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Abstract 
 
Forward Wright-Fisher simulations are powerful in their ability to model complex demography 
and selection scenarios, but suffer from slow execution on the CPU, thus limiting their 
usefulness. The single-locus Wright-Fisher forward algorithm is, however, exceedingly 
parallelizable, with many steps which are so-called embarrassingly parallel, consisting of a vast 
number of individual computations that are all independent of each other and thus capable of 
being performed concurrently. The rise of modern Graphics Processing Units (GPUs) and 
programming languages designed to leverage the inherent parallel nature of these processors 
have allowed researchers to dramatically speed up many programs that have such high 
arithmetic intensity and intrinsic concurrency. The presented GPU Optimized Wright-Fisher 
simulation, or GO Fish for short, can be used to simulate arbitrary selection and demographic 
scenarios while running over 340-fold faster than its serial counterpart on the CPU. Even 
modest GPU hardware can achieve an impressive speedup of well over two orders of 
magnitude. With simulations so accelerated, one can not only do quick parametric bootstrapping 
of previously estimated parameters, but also use simulated results to calculate the likelihoods 
and summary statistics of demographic and selection models against real polymorphism data - 
all without restricting the demographic and selection scenarios that can be modeled or requiring 
approximations to the single-locus forward algorithm for efficiency. Further, as many of the 
parallel programming techniques used in this simulation can be applied to other computationally 
intensive algorithms important in population genetics, GO Fish serves as an exciting template 
for future research into accelerating computation in evolution. Code available (soon) at: 
https://github.com/DL42/GOFish 
 
Introduction 
 
 The Graphics Processing Unit (GPU) is commonplace in today’s consumer and 
workstation computers and provides the main computational throughput of the modern 
supercomputer. A GPU differs from a computer’s Central Processor Unit (CPU) in a number of 
key respects, but the most important differentiating factor is the number and type of 
computational units. While a CPU for a typical consumer laptop or desktop will contain 
anywhere from 2-4 very fast, complex cores, GPU cores are in contrast relatively slow and 
simple. However, there are typically hundreds to thousands of these slow and simple cores in a 
single GPU. Thus CPUs are low latency processors that excel at the serial execution of 
complex, branching algorithms. Conversely, the GPU architecture is designed to provide high 
computational bandwidth, capable of executing many arithmetic operations in parallel.   
 The historical driver for the development of GPUs was increasingly realistic 
computer graphics for computer games. However, researchers quickly latched on to their 
usefulness as tools for scientific computation – particularly for problems that were simply too 
time consuming on the CPU due to sheer number of operations that had to be computed, but 
where many of those operations could in principle be computed simultaneously. Eventually 
programming languages were developed to exploit GPUs as massive parallel processors and, 
overtime, the GPU hardware has likewise evolved to be more capable for both graphics and 
computational applications.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2016. ; https://doi.org/10.1101/042622doi: bioRxiv preprint 

https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/042622
http://creativecommons.org/licenses/by/4.0/


