-index (msBWT) (Holt and
McMillan 2014) using the msbwt v0.1.4 Python package (https://pypi.python.org/pypi/msbwt). The
msBWT and FM-index implicitly represent a suffix array of sequencing to provide efficient queries over
arbitrarily large string sets. Given a seed k-mer present in that string set, this property can be exploited to
rapidly construct a de Bruijn graph which can in turn be used for local de novo assembly of a target
sequence (Supplementary Figure 8A). The edges in that graph can be assigned a weight (corresponding
to the number of reads containing the k + 1-mer implied by the edge) which can be used to evaluate
candidate paths when the graph branches (Supplementary Figure 8B).

R2d2 was seeded with the 30 bp sequence (TCTAGACCATGAGCCTCATTTATCATGCCT) at the
proximal boundary of R2d1 in the GRCm38/mm10 reference genome. A single linear contig was
assembled by “walking” through the local de Bruijn graph. Because WSB/EiJ has ~33 copies of R2d2 and a
single copy of R2d1, any branch point in the graph which represents a paralogous variant should having
outgoing edges with weights differing by a factor of approximately 33. Furthermore, when two (or more)
branch points occur within less than the length of a read, it should be possible to “phase” the underlying
variants by following single reads through both branch points (Supplementary Figure 8B). We used
these heuristics to assemble the sequence of R2d2 (corresponding to the higher-weight path through the
graph) specifically.

After assembling a chunk of approximately 500 bp the contig was checked for colinearity with the
reference sequence (R2d1) using BLAT and CLUSTAL-W2 (using the EMBL-EBI web server:
http://www.ebi.ac.uk/Tools/msa/clustalw2/).

Repetitive elements such as retroviruses are refractory to assembly with our method. Upon traversing
into a repetitive element, the total edge weight (total number of reads) and number of branch points
(representing possible linear assembled sequences) in the graph become large. It was sometimes possible
to assemble a fragment of a repetitive element at its junction with unique sequence but not to assemble
unambiguously across the repeat. Regions of unassembleable sequence were marked with blocks of Ns,
and assembly re-seeded using a nearby k-mer from the reference sequence. The final contig is provided
in FASTA format in Supplementary File 1.

The final contig was checked against its source msBWT by confirming that each 30-mer in the contig
which did not contain an N was supported by at least 60 reads. A total of 16 additional haplotypes in 8
regions of R2d totaling 16.9 kbp (Supplementary Table 5) were assembled in a similar fashion, using the
WSB R2d2 contig and the R2d1 reference sequence as guides. Multiple sequence alignments from these
regions are provided in Supplementary File 1.
Sequence analysis of R2d2 contig

Pairwise alignment of R2d paralogs. The reference R2d1 sequence and our R2d2 contig were aligned using LASTZ v1.03.54 (http://www.bx.psu.edu/~rsharris/lastz/) with parameters “--step=10 --seed=match12 --notransition --exact=20 --notrim --identity=95”.

Transposable element (TE) content. The R2d2 contig was screened for TE insertions using the RepeatMasker web server (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) with species set to “mouse” and default settings otherwise. As noted previously, we could not assemble full-length repeats, but the fragments we could assemble at junctions with unique sequence allowed identification of some candidate TEs to the family level. R2d1-specific TEs were defined as TEs annotated in the RepeatMasker track at the UCSC Genome Browser with no evidence (no homologous sequence, and no Ns) at the corresponding position in the R2d2 contig. Candidate R2d2-specific TEs were defined as gaps >= 100 bp in size in the alignment to R2d1 for which the corresponding R2d2 sequence was flagged by RepeatMasker.

Gene conversion tracts. Using multiple sequence alignments (see “Phylogenetic analyses” below) of the 8 de novo assembled regions in R2d, we classified each sequence as R2d1-like or R2d2-like based on the pattern of shared derived alleles (using M. caroli as the outgroup). The result of this analysis is shown in Supplementary Figure 5.

