
Accelerating Wright-Fisher Forward Simulations on the Graphics
Processing Unit

David S. Lawrie

Abstract

Forward Wright-Fisher simulations are powerful in their ability to model complex demography
and selection scenarios, but suffer from slow execution on the CPU, thus limiting their
usefulness. The single-locus Wright-Fisher forward algorithm is, however, exceedingly
parallelizable, with many steps which are so-called embarrassingly parallel, consisting of a vast
number of individual computations that are all independent of each other and thus capable of
being performed concurrently. The rise of modern Graphics Processing Units (GPUs) and
programming languages designed to leverage the inherent parallel nature of these processors
have allowed researchers to dramatically speed up many programs that have such high
arithmetic intensity and intrinsic concurrency. The presented GPU Optimized Wright-Fisher
simulation, or GO Fish for short, can be used to simulate arbitrary selection and demographic
scenarios while running over 340-fold faster than its serial counterpart on the CPU. Even
modest GPU hardware can achieve an impressive speedup of well over two orders of
magnitude. With simulations so accelerated, one can not only do quick parametric bootstrapping
of previously estimated parameters, but also use simulated results to calculate the likelihoods
and summary statistics of demographic and selection models against real polymorphism data -
all without restricting the demographic and selection scenarios that can be modeled or requiring
approximations to the single-locus forward algorithm for efficiency. Further, as many of the
parallel programming techniques used in this simulation can be applied to other computationally
intensive algorithms important in population genetics, GO Fish serves as an exciting template
for future research into accelerating computation in evolution. Code available (soon) at:
https://github.com/DL42/GOFish

Introduction

 The Graphics Processing Unit (GPU) is commonplace in today’s consumer and
workstation computers and provides the main computational throughput of the modern
supercomputer. A GPU differs from a computer’s Central Processor Unit (CPU) in a number of
key respects, but the most important differentiating factor is the number and type of
computational units. While a CPU for a typical consumer laptop or desktop will contain
anywhere from 2-4 very fast, complex cores, GPU cores are in contrast relatively slow and
simple. However, there are typically hundreds to thousands of these slow and simple cores in a
single GPU. Thus CPUs are low latency processors that excel at the serial execution of
complex, branching algorithms. Conversely, the GPU architecture is designed to provide high
computational bandwidth, capable of executing many arithmetic operations in parallel.
 The historical driver for the development of GPUs was increasingly realistic
computer graphics for computer games. However, researchers quickly latched on to their
usefulness as tools for scientific computation – particularly for problems that were simply too
time consuming on the CPU due to sheer number of operations that had to be computed, but
where many of those operations could in principle be computed simultaneously. Eventually
programming languages were developed to exploit GPUs as massive parallel processors and,
overtime, the GPU hardware has likewise evolved to be more capable for both graphics and
computational applications.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

 Population genetics analysis of single nucleotide polymorphisms (SNPs) is
exceptionally amenable to acceleration on the GPU. Beyond the study of evolution itself, such
analysis is a critical component of research in medical and conservation genetics, providing
insight into the selective and mutational forces shaping the genome as well as the demographic
history of a population. One of the most common analysis methods is the site frequency
spectrum (SFS), a histogram where each bin is a count of how many mutations are at a given
frequency in the population.
 SFS analysis is based on the precepts of the Wright-Fisher process [1, 2], which
describes the probabilistic trajectory of a mutation’s frequency in a population under a chosen
evolutionary scenario. The defining characteristic of the Wright-Fisher process is forward time,
non-overlapping, discrete generations with random genetic drift modeled as a binomial
distribution dependent on the population size and the frequency of a mutation [1, 2]. On top of
this foundation, can be added models for selection, migration between populations, mate choice
& inbreeding, linkage between different loci, etc. For simple scenarios, an analytical expression
for the expected proportion of mutations at a given frequency in the population, the expected
SFS, can be derived [1-5]. This expectation can then be compared to the observed SFS of real
data, allowing for parameter fitting and model testing [5-7]. However, more complex scenarios
do not have tractable analytical solutions. One approach is to simulate the Wright-Fisher
process forwards in time to build the expected frequency distribution or other population genetic
summary statistics [8-10]. Because of the flexibility inherent in its construction, the Wright-Fisher
forward simulation can be used to model any arbitrarily complex demographic and selection
scenario [8-12]. Unfortunately, because of the computational cost, the use of such simulations
to analyze polymorphism data is often prohibitively expensive in practice [11, 12]. The
coalescent looking backwards in time and approximations to the forward single-locus Wright-
Fisher algorithm using diffusion equations provide alternative, computationally efficient methods
of modeling polymorphism data [13, 14]. However, these effectively limit the selection and
demographic models that can be ascertained and approximate the Wright-Fisher forward
process [11, 12, 14, 15]. Thus by speeding up forward simulations, we can use more complex
and realistic demographic and selection models to analyze within-species polymorphism data.
 Single-locus Wright-Fisher simulations based on the Poisson Random Field model
[4] ignore linkage between sites and simulate large numbers of individual mutation frequency
trajectories forwards in time to construct the expected SFS. Exploiting the naturally
parallelizable nature of the single-locus Wright-Fisher algorithm, these forward simulations can
be greatly accelerated on the GPU. Written in the programming language CUDA v6.5 [16], a
C/C++ derivative for NVIDIA GPUs, the GPU Optimized Wright-Fisher simulation, GO Fish,
allows for accurate, flexible simulations of SFS at speeds orders of magnitude faster than
comparative serial programs on the CPU. GO Fish can be both run as a standalone executable
and integrated into other programs as a library to accelerate single-locus Wright-Fisher
simulations used by those tools.