  Population genetics analysis of single nucleotide polymorphisms (SNPs) is 
exceptionally amenable to acceleration on the GPU. Beyond the study of evolution itself, such 
analysis is a critical component of research in medical and conservation genetics, providing 
insight into the selective and mutational forces shaping the genome as well as the demographic 
history of a population. One of the most common analysis methods is the site frequency 
spectrum (SFS), a histogram where each bin is a count of how many mutations are at a given 
frequency in the population. 
 SFS analysis is based on the precepts of the Wright-Fisher process [1, 2], which 
describes the probabilistic trajectory of a mutation’s frequency in a population under a chosen 
evolutionary scenario. The defining characteristic of the Wright-Fisher process is forward time, 
non-overlapping, discrete generations with random genetic drift modeled as a binomial 
distribution dependent on the population size and the frequency of a mutation [1, 2]. On top of 
this foundation, can be added models for selection, migration between populations, mate choice 
& inbreeding, linkage between different loci, etc. For simple scenarios, an analytical expression 
for the expected proportion of mutations at a given frequency in the population, the expected 
SFS, can be derived [1-5]. This expectation can then be compared to the observed SFS of real 
data, allowing for parameter fitting and model testing [5-7]. However, more complex scenarios 
do not have tractable analytical solutions. One approach is to simulate the Wright-Fisher 
process forwards in time to build the expected frequency distribution or other population genetic 
summary statistics [8-10]. Because of the flexibility inherent in its construction, the Wright-Fisher 
forward simulation can be used to model any arbitrarily complex demographic and selection 
scenario [8-12]. Unfortunately, because of the computational cost, the use of such simulations 
to analyze polymorphism data is often prohibitively expensive in practice [11, 12]. The 
coalescent looking backwards in time and approximations to the forward single-locus Wright-
Fisher algorithm using diffusion equations provide alternative, computationally efficient methods 
of modeling polymorphism data [13, 14]. However, these effectively limit the selection and 
demographic models that can be ascertained and approximate the Wright-Fisher forward 
process [11, 12, 14, 15]. Thus by speeding up forward simulations, we can use more complex 
and realistic demographic and selection models to analyze within-species polymorphism data. 
 Single-locus Wright-Fisher simulations based on the Poisson Random Field model 
[4] ignore linkage between sites and simulate large numbers of individual mutation frequency 
trajectories forwards in time to construct the expected SFS. Exploiting the naturally 
parallelizable nature of the single-locus Wright-Fisher algorithm, these forward simulations can 
be greatly accelerated on the GPU. Written in the programming language CUDA v6.5 [16], a 
C/C++ derivative for NVIDIA GPUs, the GPU Optimized Wright-Fisher simulation, GO Fish, 
allows for accurate, flexible simulations of SFS at speeds orders of magnitude faster than 
comparative serial programs on the CPU. GO Fish can be both run as a standalone executable 
and integrated into other programs as a library to accelerate single-locus Wright-Fisher 
simulations used by those tools. 
  