To unambiguously define gene conversion events in a larger sample, and without confounding from paralogous sequence, we examined 12 wild M. m. domesticus samples and 8 laboratory strains with evidence of 2 diploid copies of R2d. We first confirmed that these copies of R2d were located at R2d1 by finding read pairs spanning the junction between R2d1 and neighboring sequence. Gene conversion tracts were delineated by manual inspection of alignments in IGV. Because R2d1 and R2d2 diverged approximately 2 Mya, alignment of R2d2-like sequence to the R2d1 reference sequence creates mismatches at a density of approximately 1 variant per 50 bp, approximately fivefold greater than the density of variants in wild M. m. domesticus (~ 0.4% or 1 per 250 bp; (Salcedo et al. 2007)). Boundaries of conversion tracts were defined at approximately the midpoint between the first R2d1- (or R2d2-) specific variant and the last R2d2- (or R2d1-) specific variant.

Sequence diversity in R2d1 and R2d2. Assembling individual copies of R2d2 is infeasible in high-copy samples. Instead we treated each R2d unit as an independent sequence and used the number of segregating sites to estimate sequence diversity. Segregating sites were defined as positions in a collection of alignments (BAM files) with evidence of an alternate allele. To identify segregating sites we used freebayes v0.9.21-19-gc003c1e (Garrison and Marth 2012) with parameters “-ui -Kp 20 --use-best-n-alleles 2 -m 8”. These parameters treat each sample as having ploidy up to 20, impose an uninformative prior on genotype frequencies, and limit the algorithm to the discovery of atomic variants (SNVs or short indels, not multinucleotide polymorphisms or other complex events) with at most 2 alleles at each segregating site. Sites in low-complexity sequence (defined as Shannon entropy < 1.6 in the 30 bp window centered on the site) or within 10 bp of another variant site were further masked, to minimize spurious calls due to ambiguous alignment of indels. To avoid confounding with the retrocopies of Cwc22 outside R2d, coding exons of Cwc22 were masked. Finally, sites corresponding to an unaligned or gap position in the pairwise alignment between R2d1 and R2d2 were masked.

To compute diversity in R2d1 we counted segregating sites in 12 wild M. m. domesticus samples with 2 diploid copies of R2d (total of 24 sequences), confirmed to be in R2d1 by the presence of read pairs spanning the junction between R2d1 and neighboring sequence. To compute diversity in R2d2, we counted segregating sites in 14 wild M. m. domesticus samples with >2 diploid copies of R2d (range 3 -- 83 per sample; total of 406 sequences) but excluded sites corresponding to variants among R2d1 sequences.

15
Remaining sites were phased to R2d2 by checking for the presence of a 31-mer containing the site and the nearest R2d1-vs-R2d2 difference in the raw reads for each sample using the corresponding msBWT. Sequence diversity was then computed using Watterson’s estimator (Watterson 1975), dividing by the number of alignable bases (128973) to yield a per-site estimate. Standard errors were estimated by 100 rounds of resampling over the columns in the R2d1-vs-R2d2 alignment.

Analyses of Cwc22 expression

RNA-seq read alignment. Expression of Cwc22 was examined in adult whole brain using data from Crowley et al. (2015), SRA accession #SRR056236. Paired-end reads (2x100bp) were obtained from 8 replicates each of 3 inbred strains: CAST/EiJ, PWK/PhJ and WSB/EiJ. Raw reads were aligned to the mm10 reference using STAR v2.4.2a (Dobin et al. 2012) with default parameters for paired-end reads.

Alignments were merged into a single file per strain for further analysis. Expression in adult testis was examined in 23 wild-derived inbred strains from Phifer-Rixey et al. (2014) SRA accession #PRJNA252743. Single-end reads (76bp) were aligned to the mm10 genome with STAR using default parameters for single-end, non-strand-specific reads.

Transcript assembly. Read alignments were manually inspected to assess support for Cwc22 isoforms in Ensembl v83 annotation. To identify novel isoforms in R2d2, we applied the Trinity v0.2.6 pipeline (Grabherr et al. 2011) to the subset of reads from WSB/EiJ which could be aligned to R2d1 plus their mates (a set which represents a mixture of Cwc22R2d1 and Cwc22R2d2 reads). De novo transcripts were aligned both to the mm10 reference and to the R2d2 contig using BLAT, and were assigned to R2d1 or R2d2 based on sequence similarity. Because expression from R2d2 is high in WSB/EiJ, R2d2-derived transcripts dominated the assembled set. Both manual inspection and the Trinity assembly indicated the presence of retained introns and an extra 3' exon, as described in the Results. To obtain a full set of Cwc22 transcripts including those of both R2d1 and R2d2 origin, we supplemented the Cwc22 transcripts in Ensembl v83 with their paralogs from R2d2 as determined by a strict BLAT search against the R2d2 contig. We manually created additional transcripts reflecting intron-retention and 3' extension events described above, and obtained their sequence from the R2d2 contig.