Algorithm

 In a single-locus Wright-Fisher simulation, a population of individuals can be
represented by the set of mutations segregating in that population – specifically by the
frequencies of the mutant, derived alleles in the population. Under the Poisson Random Field
model, these mutations are completely independent of each other and new mutational events
only occur at non-segregating sites in the genome (i.e. no multiple hits) [4].
 Figure 1 sketches the algorithm for a typical, serial Wright-Fisher simulation, starting
with the initialization of an array of mutation frequencies. From one discrete generation time
step to the next, the change in any given mutation’s frequency is dependent on the strength of

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

selection on that mutation, migration from other populations, the percent of inbreeding, and
genetic drift. Unlike the others listed, inbreeding is not directly a force for allele frequency
change, but rather it modifies the effectiveness of selection and drift. Frequencies of 0 (lost) and
1 (fixed) are absorbing boundaries such that if a mutation becomes fixed or lost across all extant
populations, it is removed from the next generation’s mutation array. New mutations arising
stochastically throughout the genome are then added to the mutation array of the offspring
generation, replacing those mutations lost and fixed by selection and drift. As the offspring
become the parents of the next generation, the cycle repeats until the final generation of the
simulation.
 While the details of how a GPU organizes computational work are quite intricate
[16], the vastly oversimplified version is that a serial set of operations is called a thread and the
GPU can execute many such threads in parallel. With completely unlinked sites, every
simulated mutation frequency trajectory is independent of every other mutation frequency
trajectory in the simulation. Therefore, the single-locus Wright-Fisher algorithm is trivially
parallelized by simply assigning a thread to each mutation in the mutation array: when
simulating each discrete generation, both calculating the new frequency of alleles in the next
generation and adding new mutations to next generation are embarrassingly parallel operations
(Figure 2A). This is the parallel ideal because no communication across threads is required to
make these calculations. A serial algorithm has to calculate the new frequency of each mutation
one by one – and the problem is multiplied where there are multiple populations, as these new
frequencies have to be calculated for each population. For example, in a simulation with
100,000 mutations in a given generation and 3 populations, 300,000 sequential passes through
the functions governing migration, selection, and drift are required. However, in the parallel
version, this huge number of iterations can theoretically be compressed to a single step in which
all the new frequencies for all mutations are computed simultaneously. Similarly, if there are
5,000 new mutations in a generation, a serial algorithm has to add each of those 5,000 new
mutations one at a time to the simulation. The parallel algorithm can, in theory, add them all at
once. Of course, a GPU only has a finite number of computational resources to apply to a
problem and thus this ideal of executing all processes in a single time step is never truly
realizable for a problem of any substantial size. Even so, parallelizing migration, selection, drift,
and mutation on the GPU results in dramatic speedups relative to performing those same
operations serially on the CPU. This is the main source of GO Fish’s improvement over serial,
CPU-based Wright-Fisher simulations.
 One challenge to the parallelization of the Wright-Fisher algorithm is the treatment
of mutations that become fixed or lost. When a mutation reaches a frequency of 0 (in all
populations, if multiple) or 1 (in all populations, if multiple), that mutation is forever lost or fixed.
Such mutations are no longer of interest to maintain in memory or process from one generation
to the next. Without removing lost and fixed mutations from the simulation, the number of
mutations being stored and processed would simply continue to grow as new mutations are
added each generation. When processing mutations one at a time in the serial algorithm,
removing mutations that become lost or fixed is as trivial as simply not adding them to the next
generation and shortening the mutation array in the next generation by 1 each time. This
becomes more difficult when processing mutations in parallel. As stated before: the different
threads for different mutations do not communicate with each other when calculating the new
mutation frequencies simultaneously. Therefore any given mutation/thread has no knowledge of
how many other mutations have become lost or fixed that generation. This in turn means that
when attempting to remove lost and fixed mutations while processing mutations in parallel, there
is no way to determine the size of the next generation’s mutation array or where in the offspring
array each mutation should be placed.
 One solution to the above problems is the algorithm compact [17], which can filter
out lost and fixed mutations while still taking advantage of the parallel nature of GPUs (Figure

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

2C). However, compaction is not embarrassingly parallel, as communication between the
different threads for different mutations is required, and it involves a lot of moving elements
around in GPU memory rather than intensive computation. Thus, it is a less efficient use of the
GPU as compared to calculating allele frequencies. As such, a nuance in optimizing GO Fish is
how frequently to remove lost and fixed mutations from the active simulation. Despite the fact
that computation on such mutations is wasted, calculating new allele frequencies is so fast that
not filtering out lost and fixed mutations every generation and temporarily leaving them in the
simulation actually results in faster runtimes. Eventually of course, the sheer number of lost and
fixed mutations overwhelms even the GPU’s computational bandwidth and they must be
removed. How often to compact for optimal simulation speed can be ascertained heuristically
and is dependent on the number of mutations each generation in the simulation and the
attributes of the GPU the simulation is running on. Figure 3 illustrates the algorithm for GO Fish,
which combines parallel implementations of migration, selection, drift, and mutation with a
compacting step run every X generations and again before the end of the simulation.
 A more detailed description of the implementation of the Wright-Fisher algorithm
underlying GO Fish can be found in the Appendix. The simulation can start with an empty initial
mutation array, with the output of a previous simulation run, or with the frequencies of the initial
mutation array in mutation-selection equilibrium. Starting the populations in mutation-selection
equilibrium is also parallelized and accelerated on the GPU (see Appendix: Simulation
Initialization). Population size, migration rates, inbreeding, dominance, and mutation rate are all
user-specifiable functions capable of varying over time and between different populations.
Further, there is no set limit on the number of populations that can be simulated. Selection is
likewise a user-specifiable function parameterized not only by generation and population, but
also by allele frequency, allowing for the modeling of frequency-dependent selection as well as
time-dependent and population-specific selection. By tuning the inbreeding and dominance
parameters, GO Fish can simulate the full range of single-locus dynamics for both haploids and
diploids with everything from outbred to inbred populations and overdominant to underdominant
alleles. GPU-accelerated Wright-Fisher simulations thus provide unprecedented flexibility to
model unique and complex evolutionary scenarios beyond what many current site frequency
spectrum analysis methods can employ.