Algorithm 
 
 In a single-locus Wright-Fisher simulation, a population of individuals can be 
represented by the set of mutations segregating in that population – specifically by the 
frequencies of the mutant, derived alleles in the population. Under the Poisson Random Field 
model, these mutations are completely independent of each other and new mutational events 
only occur at non-segregating sites in the genome (i.e. no multiple hits) [4].  
 Figure 1 sketches the algorithm for a typical, serial Wright-Fisher simulation, starting 
with the initialization of an array of mutation frequencies. From one discrete generation time 
step to the next, the change in any given mutation’s frequency is dependent on the strength of 
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selection on that mutation, migration from other populations, the percent of inbreeding, and 
genetic drift. Unlike the others listed, inbreeding is not directly a force for allele frequency 
change, but rather it modifies the effectiveness of selection and drift. Frequencies of 0 (lost) and 
1 (fixed) are absorbing boundaries such that if a mutation becomes fixed or lost across all extant 
populations, it is removed from the next generation’s mutation array. New mutations arising 
stochastically throughout the genome are then added to the mutation array of the offspring 
generation, replacing those mutations lost and fixed by selection and drift. As the offspring 
become the parents of the next generation, the cycle repeats until the final generation of the 
simulation.     
 While the details of how a GPU organizes computational work are quite intricate 
[16], the vastly oversimplified version is that a serial set of operations is called a thread and the 
GPU can execute many such threads in parallel. With completely unlinked sites, every 
simulated mutation frequency trajectory is independent of every other mutation frequency 
trajectory in the simulation. Therefore, the single-locus Wright-Fisher algorithm is trivially 
parallelized by simply assigning a thread to each mutation in the mutation array: when 
simulating each discrete generation, both calculating the new frequency of alleles in the next 
generation and adding new mutations to next generation are embarrassingly parallel operations 
(Figure 2A). This is the parallel ideal because no communication across threads is required to 
make these calculations. A serial algorithm has to calculate the new frequency of each mutation 
one by one – and the problem is multiplied where there are multiple populations, as these new 
frequencies have to be calculated for each population. For example, in a simulation with 
100,000 mutations in a given generation and 3 populations, 300,000 sequential passes through 
the functions governing migration, selection, and drift are required. However, in the parallel 
version, this huge number of iterations can theoretically be compressed to a single step in which 
all the new frequencies for all mutations are computed simultaneously. Similarly, if there are 
5,000 new mutations in a generation, a serial algorithm has to add each of those 5,000 new 
mutations one at a time to the simulation. The parallel algorithm can, in theory, add them all at 
once. Of course, a GPU only has a finite number of computational resources to apply to a 
problem and thus this ideal of executing all processes in a single time step is never truly 
realizable for a problem of any substantial size. Even so, parallelizing migration, selection, drift, 
and mutation on the GPU results in dramatic speedups relative to performing those same 
operations serially on the CPU. This is the main source of GO Fish’s improvement over serial, 
CPU-based Wright-Fisher simulations.  
 One challenge to the parallelization of the Wright-Fisher algorithm is the treatment 
of mutations that become fixed or lost. When a mutation reaches a frequency of 0 (in all 
populations, if multiple) or 1 (in all populations, if multiple), that mutation is forever lost or fixed. 
Such mutations are no longer of interest to maintain in memory or process from one generation 
to the next. Without removing lost and fixed mutations from the simulation, the number of 
mutations being stored and processed would simply continue to grow as new mutations are 
added each generation. When processing mutations one at a time in the serial algorithm, 
removing mutations that become lost or fixed is as trivial as simply not adding them to the next 
generation and shortening the mutation array in the next generation by 1 each time. This 
becomes more difficult when processing mutations in parallel. As stated before: the different 
threads for different mutations do not communicate with each other when calculating the new 
mutation frequencies simultaneously. Therefore any given mutation/thread has no knowledge of 
how many other mutations have become lost or fixed that generation. This in turn means that 
when attempting to remove lost and fixed mutations while processing mutations in parallel, there 
is no way to determine the size of the next generation’s mutation array or where in the offspring 
array each mutation should be placed.  
 One solution to the above problems is the algorithm compact [17], which can filter 
out lost and fixed mutations while still taking advantage of the parallel nature of GPUs (Figure 
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2C). However, compaction is not embarrassingly parallel, as communication between the 
different threads for different mutations is required, and it involves a lot of moving elements 
around in GPU memory rather than intensive computation. Thus, it is a less efficient use of the 
GPU as compared to calculating allele frequencies. As such, a nuance in optimizing GO Fish is 
how frequently to remove lost and fixed mutations from the active simulation. Despite the fact 
that computation on such mutations is wasted, calculating new allele frequencies is so fast that 
not filtering out lost and fixed mutations every generation and temporarily leaving them in the 
simulation actually results in faster runtimes. Eventually of course, the sheer number of lost and 
fixed mutations overwhelms even the GPU’s computational bandwidth and they must be 
removed. How often to compact for optimal simulation speed can be ascertained heuristically 
and is dependent on the number of mutations each generation in the simulation and the 
attributes of the GPU the simulation is running on. Figure 3 illustrates the algorithm for GO Fish, 
which combines parallel implementations of migration, selection, drift, and mutation with a 
compacting step run every X generations and again before the end of the simulation. 
 A more detailed description of the implementation of the Wright-Fisher algorithm 
underlying GO Fish can be found in the Appendix. The simulation can start with an empty initial 
mutation array, with the output of a previous simulation run, or with the frequencies of the initial 
mutation array in mutation-selection equilibrium. Starting the populations in mutation-selection 
equilibrium is also parallelized and accelerated on the GPU (see Appendix: Simulation 
Initialization). Population size, migration rates, inbreeding, dominance, and mutation rate are all 
user-specifiable functions capable of varying over time and between different populations. 
Further, there is no set limit on the number of populations that can be simulated. Selection is 
likewise a user-specifiable function parameterized not only by generation and population, but 
also by allele frequency, allowing for the modeling of frequency-dependent selection as well as 
time-dependent and population-specific selection. By tuning the inbreeding and dominance 
parameters, GO Fish can simulate the full range of single-locus dynamics for both haploids and 
diploids with everything from outbred to inbred populations and overdominant to underdominant 
alleles. GPU-accelerated Wright-Fisher simulations thus provide unprecedented flexibility to 
model unique and complex evolutionary scenarios beyond what many current site frequency 
spectrum analysis methods can employ. 
 