Abundance estimation. Relative abundance of Cwc22 paralogs was estimated using kallisto v0.42.3 (Bray et al. 2015) with parameters “--bias” (to estimate and correct library-specific sequence-composition biases). The transcript index used for pseudoalignment and quantification included only the Cwc22 targets.

Phylogenetic analyses

Trees. Multiple sequence alignments for 8 the regions in Supplementary Figure 5 were generated using MUSCLE (Edgar 2004) with default parameters. The resulting alignments were manually trimmed and consecutive gaps removed. Phylogenetic trees were inferred with RAxML v8.1.9 (Stamatakis 2014) using the GTR+gamma model with 4 rate categories and M. caroli as an outgroup. Uncertainty of tree topologies was evaluated using 100 bootstraps replicates.

Divergence time. The time of the split between R2d1 and R2d2 was estimated using the Bayesian method implemented in BEAST v1.8.1r6542 (Drummond et al. 2012). We assumed a divergence time for M. caroli of 5 Mya and a strict molecular clock, and analyzed the alignment from region A in Supplementary Figure 5 under the GTR+gamma model with 4 rate categories and allowance for a proportion of invariant sites. The chain was run for 10 million iterations with trees sampled every 1000 iterations.

Local phylogeny around R2d2. Genotypes from the MegaMUGA array at 38 SNPs in the region surrounding R2d2 (chr2: 82 -- 85 Mb) were obtained for 493 individuals representing both laboratory and wild mice...
A distance matrix was created by computing the proportion of alleles shared identical by state between each pair of samples. A neighbor-joining tree was inferred from the distance matrix and rooted at the most recent common ancestor of the \(\textit{M. musculus} \)- and non-\(\textit{M. musculus} \) samples. Figure 3 shows a simplified tree with 135 representative samples, including all those with high-copy alleles at \(\textit{R2d2} \).

\(\textit{Cwc22 coding sequences} \). To create the tree of \(\textit{Cwc22} \) coding sequences, we first obtained the sequences of all its paralogs in mouse. The coding sequence of \(\textit{Cwc22}R2d2 \) (RefSeq transcript NM_030560.5) was obtained from the UCSC Genome Browser and aligned to our \(\textit{R2d2} \) contig with BLAT to extract the exons of \(\textit{Cwc22}R2d2 \). The coding sequence of retro-\(\textit{Cwc22} \) (genomic sequence corresponding to GenBank cDNA AK145290) was obtained from the UCSC Genome Browser. Coding and protein sequences of \(\textit{Cwc22} \) homologs from non-\(\textit{M. musculus} \) species were obtained from Ensembl (Cunningham \textit{et al.} 2014). The sequences were aligned with MUSCLE and manually trimmed, and a phylogenetic tree estimated as described above.

We observed that the branches in the rodent clade of the \(\textit{Cwc22} \) tree appeared to be longer than branches for other taxa. We used PAML (Yang \textit{et al.} 2007) to test the hypothesis that \(\textit{Cwc22} \) is under relaxed purifying selection in rodents using the branch-site model (null model “model = 2, NSsites = 2, fix_omega = 1”; alternative model “model = 2, NSsites = 2, omega = 1, fix_omega = 1”) as described in the PAML manual. This is a test of difference in evolutionary rate on a “foreground” branch (\(\omega_f \)) -- in our case, the rodent clade -- relative to the tree-wide “background” rate (\(\omega_b \)). The distribution of the test statistic is an even mixture of a \(\chi^2 \) distribution with 1 df and a point mass at zero; to obtain the \(p \)-value, we calculated the quantile of the \(\chi^2 \) distribution with 1 df and divided by 2.