Results and Discussion

 To test the speed improvements from parallelizing the Wright-Fisher algorithm, GO
Fish was compared to a serial Wright-Fisher simulation written in C++. Each program was run
on two computers: an iMac and a self-built Linux-box with equivalent Intel Haswell CPUs, but
very different NVIDIA GPUs. Constrained by the thermal and space requirements of laptops and
all-in-one machines, the iMac’s NVIDIA 780M GPU is slower (and older) than the NVIDIA 980 in
the Linux-box. For a given number of simulated populations and number of generations, the key
driver of execution time is simply the number of mutations in the simulation. Thus vastly different
evolutionary scenarios will have similar runtimes if they result in similar numbers of mutations
being simulated each generation. As such, to benchmark the acceleration provided by
parallelization and GPUs, the programs were run using a basic evolutionary scenario while
varying the number of expected mutations in the simulation. The utilized scenario is a simple,
neutral simulation, starting in mutation-selection equilibrium, of a single, haploid population with
a constant population size of 105 individuals over 1,000 generations and a mutation rate of 10-9

mutations per generation per individual per site. With these other parameters held constant,
varying the number of sites in the simulation adjusts the number of expected mutations for each
of the benchmark simulations.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

 As shown in Figure 4: accelerating the Wright-Fisher simulation on a GPU results in
massive performance gains on both an older, mobile GPU like the NVIDIA 780M and a newer,
desktop-class NVIDIA 980 GPU. For example, when simulating the frequency trajectories of
~5x105 mutations over 1,000 generations, GO Fish takes less than 0.2s to run on a 780M as
compared to over 23s for its serial counterpart running on the Intel i5/i7 CPU, a speedup of 124-
fold. On a full, modern desktop GPU like the 980, GO Fish runs this scenario ~224x faster than
the strictly serial simulation and only takes about 0.1s to run. As the number of mutations in the
simulation grows, more work is tasked to the GPU and the relative speedup of GPU to CPU
increases logarithmically. Eventually though, the sheer number of simulated SNPs saturates
even the computational throughput of the GPUs, producing linear increases in runtime for
increasing SNP counts, like for serial code. Thus, eventually, there is a flattening of the fold
performance gains. This plateau occurs earlier for 780M than for the more powerful 980.
Executed serially on the CPU, a huge simulation of ~4x107 SNPs takes roughly 30min to run
versus only ~12s/5.5s for GO Fish on the 780M/980, an acceleration of more than 150/340-fold.
While not benchmarked here, the parallel Wright-Fisher algorithm is also trivial to partition over
multi-GPU setups in order to further accelerate simulations.
 GO Fish manages to achieve the above increases in performance without
sacrificing flexibility in the scenarios it is capable of simulating. With this combined performance
and flexibility, GO Fish simulations can be used to calculate the likelihood of a given
evolutionary scenario producing an observed SFS and then fit the model parameters to the data
by maximizing that likelihood. Beyond delivering point estimates of model parameters, GO Fish
can also be used for parametric bootstrapping to obtain confidence intervals for the maximum
likelihood estimates as well as Bayesian statistics. Some SFS methods are capable of providing
multi-dimensional spectra of SNP frequencies over multiple populations for comparative
population genomics (e.g. [14]). GO Fish can do so as well, with no limits to the number of
populations allowed in the simulation. Paired with a coalescent simulator, GO Fish can also
accelerate the forward simulation component in forwards-backwards approaches like msms
[15]. In addition, GO Fish is able to track the age of mutations in the simulation providing an
estimate of the distribution of the allele ages, or even the age by frequency distribution, for
mutations in an observed SFS. Further, the age of mutations is one element of a unique
identifier for each mutation in the simulation, which allows the frequency trajectory of individual
mutations to be tracked through time. This ability to sample ancestral states and then track the
mutations throughout the simulation can be used to contrast the population frequencies of
polymorphisms from ancient DNA with those present in modern populations for powerful
population genetics analyses [18]. Thus, accelerating the single-locus forward simulation on the
GPU heightens the usefulness of these forward-time simulations in population genetic studies.
 Across the field of population genetics and evolution, there exist a wide range of
computationally intensive problems that could benefit from parallelization. The algorithms
presented and discussed in Figure 2 represent a subset of the essential parallel algorithms,
which more complex algorithms modify or build upon. Application of these parallel algorithms
are already wide-ranging in bioinformatics: motif finding [19], global and local DNA and protein
alignment [20-23], short read alignment and SNP calling [24, 25], haplotyping and the
imputation of genotypes [26], analysis for genome-wide association studies [27, 28], and
mapping phenotype to genotype and epistastic interactions across the genome [29, 30]. In
molecular evolution, the basic algorithms underlying the building of phylogenetic trees and
analyzing sequence divergence between species have likewise been GPU-accelerated [31].
Further, there are parallel methods for general statistical and computational methods, like
Markov Chain Monte Carlo and Bayesian analysis, useful in computational evolution and
population genetics [32, 33].
 Future work on the single-locus Wright-Fisher algorithm will include extending the
parallel structure of GO Fish to allow for multiple mutational events at a site, relaxing one of the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