Results and Discussion  
 
 To test the speed improvements from parallelizing the Wright-Fisher algorithm, GO 
Fish was compared to a serial Wright-Fisher simulation written in C++. Each program was run 
on two computers: an iMac and a self-built Linux-box with equivalent Intel Haswell CPUs, but 
very different NVIDIA GPUs. Constrained by the thermal and space requirements of laptops and 
all-in-one machines, the iMac’s NVIDIA 780M GPU is slower (and older) than the NVIDIA 980 in 
the Linux-box. For a given number of simulated populations and number of generations, the key 
driver of execution time is simply the number of mutations in the simulation. Thus vastly different 
evolutionary scenarios will have similar runtimes if they result in similar numbers of mutations 
being simulated each generation. As such, to benchmark the acceleration provided by 
parallelization and GPUs, the programs were run using a basic evolutionary scenario while 
varying the number of expected mutations in the simulation. The utilized scenario is a simple, 
neutral simulation, starting in mutation-selection equilibrium, of a single, haploid population with 
a constant population size of 105 individuals over 1,000 generations and a mutation rate of 10-9 

mutations per generation per individual per site. With these other parameters held constant, 
varying the number of sites in the simulation adjusts the number of expected mutations for each 
of the benchmark simulations.  
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 As shown in Figure 4: accelerating the Wright-Fisher simulation on a GPU results in 
massive performance gains on both an older, mobile GPU like the NVIDIA 780M and a newer, 
desktop-class NVIDIA 980 GPU. For example, when simulating the frequency trajectories of 
~5x105 mutations over 1,000 generations, GO Fish takes less than 0.2s to run on a 780M as 
compared to over 23s for its serial counterpart running on the Intel i5/i7 CPU, a speedup of 124-
fold. On a full, modern desktop GPU like the 980, GO Fish runs this scenario ~224x faster than 
the strictly serial simulation and only takes about 0.1s to run. As the number of mutations in the 
simulation grows, more work is tasked to the GPU and the relative speedup of GPU to CPU 
increases logarithmically. Eventually though, the sheer number of simulated SNPs saturates 
even the computational throughput of the GPUs, producing linear increases in runtime for 
increasing SNP counts, like for serial code. Thus, eventually, there is a flattening of the fold 
performance gains. This plateau occurs earlier for 780M than for the more powerful 980. 
Executed serially on the CPU, a huge simulation of ~4x107 SNPs takes roughly 30min to run 
versus only ~12s/5.5s for GO Fish on the 780M/980, an acceleration of more than 150/340-fold. 
While not benchmarked here, the parallel Wright-Fisher algorithm is also trivial to partition over 
multi-GPU setups in order to further accelerate simulations.  
 GO Fish manages to achieve the above increases in performance without 
sacrificing flexibility in the scenarios it is capable of simulating. With this combined performance 
and flexibility, GO Fish simulations can be used to calculate the likelihood of a given 
evolutionary scenario producing an observed SFS and then fit the model parameters to the data 
by maximizing that likelihood. Beyond delivering point estimates of model parameters, GO Fish 
can also be used for parametric bootstrapping to obtain confidence intervals for the maximum 
likelihood estimates as well as Bayesian statistics. Some SFS methods are capable of providing 
multi-dimensional spectra of SNP frequencies over multiple populations for comparative 
population genomics (e.g. [14]). GO Fish can do so as well, with no limits to the number of 
populations allowed in the simulation. Paired with a coalescent simulator, GO Fish can also 
accelerate the forward simulation component in forwards-backwards approaches like msms 
[15]. In addition, GO Fish is able to track the age of mutations in the simulation providing an 
estimate of the distribution of the allele ages, or even the age by frequency distribution, for 
mutations in an observed SFS. Further, the age of mutations is one element of a unique 
identifier for each mutation in the simulation, which allows the frequency trajectory of individual 
mutations to be tracked through time. This ability to sample ancestral states and then track the 
mutations throughout the simulation can be used to contrast the population frequencies of 