\(\textit{Genome-wide sequence divergence} \)

The msBWT of a collection of whole-genome sequencing reads can be used to estimate the divergence between the corresponding template sequence (\textit{i.e.} genome) and a reference sequence as follows. Non-overlapping \(k \)-mers from the reference sequence are queried against the msBWT. (The value of \(k \) is chosen such that nearly all \(k \)-mers drawn from genomic sequence exclusive of repetitive elements.) Let \(x \) be the count of reads containing an exact match to the \(k \)-mer or its reverse complement. If the template and reference sequence are identical, standard theory for shotgun sequencing (Lander and Waterman 1988) holds that \(P(x > 0 | \lambda) = 1 - e^{-\lambda} \), where \(\lambda \) is the average sequencing coverage. We assume \(P(x > 0 | \lambda) \approx 1 \), which is satisfied in practice for high-coverage sequencing.

However, if a haploid template sequence contains at least one variant (versus the reference) within the queried \(k \)-mer, it will be the case that \(x = 0 \). We use this fact and assume that mutations arise along a sequence via a Poisson process to estimate the rate parameter \(\alpha \) from the proportion of \(k \)-mers that have read count zero. Let \(m \) be the number of mutations arising between a target and reference in a window of length \(L \), and \(y \) the number of \(k \)-mers in that window with nonzero read count. Then \(P(m = 0 | \alpha) = e^{-\alpha L} \) and a simple estimator for \(\alpha \) is \(\hat{\alpha} = -\log \left(\frac{1-y}{L} \right) \).

Interpretation of \(\alpha \) is straightforward in the haploid case: it is the per-base rate of sequence divergence between the template sequence and the reference sequence. In the diploid case it represents a lower bound on the sequence divergence of the two homologous chromosomes.

We applied this estimator with \(k = 31 \) and \(L = 1000 \times k = 31 \) kbp to msBWTs for 7 inbred strains (3 \(\textit{M. m. domesticus} \), 1 \(\textit{M. m. musculus} \), 1 \(\textit{M. m. castaneus} \), 1 \(\textit{M. spreitus} \), 1 \(\textit{M. caroli} \)) and 2 wild \(\textit{M. m. domesticus} \) individuals (IT175, ES446) using the GRCm38/mm10 mouse reference sequence as the source of \(k \)-mer
As shown in Figure 8, the mode of the distribution of divergence values matches what is expected based on the ancestry of the samples with respect to the reference. To identify divergent regions, we fit a discrete-time hidden Markov model (HMM) to the windows divergence values. The HMM had two hidden states: “normal” sequence, with emission distribution \(N(0.005,0.005)\) and initial probability 0.99; and “divergent” sequence, with emission distribution \(N(0.02,0.005)\) and initial probability 0.01. The transmission probability between states was \(1 \times 10^{-5}\). Posterior decodings were obtained via the Viterbi algorithm, as implemented in the R package HiddenMarkov (https://cran.r-project.org/package=HiddenMarkov).

Significance tests for overlap with genomic features were performed using the resampling algorithm implemented in the Genomic Association Tester (GAT) package for Python (https://pypi.python.org/pypi/gat). Segmental duplications were obtained from the genomicSuperDups table of the UCSC Genome Browser and genes from Ensembl v83 annotation.

Analyses of recombination rate at R2d2

To test the effect of R2d2 copy number on local recombination rate we estimated the difference between observed and expected (based on the most recent mouse genetic map (Liu et al. 2014)) recombination fraction in 11 experimental crosses in which one of the parental lines was segregating for a high-copy allele at R2d2. Genotype data was obtained from The Jackson Laboratory’s Mouse Phenome Database QTL Archive (http://phenome.jax.org/db/q?rtn=qtldome). Recombination fractions were calculated using R/qtl (http://rqtl.org/). Confidence intervals for difference between observed and expected recombination fractions were calculated by 100 iterations of nonparametric bootstrapping over individuals in each dataset.