key assumptions of the Poisson Random Field [4]. Also, solving Wright-Fisher diffusion
equations in programs like δaδi [14] can likewise be sped up through parallelization [34-37].
Expanding from the study of single-loci to modeling the evolution of haplotypes and
chromosomes, simulations with the coalescent framework or forward Wright-Fisher algorithm
with linkage can also be accelerated on GPUs. The coalescent approach has already been
shown to benefit from parallelization over multiple CPU cores (see [38]). While Montemuiño et
al. achieved their speed boost by running multiple independent simulations concurrently, they
noted that parallelizing the coalescent algorithm itself may also accelerate individual simulations
over GPUs [38]. Likewise, full forward simulation with linkage has many embarrassingly parallel
steps, as well as those that can be refactored into one of the core parallel algorithms. The
closely related genetic algorithm, used to solve difficult optimization problems, has already been
parallelized and, under many conditions, greatly accelerated on GPUs [39-41]. While the extent
of the performance increase will vary from application to application, each of these represent
key algorithms whose acceleration could provide potentially huge benefits for the field [11, 12].
 These benefits potentially extend to lowering the cost barrier for students and
researchers to run intensive computational analyses in population genetics. The GO Fish results
demonstrate how powerful even an older, mobile GPU can be at executing parallel workloads,
which means that GO Fish can be run on everything from GPUs in high-end compute clusters to
a GPU in a personal laptop and still achieve a great speedup over traditional serial programs. A
batch of single-locus Wright-Fisher simulations that might have taken a hundred CPU-hours or
more to complete on a cluster can be done, with GO Fish, in an hour on a laptop. Moreover,
graphics cards and massively parallel processors in general are evolving quickly. While this
paper has focused on NVIDIA GPUs and CUDA, the capability to take advantage of the
massive parallelization inherent in the Wright-Fisher algorithm is the key to accelerating the
simulation and in the High Performance Computing market there are several avenues to
achieve the performance gains presented here. For instance, OpenCL is another popular low-
level language for parallel programming and can be used to program NVIDIA, AMD, Altera,
Xilinx, and Intel solutions for massively parallel computation, which include GPUs, CPUs, and
even Field Programmable Gate Arrays (FPGAs) [42-44]. The parallel algorithm of GO Fish can
be applied to all of these tools. Whichever platform(s) or language(s) researchers choose to
utilize, the future of computation in population genetics is massively parallel and exceedingly
fast.

Acknowledgements

 The author would like to thank Nandita Garud, Heather Machado, Philipp Messer,
Kathleen Nguyen, Sergey Nuzhdin, and Peter Ralph for reading an early draft of this paper and
providing feedback and helpful suggestions.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

References

1. Fisher RA. (1930) The distribution of gene ratios for rare mutations. Proceedings of the
Royal Society of Edinburgh 50: 205-220.

2. Wright S. (1938) The distribution of gene frequencies under irreversible mutation. Proc Natl
Acad Sci U S A 24(7): 253.

3. Kimura M. (1964) Diffusion models in population genetics. J Appl Prob 1(2): 177-232.

4. Sawyer SA, Hartl DL. (1992) Population genetics of polymorphism and divergence.
Genetics 132(4): 1161-1176.

5. Williamson S, Fledel-Alon A, Bustamante CD. (2004) Population genetics of polymorphism
and divergence for diploid selection models with arbitrary dominance. Genetics 168(1): 463-475.

6. Lawrie DS, Messer PW, Hershberg R, Petrov DA. (2013) Strong purifying selection at
synonymous sites in D. melanogaster. PLoS Genetics 9(5): e1003527.

7. Lawrie DS, Petrov DA. (2014) Comparative population genomics: Power and principles for
the inference of functionality. Trends in Genetics 30(4): 133-139.

8. Hernandez RD. (2008) A flexible forward simulator for populations subject to selection and
demography. Bioinformatics 24(23): 2786-2787.

9. Messer PW. (2013) SLiM: Simulating evolution with selection and linkage. Genetics 194(4):
1037-1039.

10. Thornton KR. (2014) A C++ template library for efficient forward-time population genetic
simulation of large populations. Genetics 198(1): 157-166.

11. Carvajal-Rodriguez A. (2010) Simulation of genes and genomes forward in time. Curr
Genomics 11(1): 58-61.

12. Hoban S, Bertorelle G, Gaggiotti OE. (2012) Computer simulations: Tools for population
and evolutionary genetics. Nature Reviews Genetics 13(2): 110-122.

13. Hudson RR. (2002) Generating samples under a wright-fisher neutral model of genetic
variation. Bioinformatics 18(2): 337-338.

14. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. (2009) Inferring the
joint demographic history of multiple populations from multidimensional SNP frequency data.
PLoS Genetics 5(10): e1000695.

15. Ewing G, Hermisson J. (2010) MSMS: A coalescent simulation program including
recombination, demographic structure and selection at a single locus. Bioinformatics 26(16):
2064-2065.

16. Nickolls J, Buck I, Garland M, Skadron K. (2008) Scalable parallel programming with
CUDA. Queue 6(2): 40-53.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

17. Billeter M, Olsson O, Assarsson U. (2009) Efficient stream compaction on wide SIMD
many-core architectures. ACM Proceedings of the conference on high performance graphics
2009: 159-166.

18. Bank C, Ewing GB, Ferrer-Admettla A, Foll M, Jensen JD. (2014) Thinking too positive?
revisiting current methods of population genetic selection inference. Trends in Genetics 30(12):
540-546.

19. Ganesan N, Chamberlain RD, Buhler J, Taufer M. (2010) Accelerating HMMER on GPUs
by implementing hybrid data and task parallelism. ACM Proceedings of the First ACM
International Conference on Bioinformatics and Computational Biology: 418-421.

20. Vouzis PD, Sahinidis NV. (2011) GPU-BLAST: Using graphics processors to accelerate
protein sequence alignment. Bioinformatics 27(2): 182-188.

21. Zhao K, Chu X. (2014) G-BLASTN: Accelerating nucleotide alignment by graphics
processors. Bioinformatics 30(10): 1384-1391.

22. Liu W, Schmidt B, Muller-Wittig W. (2011) CUDA-BLASTP: Accelerating BLASTP on
CUDA-enabled graphics hardware. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB) 8(6): 1678-1684.

23. Liu Y, Wirawan A, Schmidt B. (2013) CUDASW++ 3.0: Accelerating smith-waterman
protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics 14:
117-2105-14-117.

24. Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, et al. (2012) BarraCUDA - a fast short
read sequence aligner using graphics processing units. BMC Res Notes 5: 27-0500-5-27.

25. Luo R, Wong T, Zhu J, Liu C, Zhu X, et al. (2013) SOAP3-dp: Fast, accurate and
sensitive GPU-based short read aligner. PLoS ONE 8(5): e65632. doi:
10.1371/journal.pone.0065632

26. Chen GK, Wang K, Stram AH, Sobel EM, Lange K. (2012) Mendel-GPU: Haplotyping and
genotype imputation on graphics processing units. Bioinformatics 28(22): 2979-2980.