polymorphisms from ancient DNA with those present in modern populations for powerful 
population genetics analyses [18]. Thus, accelerating the single-locus forward simulation on the 
GPU heightens the usefulness of these forward-time simulations in population genetic studies.  
 Across the field of population genetics and evolution, there exist a wide range of 
computationally intensive problems that could benefit from parallelization. The algorithms 
presented and discussed in Figure 2 represent a subset of the essential parallel algorithms, 
which more complex algorithms modify or build upon. Application of these parallel algorithms 
are already wide-ranging in bioinformatics: motif finding [19], global and local DNA and protein 
alignment [20-23], short read alignment and SNP calling [24, 25], haplotyping and the 
imputation of genotypes [26], analysis for genome-wide association studies [27, 28], and 
mapping phenotype to genotype and epistastic interactions across the genome [29, 30]. In 
molecular evolution, the basic algorithms underlying the building of phylogenetic trees and 
analyzing sequence divergence between species have likewise been GPU-accelerated [31]. 
Further, there are parallel methods for general statistical and computational methods, like 
Markov Chain Monte Carlo and Bayesian analysis, useful in computational evolution and 
population genetics [32, 33].  
 Future work on the single-locus Wright-Fisher algorithm will include extending the 
parallel structure of GO Fish to allow for multiple mutational events at a site, relaxing one of the 
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key assumptions of the Poisson Random Field [4]. Also, solving Wright-Fisher diffusion 
equations in programs like δaδi [14] can likewise be sped up through parallelization [34-37]. 
Expanding from the study of single-loci to modeling the evolution of haplotypes and 
chromosomes, simulations with the coalescent framework or forward Wright-Fisher algorithm 
with linkage can also be accelerated on GPUs. The coalescent approach has already been 
shown to benefit from parallelization over multiple CPU cores (see [38]). While Montemuiño et 
al. achieved their speed boost by running multiple independent simulations concurrently, they 
noted that parallelizing the coalescent algorithm itself may also accelerate individual simulations 
over GPUs [38]. Likewise, full forward simulation with linkage has many embarrassingly parallel 
steps, as well as those that can be refactored into one of the core parallel algorithms. The 
closely related genetic algorithm, used to solve difficult optimization problems, has already been 
parallelized and, under many conditions, greatly accelerated on GPUs [39-41]. While the extent 
of the performance increase will vary from application to application, each of these represent 
key algorithms whose acceleration could provide potentially huge benefits for the field [11, 12]. 
 These benefits potentially extend to lowering the cost barrier for students and 
researchers to run intensive computational analyses in population genetics. The GO Fish results 
demonstrate how powerful even an older, mobile GPU can be at executing parallel workloads, 
which means that GO Fish can be run on everything from GPUs in high-end compute clusters to 
a GPU in a personal laptop and still achieve a great speedup over traditional serial programs. A 
batch of single-locus Wright-Fisher simulations that might have taken a hundred CPU-hours or 
more to complete on a cluster can be done, with GO Fish, in an hour on a laptop. Moreover, 
graphics cards and massively parallel processors in general are evolving quickly. While this 
paper has focused on NVIDIA GPUs and CUDA, the capability to take advantage of the 
massive parallelization inherent in the Wright-Fisher algorithm is the key to accelerating the 
simulation and in the High Performance Computing market there are several avenues to 
achieve the performance gains presented here. For instance, OpenCL is another popular low-
level language for parallel programming and can be used to program NVIDIA, AMD, Altera, 
Xilinx, and Intel solutions for massively parallel computation, which include GPUs, CPUs, and 
even Field Programmable Gate Arrays (FPGAs) [42-44]. The parallel algorithm of GO Fish can 
be applied to all of these tools. Whichever platform(s) or language(s) researchers choose to 
utilize, the future of computation in population genetics is massively parallel and exceedingly 
fast. 
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Figure 1 
 