We also examined recombination events accumulated during the first 18 generations of breeding of the Diversity Outbred (DO) population, in which the high-copy R2d2 allele from WSB/EiJ is segregating. Founder haplotype reconstructions were obtained for each of the DO individuals reported in (Didion et al. 2016), and recombination events were identified as junctions between founder haplotypes. We compared the frequency of junctions involving a WSB/EiJ haplotype to junctions not involving a WSB/EiJ haplotype over the region chr2: 75-90 Mb.

Results of these analyses are presented in Supplementary Figure 7.

Data Availability

All de novo assemblies used in this study are included in Supplementary File 1. The data structures on which the assemblies are based, and the interactive computational tools used for assembly, are publicly available at http://www.csbio.unc.edu/CEGSseq/index.py?run=MsbwTTools.

Acknowledgments

We thank all the scientists and personnel who collected and processed the wild mouse samples used in this study. In particular we thank Francois Bonhomme for providing samples from wild-derived inbred strains housed at the University of Montpellier Wild Mouse Genetic Repository, and Ted Garland for providing tissue samples from the HR selection lines and related crosses. This work was supported by National Institutes of Health grants P50GM076468 (FPMdV), U19AI100625 (FPMdV, APM), F30MH103925 (APM), T32GM067553 (JPD, APM), and by Vaadia-BARD Postdoctoral Fellowship Award.
FI-12 478-13 to LY. Additional support was provided by Cancer Research UK, the European Research Council, EMBO Young Investigator Programme (DTO), European Molecular Biology Laboratory (DTO, PF) and the Wellcome Trust (WT095908) (PF) and (WT098051) (PF, DTO); and finally by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-F4-2010-241504 (EURATRANS).

REFERENCES

Liao D., 1997 Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RUN2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J 16: 588–598.

Winter E., Yang S.-P., Zdobnov E. M., Whelan S., Worley K. C., Zody M. C., 2002 Initial sequencing and

Watterson G., 1975 On the number of segregating sites in genetical models without recombination. Theor