27. Chen GK. (2012) A scalable and portable framework for massively parallel variable
selection in genetic association studies. Bioinformatics 28(5): 719-720.

28. Song C, Chen GK, Millikan RC, Ambrosone CB, John EM, et al. (2013) A genome-wide
scan for breast cancer risk haplotypes among african american women. PloS One 8(2): e57298.

29. Chen GK, Guo Y. (2013) Discovering epistasis in large scale genetic association studies
by exploiting graphics cards. Frontiers in Genetics 4: 266. doi: 10.3389/fgene.2013.00266

30. Cebamanos L, Gray A, Stewart I, Tenesa A. (2014) Regional heritability advanced
complex trait analysis for GPU and traditional parallel architectures. Bioinformatics 30 (8): 1177-
1179.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

31. Suchard MA, Rambaut A. (2009) Many-core algorithms for statistical phylogenetics.
Bioinformatics 25(11): 1370-1376.

32. Suchard MA, Wang Q, Chan C, Frelinger J, Cron A, et al. (2010) Understanding GPU
programming for statistical computation: Studies in massively parallel massive mixtures. Journal
of Computational and Graphical Statistics 19(2): 419-438.

33. Zhou C, Lang X, Wang Y, Zhu C. (2015) gPGA: GPU accelerated population genetics
analyses. PloS One 10(8): e0135028.

34. Komatitsch D, Michéa D, Erlebacher G. (2009) Porting a high-order finite-element
earthquake modeling application to NVIDIA graphics cards using CUDA. Journal of Parallel and
Distributed Computing 69(5): 451-460.

35. Micikevicius P. (2009) 3D finite difference computation on GPUs using CUDA. ACM
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units:
79-84. doi: 10.1145/1513895.1513905

36. Tutkun B, Edis FO. (2012) A GPU application for high-order compact finite difference
scheme. Comput Fluids 55: 29-35.

37. Lions J, Maday Y, Turinici G. (2001) A ''parareal'' in time discretization of PDE's. Comptes
Rendus De L'Academie Des Sciences Series I Mathematics 332(7): 661-668.

38. Montemuiño C, Espinosa A, Moure J, Vera-Rodríguez G, Ramos-Onsins S, et al. (2014)
msPar: A parallel coalescent simulator. Euro-Par 2013: Parallel Processing Workshops (8374):
321-330. doi: 10.1007/978-3-642-54420-0_32

39. Pospichal P, Jaros J, Schwarz J. (2010) Parallel genetic algorithm on the CUDA
architecture. Choi C et al. ed. In: Anonymous Applications of Evolutionary Computation.
Springer (1): pp. 442-451. doi: 10.1007/978-3-642-12239-2_46

40. Hofmann J, Limmer S, Fey D. (2013) Performance investigations of genetic algorithms on
graphics cards. Swarm and Evolutionary Computation 12: 33-47.

41. Limmer S, Fey D. (2016) Comparison of common parallel architectures for the execution
of the island model and the global parallelization of evolutionary algorithms. Concurrency
Computat.: Pract. Exper. (2016). doi: 10.1002/cpe.3797

42. Stone JE, Gohara D, Shi G. (2010) OpenCL: A parallel programming standard for
heterogeneous computing systems. Computing in Science & Engineering 12(1-3): 66-73.

43. Jha S, He B, Lu M, Cheng X, Huynh HP. (2015) Improving main memory hash joins on
intel xeon phi processors: An experimental approach. Proceedings of the VLDB Endowment
8(6): 642-653.

44. Czajkowski TS, Aydonat U, Denisenko D, Freeman J, Kinsner M, et al. (2012) From
OpenCL to high-performance hardware on FPGAs. IEEE 2012 22nd International Conference
on Field Programmable Logic and Applications (FPL): 531-534.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

45. Harris M. (2007) Optimizing parallel reduction in CUDA. NVIDIA Developer Technology
2(4). [ONLINE]
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reducti
on.pdf

46. Harris M, Sengupta S, Owens JD. (2007) Parallel prefix sum (scan) with CUDA. GPU
Gems 3(39): 851-876.

47. Merrill D. (2015) CUB. [ONLINE] v. 1.4.1. https://nvlabs.github.io/cub/

48. Salmon JK, Moraes M, Dror RO, Shaw DE. (2011) Parallel random numbers: As easy as
1, 2, 3. IEEE 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC): 1-12. doi: 10.1145/2063384.2063405

49. Nagylaki T. (1980) The strong-migration limit in geographically structured populations. J
Math Biol 9(2): 101-114.

50. Hardy GH. (1908) Mendelian proportions in a mixed population. Science 28(706): 49-50.
doi: 10.1126/science.28.706.49

51. Weinberg W. (1908) Über den nachweis der vererbung beim menschen. Jahresh. Wuertt.
Ver. vaterl. Natkd. 64: 369–382.

52. Watterson G. (1975) On the number of segregating sites in genetical models without
recombination. Theor Popul Biol 7(2): 256-276.

53. Bakunas-Milanowski D, Rego V, Sang J, and Yu C. (2015) A fast parallel selection
algorithm on GPUs. [ONLINE]
http://www.csuohio.edu/engineering/sites/csuohio.edu.engineering/files/Research_Day_2015_E
ECS_Poster_14.pdf.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/

Figure 1

Figure 1. Serial Wright-Fisher algorithm. Mutations are the “unit” of simulation for the single-
locus Wright-Fisher algorithm. Thus a generation of organisms is represented by an array of
mutations and their frequency in the (each) population (if there are multiple in the simulation).
There are several options for how to initialize the mutation array to start a simulation: a blank
mutation array, the output of a previous simulation run, or mutation-selection equilibrium (for
details, see Appendix: Simulation Initialization). Simulating each discrete generation consists
first of calculating the new allele frequency of each mutation, one at a time, where those
mutations that become lost or fixed are discarded. Next, new mutations are added to the array,
again, one at a time. The resulting offspring array of mutation frequencies becomes the parent
array of the next generation and the cycle is repeated until the end of the simulation when the
final mutation array is output.