 
 
 
Figure 1. Serial Wright-Fisher algorithm. Mutations are the “unit” of simulation for the single-
locus Wright-Fisher algorithm. Thus a generation of organisms is represented by an array of 
mutations and their frequency in the (each) population (if there are multiple in the simulation). 
There are several options for how to initialize the mutation array to start a simulation: a blank 
mutation array, the output of a previous simulation run, or mutation-selection equilibrium (for 
details, see Appendix: Simulation Initialization). Simulating each discrete generation consists 
first of calculating the new allele frequency of each mutation, one at a time, where those 
mutations that become lost or fixed are discarded. Next, new mutations are added to the array, 
again, one at a time. The resulting offspring array of mutation frequencies becomes the parent 
array of the next generation and the cycle is repeated until the end of the simulation when the 
final mutation array is output. 
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Figure 2. Common Parallel Algorithms. Above are illustrative examples of three classes of 
common parallel algorithms implemented using simple operations and an eight-element, integer 
array. A) Embarrassingly parallel algorithms are those that can be computed independently 
and thus simultaneously on the GPU. The given example, adding 1 to every element of an 
array, can be done concurrently to all array elements. In GO Fish, calculating new mutation 
frequencies and adding new mutations to population are both embarrassingly parallel 
operations. B) Reduce is a fundamental parallel algorithm in which all the elements of an array 
are reduced to a single value using a binary operator, such as in the above summation over the 
example array [45]. This algorithm takes advantage of the fact that in each time step half of the 
sums can be done independently while synchronized communication is necessary to combine 
the results of previous time steps. In total, log2(8) = 3 time steps are required to reduce the 
example array. C) Compact is a multi-step algorithm that allows one to filter arrays on the GPU 
[17]. In an embarrassingly parallel step, the algorithm presented above first creates a new 
Boolean array of those elements that passed the filter predicate (e.g. x > 1). Then a scan is 
performed on the Boolean array. Scan is similar in concept to reduce, wherein for each time 
step half of the binary operations are independent, but it is a more complex parallel algorithm 
that creates a running sum over the array rather than condensing the array to a single value 
(see [46]). This running sum determines the new index of each element in the original array 
being filtered and the size of the new array. Those elements that passed the filter are then 
scattered to their new indices of the now smaller, filtered array. Compact is used in GO Fish to 
filter out fixed and lost mutations. 
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Figure 3. GO Fish algorithm. Both altering the allele frequencies of mutations from parent to 
child generation and adding new mutations to the child generation are embarrassingly parallel 
operations (see Figure 2A) that are greatly accelerated on the GPU. Further, as independent 
operations, adding new mutations and altering allele frequencies can be done concurrently on 
the GPU. In comparison to serial Wright-Fisher simulations (Figure 1), GO Fish includes an 
extra compact step (see Figure 2C) to remove fixed and lost mutations every X generations. 
Until compaction, the size of the mutation array grows by the number of new mutations added 
each generation. Before the simulation ends, the program compacts the mutation array one final 
time.
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Figure 4. Performance gains on GPU relative to CPU. The above figure plots the relative 
performance of GO Fish, written in CUDA, to a basic, serial Wright-Fisher simulation written in 
C++. The two programs were run both on a 2013 iMac with an NVIDIA GeForce GTX 780M 
mobile GPU, 1536@823 MHz cores, (black line) and an Intel Core i7 4771 CPU@3.9 GHz and 
a self-built Linux-box with a factory-overclocked NVIDIA GeForce GTX 980 GPU, 
2048@1380MHz cores, and an Intel Core i5 4690K CPU@3.9GHz (red line). Full compiler 
optimizations (-O3 –fast-math) were applied to both serial and parallel programs. Each dot 
represents a simulation run plotted by the number of SNPs in its final generation. The serial 
program was run once on the ~1 million SNPs scenario and, as the speed of the CPU-based 
program is linear on the number of simulated SNPs (not shown), the resulting runtime of 46.7 
seconds was then linearly rescaled to estimate runtimes for serial simulations with differing 
numbers of final SNPs. The two Intel processors have identical speeds on single-threaded, 
serial tasks (not shown), which also allows for direct comparison between the two GPU results. 
Consumer GPUs like the 780M and 980 need to warm up from idle and load the CUDA context. 
So to obtain accurate runtimes on the GPU, GO Fish timings were done after several runs had 
finished and the average of 10 runs was taken for each data point. The GO Fish compacting 
rate was hand-optimized for each number of simulated SNPs, for each processor. 
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Appendix – Parallel Wright-Fisher Simulation Details 
 
Table 1 Glossary of simulation terms 
 
Variable Definition 
µ(j,t) mutation rate per site per chromosome for population j at time t 
s(j,t,x) selection coefficient for a mutation at frequency x in population j at time t 
h dominance of allele 
F(j,t) inbreeding coefficient in population j at time t 
N(j,t) number of individuals in population j at time t 
Ne(j,t) effective number of chromosomes in population j at time t 
m(k,j,t) migration: proportion of chromosomes from population k in population j at time t 
L number of sites in simulation 
s = 0 (neutral), 0>s>-1 (purifying selection), 0<s (positive selection); h = 1 (dominant), h = 0 
(recessive), h>1/<0 (over/under-dominant), 0<h<1 (co-dominant);  F = 1 (haploid), F = 0 
(diploid), 0<F<1 (inbred diploid); Ne = 2*N/(1+F)  
 