Yeh T.-C., Liu H.-L., Chung C.-S., Wu N.-Y., Liu Y.-C., Cheng S.-C., 2010 Splicing factor Cwc22 is required
for the function of Prp2 and for the spliceosome to escape from a futile pathway. Mol Cell Biol 31: 43–53.
Figure 1. Origin and age of the R2d2 duplication. (A) R2d copy number across the phylogeny of the genus Mus. Each dot represents one individual; grey dots indicate copy number 1 and black dots copy number >1. The duplication event giving rise to R2d1 and R2d2 most likely occurred on the highlighted branch. Approximate divergence times (REF: Suzuki 2004) are given in millions of years ago (Mya) at internal nodes. (B) Schematic structure of the R2d1-R2d2 locus. The mouse reference genome (strain C57BL/6J, M. m. domesticus) contains a single copy of R2d at R2d1. Wild-derived inbred strains vary in copy number from 1 (PWK/PhJ, M. m. musculus) to 2 (CAST/EiJ, M. m. castaneus) to 33 (WSB/EiJ, M. m. domesticus). R2d1 is located at approximately 77.9 Mbp and R2d2 at 83.8 Mbp. (C) Representative tree constructed from de novo assembled R2d1 and R2d2 sequences assuming a strict molecular clock. Sequences are colored according to their subspecies of origin: M. m. domesticus, blue; M. m. musculus, red; M. m. castaneus, green; and the outgroup species M. spreitus in grey. The duplication node is indicated with a black dot. The 95% HPDI for the age of the duplication event obtained by Bayesian phylogenetic analysis with BEAST is displayed below the tree.
Figure 2. Cwc22 paralogs in the mouse genome. (A) Location and organization of Cwc22 gene copies present in mouse genomes. The intact coding sequence of Cwc22 exists in in both R2d1 (grey shapes) and R2d2 (black shapes). Retrotransposed copies (empty shapes) exist in two loci on chrX and one locus on chr2, immediately adjacent R2d2. Among the retrotransposed copies, coding sequence is intact only in the copy on chr2. (B) Alternate transcript forms of Cwc22, using different 3’ exons. Coding exons shown in blue and untranslated regions in black. All Ensembl annotated transcripts are shown in the lower panel (from UCSC Genome Browser.)
Figure 3. Copy-number variation of *R2d* in mouse populations worldwide. (A) Copy-number variation as measured by quantitative PCR. The normalized deltaCt value is proportional to log2(copy number). Samples are classified as having 1 copy, 2 copies or >2 copies of *R2d* using linear discriminant analysis (LDA). (B) Fine-mapping the location of *R2d2* in 83 samples genotyped on the Mouse Diversity Array (MDA). Grey points give nominal p-values for association between *R2d* copy number and genotype; red points show a smoothed fit through the underlying points. The candidate interval for *R2d2* from Didion et al. (2015), shown as an orange shaded box, coincides with the association peak. (C) Local phylogeny at chr2: 82-85 Mbp in 135 wild-caught mice and wild-derived strains. Tips are colored by subspecies of origin: *M. m. domesticus*, blue; *M. m. musculus*, red; *M. m. castaneus*, green; other taxa, grey. Individuals with >2 copies of *R2d* are shown as open circles. Black arc indicates the portion of the tree enriched for individuals with high copy number. (D) Haplotypes of laboratory strains and wild mice sharing a high-copy allele at *R2d2*. All samples share a haplotype over the region shaded in orange.
Figure 4. Expression of Cwc22 isoforms. (A) Read coverage and splicing patterns in Cwc22 in adult mouse brain from three wild-derived inbred strains. Swoops below x-axis indicate splicing events supported by 5 or more split-read alignments. Known transcripts of Cwc22^R2d1 (grey, from Ensembl), inferred transcripts from Cwc22^R2d2 (black) and the sequence of retro-Cwc22 mapped back to the parent gene (blue) are shown in the lower panel. Red stars indicate retained introns; red arrow indicates insertion site of an ERV in R2d2. (B) Estimated relative expression of Cwc22 isoforms (y-axis) in adult mouse brain and testis in wild-derived inbred strains (x-axis). TPM, transcripts per million, on log10 scale.
Figure 5. Signatures of non-allelic gene conversion between \textit{R2d1} and \textit{R2d2}. (A) Phylogenetic trees for three representative intervals across \textit{R2d}. Sequences are labeled according to their subspecies of origin using the same color scheme as in Figure 1; open circles are \textit{R2d1}-like sequences and closed circles are \textit{R2d2}-like. Trees are drawn so that \textit{M. caroli}, the outgroup species used to root the trees, is always positioned at the top. The changing affinities of PWK/PhJ (red) and CAST/EiJ (green) along \textit{R2d} are evidence of non-allelic gene conversion. (B) \textit{R2d} sequences from 20 wild-caught mice and 5 laboratory inbred strains. Each track represents a single chromosome; grey regions are classified as \textit{R2d1}-like based on manual inspection of sequence variants, and black-regions \textit{R2d2}-like. Upper panel shows sequences from samples with a single copy of \textit{R2d}, residing in \textit{R2d1}. Lower panel shows representative \textit{R2d2} sequences for comparison. (C) Read alignments at the boundary of a non-allelic gene conversion tract. The \textit{R2d1} sequence from a single chromosome from mouse trapped in central France is a mosaic of \textit{R2d1}-like (grey) and \textit{R2d2}-like (black) segments. A magnified view of read pairs in the 3.8 kbp surrounding the proximal boundary of the tract (generated with IGV) reveals read pairs spanning the junction. Black dots indicate the position of derived alleles diagnostic for \textit{R2d2}. The precise breakpoint lies somewhere in the yellow shaded region between the last \textit{R2d1}-specific variant and the first \textit{R2d2}-specific variant.
Figure 6. Rate of de novo copy-number changes at R2d2. Estimates of per-generation mutation rate for CNVs at R2d2 (±1 bootstrap SE) in the Diversity Outbred population; among wild M. m. domesticus; and among wild M. m. castaneus. For comparison, mutation rates are shown for the CNV with the highest rate of recurrence in a C57BL/6J pedigree (Egan et al. 2007) and for a microsatellite whose mutation rate was estimated in the BXD panel (Dallas 1992).
Figure 7. Sequence and structural diversity around R2d2. (A) Geographic origin of wild mice used in this study, color-coded by subspecies (blue, M. m. domesticus; red, M. m. musculus; green, M. m. castaneus). Diploid copy number of the R2d unit is shown for wild samples for which integer copy-number estimates are available: 26 M. m. domesticus and 10 M. m. castaneus with whole-genome sequencing data, and representatives from M. m. molossinus and M. m. musculus for comparison. Schematic shows the R2d1/R2d2 configurations corresponding to diploid copy numbers of 2 and 4. (B) Profiles of read depth (first panel), average sequence divergence to outgroup species M. caroli (d_{xy}, second panel), number of segregating sites per base (S/L, third panel) and within-population average heterozygosity (π, fourth panel). The region shown is 500 kbp in size and centered on the insertion site of R2d2. Grey boxes along baseline show positions of repetitive elements (from UCSC RepeatMasker track); black boxes show non-recombining haplotype blocks. Blue bars indicate the position of 7 tandem duplications in the mm10 reference sequence with >99% mutual identity, each containing a copy of retro-Cwe22. The duplications are absent in M. caroli (indicated by grey shaded box.)
Figure 8. (A) Genome-wide sequence divergence estimates for representative samples from the sub-genus *Mus*. (B) Estimated sequence divergence in 31 kbp windows across distal chr4 for the samples in panel A. Divergent regions identified by the hidden Markov model (HMM) are indicated with black bars along the horizontal axis. (C) Phylogenetic tree constructed from *Skint1* coding sequences reported in Boyden *et al.* (2008) (D) Schematic representation of the process of gene duplication, followed by differential loss of paralogs along independent lineages. (E) Dotplot of self-alignment of sequence from the region of distal chr4 containing the *Skint* gene family. Positions of *Skint* genes are indicated along the horizontal axis; *Skint1* highlighted in red.
SUPPLEMENTARY MATERIAL