Serial Wright-Fisher

initial mutation array

output mutation array

end of simulation

add new mutations

migration, selection, drift

add new mutations new mutations

lost & fixed mutations
migration,

selection, drift

parent mutation array

offspring mutation array

Figure 2

Figure 2. Common Parallel Algorithms. Above are illustrative examples of three classes of
common parallel algorithms implemented using simple operations and an eight-element, integer
array. A) Embarrassingly parallel algorithms are those that can be computed independently
and thus simultaneously on the GPU. The given example, adding 1 to every element of an
array, can be done concurrently to all array elements. In GO Fish, calculating new mutation
frequencies and adding new mutations to population are both embarrassingly parallel
operations. B) Reduce is a fundamental parallel algorithm in which all the elements of an array
are reduced to a single value using a binary operator, such as in the above summation over the
example array [45]. This algorithm takes advantage of the fact that in each time step half of the
sums can be done independently while synchronized communication is necessary to combine
the results of previous time steps. In total, log2(8) = 3 time steps are required to reduce the
example array. C) Compact is a multi-step algorithm that allows one to filter arrays on the GPU
[17]. In an embarrassingly parallel step, the algorithm presented above first creates a new
Boolean array of those elements that passed the filter predicate (e.g. x > 1). Then a scan is
performed on the Boolean array. Scan is similar in concept to reduce, wherein for each time
step half of the binary operations are independent, but it is a more complex parallel algorithm
that creates a running sum over the array rather than condensing the array to a single value
(see [46]). This running sum determines the new index of each element in the original array
being filtered and the size of the new array. Those elements that passed the filter are then
scattered to their new indices of the now smaller, filtered array. Compact is used in GO Fish to
filter out fixed and lost mutations.

1 5 3 1 1 1 2 1

A. Embarrassingly parallel

2 6 4 2 2 2 3 2

+1

1 5 3 1 1 1 2 1

B. Reduce

6 4 2 3

10 5

+

+

15
+

1 5 3 1 1 1 2 1

filter > 1
0 1 1 0 0 0 1 0

scan

0 1 2 2 2 2 3 3

scatter

5 3 2

C. Compact

Figure 3

Figure 3. GO Fish algorithm. Both altering the allele frequencies of mutations from parent to
child generation and adding new mutations to the child generation are embarrassingly parallel
operations (see Figure 2A) that are greatly accelerated on the GPU. Further, as independent
operations, adding new mutations and altering allele frequencies can be done concurrently on
the GPU. In comparison to serial Wright-Fisher simulations (Figure 1), GO Fish includes an
extra compact step (see Figure 2C) to remove fixed and lost mutations every X generations.
Until compaction, the size of the mutation array grows by the number of new mutations added
each generation. Before the simulation ends, the program compacts the mutation array one final
time.

GO Fish

compact

every X
generations

initial mutation array

output mutation array

end of simulation

migration, selection, drift
add new mutations

Figure 4

Figure 4. Performance gains on GPU relative to CPU. The above figure plots the relative
performance of GO Fish, written in CUDA, to a basic, serial Wright-Fisher simulation written in
C++. The two programs were run both on a 2013 iMac with an NVIDIA GeForce GTX 780M
mobile GPU, 1536@823 MHz cores, (black line) and an Intel Core i7 4771 CPU@3.9 GHz and
a self-built Linux-box with a factory-overclocked NVIDIA GeForce GTX 980 GPU,
2048@1380MHz cores, and an Intel Core i5 4690K CPU@3.9GHz (red line). Full compiler
optimizations (-O3 –fast-math) were applied to both serial and parallel programs. Each dot
represents a simulation run plotted by the number of SNPs in its final generation. The serial
program was run once on the ~1 million SNPs scenario and, as the speed of the CPU-based
program is linear on the number of simulated SNPs (not shown), the resulting runtime of 46.7
seconds was then linearly rescaled to estimate runtimes for serial simulations with differing
numbers of final SNPs. The two Intel processors have identical speeds on single-threaded,
serial tasks (not shown), which also allows for direct comparison between the two GPU results.
Consumer GPUs like the 780M and 980 need to warm up from idle and load the CUDA context.
So to obtain accurate runtimes on the GPU, GO Fish timings were done after several runs had
finished and the average of 10 runs was taken for each data point. The GO Fish compacting
rate was hand-optimized for each number of simulated SNPs, for each processor.

0"

25"

50"

75"

100"

125"

150"

175"

200"

225"

250"

275"

300"

325"

350"

5K" 50K" 500K" 5000K" 50000K"

Fold%Speedup%G
PU

%over%CPU
%

#%of%Simulated%SNPs%(log%scale)%

NVIDIA GeForce GTX 780M

NVIDIA GeForce GTX 980 (o.c.)

~512,000"SNPs"
23.3s"(CPU)"

0.189s"(780M),"0.104s"(980)"
GPU"124x":"224x"faster"

5x107&5x106&5x105&5x104&5x103&

0"

25"

50"

75"

100"

125"

150"

175"

200"

225"

250"

275"

300"

325"

350"

5K" 50K" 500K" 5000K" 50000K"

Fold%Speedup%G
PU

%over%CPU
%

#%of%Simulated%SNPs%(log%scale)%

NVIDIA GeForce GTX 780M

NVIDIA GeForce GTX 980 (o.c.)