Simulation Initialization 
 
Simulations can be initialized in one of three ways: 1) a blank canvas, 2) from the results of a 
previous simulation, and 3) mutation-selection equilibrium. Starting a simulation as a blank 
canvas provides the most flexibility in what evolutionary state the simulation begins and thus 
any evolutionary scenario can be simulated from the beginning. However, as the simulation 
starts with no mutations present, a “burn-in” time is necessary to reach the point where the 
simulation of the scenario of interest can begin. The number of “burn-in” generations may be 
quite long, particularly to reach any kind of equilibrium state where selection, mutation, 
migration, and drift are all in balance and the number of mutations being fixed and lost is equal 
to the number of new mutations in the population(s). To save time, if a starting scenario is 
shared across multiple simulations, then the post-burn-in mutation array can be simulated 
beforehand, stored, and input as the initial mutation array for the next set of simulations. 
 
Another way to jump start the simulation is by assuming all extant populations are in mutation-
selection balance at the beginning of the simulation. Under general mutation-selection 
equilibrium (MSE), the proportion of mutations at every frequency in the population can be 
calculated via numerical integration over a continuous frequency diffusion approximation (see 
[3]). While this constrains the starting evolutionary state to mutation-selection equilibrium, this 
allows one to then start simulating the selection and demographic scenario of interest 
immediately. Due to current limitations of the MSE model in GO Fish, the mutation-selection 
equilibrium scenario does not, as of yet, include migration from other populations or random 
fluctuations in selection intensity – nor can the code calculate the number of generations ago a 
mutation at frequency x is expected to have arisen at. Instead all mutations in the initial mutation 
array said to have arisen at time t = 0. The model is detailed below:  
 
For any given population j at time t = 0: 
 

€ 

µ = µ( j,0), s(x) = s( j,0,x), etc... 
 
From Kimura p. 220-222 [3]: 



€ 

1) λµ (x) =
2µL

NeV(x)G(x)
G(y)dy

x

1
∫
G(y)dy
0

1
∫

 

€ 

2)G(x) =
−

2M(x )
V(x )

dx
⌠ 
⌡ 
⎮ e  

€ 

3) V(x) = x(1− x) Ne

where  Ne = 2N (1+ F)
 

 
λµ(x) is the expected (mean) number of mutations at a given frequency, x, in the population at 
mutation-selection equilibrium. V(x) and M(x) are the contribution of drift of selection 
respectively to the rate of change of a mutation’s frequency at frequency y in the population. 
Since this is an allele-based simulation, I use the equilibrium value of the effective number of 
chromosomes, Ne, to account for inbreeding amongst N individuals. 
 

€ 

4a)M(x) =Mdip (x)(1− F) +Mhap (x)F  

€ 

4b)Mhap (x) = s(x)x(1− x) 

€ 

4c)Mdip (x) = s(x) h + (1− 2h)x{ }x(1− x)  
 
The total rate of frequency change is the average of the rate of change of the effective haploid 
proportion of the population and the effective diploid proportion of the population weighted by F. 
  

€ 

5) G(x) =
−

2M(x )
V(x )

⌠ 
⌡ 
⎮ dxe =

−
2Mdip (x )(1−F )+2Mhap (x )F

V(x )
⌠ 

⌡ 
⎮ dxe =

−Nes(x )x 2h+(1−2h )x( )(1−F )+2F{ }e  
 
Substituting eq. 3 and 5 into eq. 1 yields: 

€ 

6) λµ (x) =
2µL

x(1− x)e−Nes(x )x 2h+(1−2h )x( )(1−F )+2F{ }

e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
x

1
∫
e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
0

1
∫

 

 
More familiar versions of eq. 6 can be derived by assuming neutrality or by assuming no 
frequency-dependent selection and either codominance or haploid/completely inbred 
individuals. 
 