Supplementary Figure 1. Conservation of synteny between mouse and four other mammals around Cwc22R2d1 (upper panel) indicates that the R2d1 sequence remains in its ancestral position. Chevrons represent genes, alternating white and grey, and are oriented according to the strand on which the gene is encoded. Cwc22R2d1 is novel in the mouse but its position relative to genes with conserved order is shown in the lower panel. Note that synteny is disrupted in mouse and rat distal to R2d2.

Supplementary Figure 2. Pairwise alignment of R2d2 contig (top) to the R2d1 reference sequence (bottom). Dark boxes show position of repetitive elements present in both sequences; syntenic positions are connected by grey anchors, and blank space represents aligned bases in both sequences. Orange boxes indicate position of repetitive elements present in the R2d1 sequence but not detected in R2d2; blue boxes indicate position of elements in R2d2 but not R2d1. Cwc22 transcripts are shown below the alignment.

Supplementary Figure 3. Phylogenetic tree constructed from amino acid sequences for mammalian Cwc22 homologs (including all three mouse paralogs) with chicken as an outgroup. Node labels indicate support in 100 bootstrap replicates.

Supplementary Figure 4. Alignment of amino acid sequences from mouse Cwc22R2d1, Cwc22R2d2 and retro-Cwc22, plus Cwc22 orthologs from 19 other placental mammals plus opossum, platypus and chicken as outgroups. Residues are colored according to biochemical properties and gaps are shown in grey. Information content of each column in the alignment, measured as the Jenson-Shannon divergence, is plotted in the lower panel.

Supplementary Figure 5. Gene conversion tracts identified by de novo assembly. (A) Phylogenetic trees for twelve intervals across R2d. Samples are labeled according to their subspecies of origin using the same color scheme as in Figure 1. Trees are drawn so that M. caroli, the outgroup species used to root the trees, is always positioned at the top. The changing affinities of PWK/PhJ (red) and CAST/EiJ (green) along R2d is evidence of non-allelic gene conversion. (B) Inspection of derived alleles diagnostic for R2d1 or R2d2 reveals conversion tracts. Each horizontal track represents a haplotype, and each dot a variant site. Filled dots are fully diagnostic for R2d1 or R2d2; open circles are partially-informative. Positions with R2d1-like sequence are colored grey, and those with R2d2-like sequence colored black. Conversion tracts are indicated by yellow boxes. Physical positions of variant sites within R2d are shown with respect to the R2d1 sequence present in the mouse reference genome. The Cwc22 gene spans conversion tracts in multiple samples.