~512,000"SNPs"
23.3s"(CPU)"

0.189s"(780M),"0.104s"(980)"
GPU"124x":"224x"faster"

Appendix – Parallel Wright-Fisher Simulation Details

Table 1 Glossary of simulation terms

Variable Definition
µ(j,t) mutation rate per site per chromosome for population j at time t
s(j,t,x) selection coefficient for a mutation at frequency x in population j at time t
h dominance of allele
F(j,t) inbreeding coefficient in population j at time t
N(j,t) number of individuals in population j at time t
Ne(j,t) effective number of chromosomes in population j at time t
m(k,j,t) migration: proportion of chromosomes from population k in population j at time t
L number of sites in simulation
s = 0 (neutral), 0>s>-1 (purifying selection), 0<s (positive selection); h = 1 (dominant), h = 0
(recessive), h>1/<0 (over/under-dominant), 0<h<1 (co-dominant); F = 1 (haploid), F = 0
(diploid), 0<F<1 (inbred diploid); Ne = 2*N/(1+F)

Simulation Initialization

Simulations can be initialized in one of three ways: 1) a blank canvas, 2) from the results of a
previous simulation, and 3) mutation-selection equilibrium. Starting a simulation as a blank
canvas provides the most flexibility in what evolutionary state the simulation begins and thus
any evolutionary scenario can be simulated from the beginning. However, as the simulation
starts with no mutations present, a “burn-in” time is necessary to reach the point where the
simulation of the scenario of interest can begin. The number of “burn-in” generations may be
quite long, particularly to reach any kind of equilibrium state where selection, mutation,
migration, and drift are all in balance and the number of mutations being fixed and lost is equal
to the number of new mutations in the population(s). To save time, if a starting scenario is
shared across multiple simulations, then the post-burn-in mutation array can be simulated
beforehand, stored, and input as the initial mutation array for the next set of simulations.

Another way to jump start the simulation is by assuming all extant populations are in mutation-
selection balance at the beginning of the simulation. Under general mutation-selection
equilibrium (MSE), the proportion of mutations at every frequency in the population can be
calculated via numerical integration over a continuous frequency diffusion approximation (see
[3]). While this constrains the starting evolutionary state to mutation-selection equilibrium, this
allows one to then start simulating the selection and demographic scenario of interest
immediately. Due to current limitations of the MSE model in GO Fish, the mutation-selection
equilibrium scenario does not, as of yet, include migration from other populations or random
fluctuations in selection intensity – nor can the code calculate the number of generations ago a
mutation at frequency x is expected to have arisen at. Instead all mutations in the initial mutation
array said to have arisen at time t = 0. The model is detailed below:

For any given population j at time t = 0:

€

µ = µ(j,0), s(x) = s(j,0,x), etc...

From Kimura p. 220-222 [3]:

€

1) λµ (x) =
2µL

NeV(x)G(x)
G(y)dy

x

1
∫
G(y)dy
0

1
∫

€

2)G(x) =
−

2M(x)
V(x)

dx
⌠
⌡
⎮ e

€

3) V(x) = x(1− x) Ne

where Ne = 2N (1+ F)

λµ(x) is the expected (mean) number of mutations at a given frequency, x, in the population at
mutation-selection equilibrium. V(x) and M(x) are the contribution of drift of selection
respectively to the rate of change of a mutation’s frequency at frequency y in the population.
Since this is an allele-based simulation, I use the equilibrium value of the effective number of
chromosomes, Ne, to account for inbreeding amongst N individuals.

€

4a)M(x) =Mdip (x)(1− F) +Mhap (x)F

€

4b)Mhap (x) = s(x)x(1− x)

€

4c)Mdip (x) = s(x) h + (1− 2h)x{ }x(1− x)

The total rate of frequency change is the average of the rate of change of the effective haploid
proportion of the population and the effective diploid proportion of the population weighted by F.

€

5) G(x) =
−

2M(x)
V(x)

⌠
⌡
⎮ dxe =

−
2Mdip (x)(1−F)+2Mhap (x)F

V(x)
⌠

⌡
⎮ dxe =

−Nes(x)x 2h+(1−2h)x()(1−F)+2F{ }e

Substituting eq. 3 and 5 into eq. 1 yields:

€

6) λµ (x) =
2µL

x(1− x)e−Nes(x)x 2h+(1−2h)x()(1−F)+2F{ }

e−Nes(y)y 2h+(1−2h)y()(1−F)+2F{ }dy
x

1
∫
e−Nes(y)y 2h+(1−2h)y()(1−F)+2F{ }dy
0

1
∫

More familiar versions of eq. 6 can be derived by assuming neutrality or by assuming no
frequency-dependent selection and either codominance or haploid/completely inbred
individuals.

€

if s(x) = 0 ∀x ∈ 0,1() (neutral) → λµ (x) = 2µL x

if s(x) = s ∀x ∈ 0,1() and (h = 0.5 or F =1) → λµ (x) =
2µL
x(1− x)

1− e−2Nes(1−x)

1− e−2Nes

where if h = 0.5 (codominant) → Ne = 2N (1+ F)
where if F =1 (haploid) → Ne = N

I approximate the integrals in eq. 6 using trapezoidal numerical integration and use the scan
parallel algorithm implemented in CUB 1.4.1 [47] to accelerate the integration on the GPU*. λµ(x)
is the expected (mean) number of mutations. To determine the actual number of mutations at a
given frequency, x, I generate random numbers from the Inverse Poisson distribution with mean
λµ(x) using the following procedure:

I. Random number generator Philox [48] generates a uniform random number between 0
and 1.

II. If λµ(x) ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF.
III. If λµ(x) > 6, then a Normal approximation to the Poisson is used.

Adding all the new mutations at every frequency to the starting mutation array is an
embarrassingly parallel problem. Thus, combined with the parallel numerical integration for the
definite integral components of eq. 6, initializing the simulation at mutation-selection equilibrium
is overall greatly accelerated on the GPU relative to serial algorithms on the CPU.

*An Aside About Numerical Precision, GPUs, and Numerical Integration: For a bit of
background, CPUs employ a Floating-point Processor Unit with 80-bits of precision for serial
floating-point computation, which then quickly translates the result into double-precision (64-bit)
for the CPU registers. Thus, CPU programs, including the serial Wright-Fisher simulation, are
often written with double-precision performance in mind. In contrast, most consumer GPU
applications are geared towards single-precision computation (graphics) and many consumer
GPUs have relatively poor double-precision performance. More expensive, professional-grade
workstation GPUs often have far better double-precision performance than consumer GPUs. As
the Wright-Fisher simulation does not actually require 64-bits of precision for most of its
calculations, I wrote most of GO Fish with 32-bits of precision computation. Though there are
ways to mitigate the round-off error in 32-bit computation [31], since there are such a large
number of consecutive sums during the MSE integration step, I decided to use double-precision
computation instead of single-precision to avoid aggregating the rounding error during
summation. As the numerical integration step is only done once, it does not slow the overall
simulation down to use double-precision here, even on a consumer GPU.

Steps to Calculate New Allele Frequencies

Migration, selection, and drift determine the frequency of an allele in the next generation, xt+1,
based on its current frequency, xt. Migration and selection are deterministic forces whereas drift
introduces binomial random chance. While these three steps can, in principle, be done in any
order, their order in the simulation is as follows:

I. Migration
II. Selection (with Inbreeding)

III. Drift (with Inbreeding)

€

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j

I. Migration

In population j at time t:

€

m(k) = m(k, j, t),
xt,k ≡ freq. of allele in pop. k at time t,
xmig = xmig, j ≡ freq. of allele in pop. j after migration,

€

7) xmig = m(k)xt,k
k
∑

where m(j) =1− m(k)
k≠ j
∑

GO Fish uses a conservative model of migration [49]. The new allele frequency in population j is
the average of the allele frequency in all the populations weighted by the migration rate from
each population, to population j. And the migration rate is specified by the proportion of
chromosomes from population k in population j.

II. Selection (with Inbreeding)

In population j at time t:

€

xmig = xmig, j ≡ freq. of allele after migration, ymig =1− xmig ,
xmig, sel = xmig, sel, j ≡ freq. of allele after migration and selection,
PAA ,PAa ,Paa ≡ frequency of genotype AA, Aa, and aa,
s(x) = s(j, t,x), w = w j ≡ average pop. j fitness, n = n j ≡ average pop. j fitness of allele A

selection model

PAA PAa Paa
1+s(x) 1+hs(x) 1

€

8) n = PAA 1+ s(xmig)() + PAa 1+ h s(xmig)() 2
9) w = PAA 1+ s(xmig)() + PAa 1+ h s(xmig)() + Paa
10) xmig, sel = n w

Like with M(x) in eq. 4, w and n are a weighted average of the effective haploid (inbred) and
diploid (outbred) portions of the chromosome population. Diploid genotype frequencies assume
random mating and Hardy-Weinberg equilibrium [50, 51].

€

11a) w = wdip (1− F) + whapF

11b) wdip = xmig
2 1+ s(xmig)() + 2xmig ymig 1+ h s(xmig)() + ymig

2

11c) whap = xmig 1+ s(xmig)() + ymig
11d) w = xmig

2 s(xmig) + xmig (1− xmig)s(xmig)(F + 2h − 2hF) +1

Following the same logic as above:

€

12a) n = ndip (1− F) + nhapF

12b) n = xmig
2 s(xmig) + xmig (1− xmig)s(xmig)(F + h − hF) + xmig

Substituting eq. 11d and 12b into eq. 10 yields:

€

13) xmig, sel =
xmig
2 s(xmig) + xmig (1− xmig)s(xmig)(F + h − hF) + xmig
xmig
2 s(xmig) + xmig (1− xmig)s(xmig)(F + 2h − 2hF) +1

Again, like for eq. 6, more familiar forms of eq. 13 may be derived under certain assumptions
such as neutrality, haploid/inbred individuals, and completely outbred diploids.

€

if s(xmig) = 0∀x ∈ 0,1() (neutral) → xmig, sel = xmig

if F =1 (haploid) → xmig, sel =
xmig s(xmig) + xmig
xmig s(xmig) +1

if F = 0 (diploid) → xmig, sel =
xmig

2 s(xmig)(1− h) + xmig (h s(xmig) +1)
xmig

2 s(xmig)(1− 2h) + 2xmigh s(xmig) +1

III. Drift (with Inbreeding)

For population j in generation t:

€

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j

The variable xmig,sel represents the expected frequency of the allele in generation t+1. Drift is the
random deviation of the actual frequency of the allele from this expectation. To determine the
actual frequency of the allele in the next generation, xt+1,j, I generate random numbers from the
Inverse Binomial distribution with mean Nexmig,sel and variance Nexmig,sel(1-xmig,sel) using the
following procedure:

I. Random number generator Philox [48] generates a uniform random number between 0
and 1.

II. If Ne ≤ 50, then that uniform variable is fed into the exact Inverse Binomial. (very slow)
III. If Nexmig,sel ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF as an

approximation to the Binomial.
IV. If Nexmig,sel > 6, then a Normal approximation to the Binomial is used.

Adding New Mutations

For population j in generation t:

€

µ = µ(j, t), Ne = 2N(j,t) (1+ F)

€

14) λµ = NeµL
starting frequency, x =1 Ne

The Poisson Random Field shares an important assumption with Watterson’s infinite sites
model in that regardless of how many sites are currently polymorphic, mutations will never strike
a currently polymorphic site and the number of monomorphic sites that a mutation can occur at

is always the total number of sites, L [4, 52]. Eq. 14 defines the expected number of mutations
in population j for generation t+1. The actual number of new mutations is drawn from the
Inverse Poisson distribution using the same procedure detailed in Simulation Initialization. New
mutations can be added to generation t+1 in parallel and simultaneously with the new frequency
calculations. Each new mutation is given a 4-part unique ID consisting of the thread and
compute device that birthed it (if more than one graphics card is used) as well as the generation
and population in which it first arose.

Compact

The general compact algorithm is outlined in Figure 2C). GO Fish’s version uses a more
advanced variant to speed up compaction and lower its memory requirement as discussed in
[17] and adapted from [53].