Supplementary Figure 6. Partial loss of R2d2 with structural rearrangement. (A) Inferred structure of the R2d1-R2d2 region in IR-AHZ_STND:015, a wild M. m. domesticus individual from Iran. R2d1 is present on both chromosomes but only a fragment of R2d2 remains on one chromosome, and it has been transposed into the retro-Cwc22 array. (B) Normalized depth of coverage (2 = normal diploid level) across R2d. Regions in grey represent reads from R2d1 alone, while region in black captures reads from R2d1 and R2d2, as shown by arrows from panel A. (C) Position of read pairs (red; not drawn to scale) with soft-clipped alignments to R2d1. The proximal read aligns in the 3’ UTR of Cwc22, and the distal read across an exon-intron boundary within the gene body. Note the “outward”-facing direction of the alignments. (D) Positions of the mates of the reads in panel C. Note that the x-axis is reversed so that the exons of retro-Cwc22 (encoded on the plus strand) parallel those of Cwc22 (encoded on the minus strand). The 3’ read maps across the boundary of the 3’ UTR of Cwc22 and the ERV mediating the retrotransposition event. The 5’ read maps across two exon-exon boundaries in retro-Cwc22, so there is no ambiguity regarding its alignment to the retro-transposed copy. (E) Inferred structure of Cwc22 paralogs in this
sample. Note that one of the copies of retro-Cwc22 is now a mosaic of retrotransposed and Cwc22R2d2-derived sequence.

Supplementary Figure 7. Suppression of crossing-over around R2d2. (A) Difference between expected and observed recombination fraction between markers flanking R2d2 in experimental crosses in which at least one parent is segregating for a high-copy allele of R2d2. Thick and thin vertical bars show 90% and 95% confidence bounds, respectively, obtained by non-parametric bootstrap. (B) Cumulative recombination map in the middle region of chr2 obtained from 4,640 Diversity Outbred mice. Recombination events involving the WSB/EiJ haplotype (R2d2 copy number 33) are shown in purple and all other events in grey. Maps are normalized such that they begin and end at the same value.

Supplementary Figure 8. Targeted de novo assembly using the multi-string Burrows-Wheeler Transform (msBWT). (A) The msBWT and its associated FM-index implicitly represent a suffix array of sequencing reads, such that read suffixes sharing a k-mer prefix are adjacent in the data structure. This allows rapid construction of a local de Bruijn graph starting from a k-mer seed (dark blue) and extending by successive k-mers (light blue) containing the (k − 1)-length suffix of the previous k-mer. A (k − 1)-length prefix with more than one possible suffix (red and orange) creates a branch point. Adjacent nodes in the graph with in-degree and out-degree one can be collapsed into a single node, yielding a simplified graph, which can then be traversed to obtain linear contig(s). (B) Paralogs of R2d can be disentangled using the local de Bruijn graph by exploiting differences in copy number. Edges in the graph are weighted by read count, and linear contigs for the R2d1 and R2d2 paralogs obtained by traversing the graph in a manner that minimizes the variance in edge weights along possible paths. Phase-informative reads (those overlapping multiple paralogous variants) provide a second source of evidence.

Supplementary Table 1. List of mouse samples used in this study, with their taxonomic designation, geographic origin and R2d2 copy-number classification.

Supplementary Table 2. Transposable-element insertions private to R2d1 or R2d2. Coordinates are offsets with respect to the start position of R2d (for R2d1: chr2: 77,869,657 in the reference genome; for R2d2: the beginning of the de novo assembled contig in Supplementary File 1.)

Supplementary Table 3. Individuals from the Diversity Outbred population carrying de novo copy-number mutations at R2d2. Each was expected to be heterozygous for the WSB/EiJ allele (33 haploid copies).

Supplementary Table 4. Regions of excess divergence between wild or wild-derived mice and the mouse reference genome (GRCm38/mm10 build).

Supplementary Table 5. Regions of R2d targeted for de novo assembly in inbred strains.

Supplementary File 1. Compressed archive containing R2d2 contig (from WSB/EiJ) and multiple sequence alignments from selected regions in Supplementary Table 5.