€ 

if s(x) = 0 ∀x ∈ 0,1( ) (neutral) → λµ (x) = 2µL x

if s(x) = s ∀x ∈ 0,1( ) and (h = 0.5 or F =1) → λµ (x) =
2µL
x(1− x)

1− e−2Nes(1−x )

1− e−2Nes

where if h = 0.5 (codominant) → Ne = 2N (1+ F)  
where if F =1 (haploid) → Ne = N

 

 
I approximate the integrals in eq. 6 using trapezoidal numerical integration and use the scan 
parallel algorithm implemented in CUB 1.4.1 [47] to accelerate the integration on the GPU*. λµ(x) 
is the expected (mean) number of mutations. To determine the actual number of mutations at a 
given frequency, x, I generate random numbers from the Inverse Poisson distribution with mean 
λµ(x) using the following procedure: 
 



I. Random number generator Philox [48] generates a uniform random number between 0 
and 1. 

II. If λµ(x) ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF.  
III. If λµ(x) > 6, then a Normal approximation to the Poisson is used. 

 
Adding all the new mutations at every frequency to the starting mutation array is an 
embarrassingly parallel problem. Thus, combined with the parallel numerical integration for the 
definite integral components of eq. 6, initializing the simulation at mutation-selection equilibrium 
is overall greatly accelerated on the GPU relative to serial algorithms on the CPU.  
 
*An Aside About Numerical Precision, GPUs, and Numerical Integration: For a bit of 
background, CPUs employ a Floating-point Processor Unit with 80-bits of precision for serial 
floating-point computation, which then quickly translates the result into double-precision (64-bit) 
for the CPU registers. Thus, CPU programs, including the serial Wright-Fisher simulation, are 
often written with double-precision performance in mind. In contrast, most consumer GPU 
applications are geared towards single-precision computation (graphics) and many consumer 
GPUs have relatively poor double-precision performance. More expensive, professional-grade 
workstation GPUs often have far better double-precision performance than consumer GPUs. As 
the Wright-Fisher simulation does not actually require 64-bits of precision for most of its 
calculations, I wrote most of GO Fish with 32-bits of precision computation. Though there are 
ways to mitigate the round-off error in 32-bit computation [31], since there are such a large 
number of consecutive sums during the MSE integration step, I decided to use double-precision 
computation instead of single-precision to avoid aggregating the rounding error during 
summation. As the numerical integration step is only done once, it does not slow the overall 
simulation down to use double-precision here, even on a consumer GPU.  
 
Steps to Calculate New Allele Frequencies 
 
Migration, selection, and drift determine the frequency of an allele in the next generation, xt+1, 
based on its current frequency, xt. Migration and selection are deterministic forces whereas drift 
introduces binomial random chance. While these three steps can, in principle, be done in any 
order, their order in the simulation is as follows: 
 

I. Migration  
II. Selection (with Inbreeding) 

III. Drift (with Inbreeding) 
 

€ 

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j  

 
I. Migration 
 
In population j at time t: 
 

€ 

m(k) = m(k, j, t),
xt,k ≡  freq. of allele in pop. k at time t,
xmig = xmig, j ≡  freq. of allele in pop. j after migration,

 

 



€ 

7) xmig = m(k)xt,k
k
∑

where m( j) =1− m(k)
k≠ j
∑

 

GO Fish uses a conservative model of migration [49]. The new allele frequency in population j is 
the average of the allele frequency in all the populations weighted by the migration rate from 
each population, to population j. And the migration rate is specified by the proportion of 
chromosomes from population k in population j. 
 
II. Selection (with Inbreeding) 
 
In population j at time t: 
 

€ 

xmig = xmig, j ≡ freq. of allele after migration, ymig =1− xmig ,
xmig, sel = xmig, sel, j ≡ freq. of allele after migration and selection,
PAA ,PAa ,Paa ≡ frequency of genotype AA,  Aa,  and aa,
s(x) = s( j, t,x), w = w j ≡  average pop. j fitness, n = n j ≡  average pop. j fitness of allele A

 

 
selection model  

PAA PAa Paa 
1+s(x) 1+hs(x) 1 

 

€ 

8) n = PAA 1+ s(xmig )( ) + PAa 1+ h s(xmig )( ) 2
9) w = PAA 1+ s(xmig )( ) + PAa 1+ h s(xmig )( ) + Paa
10) xmig, sel = n w

 

 
Like with M(x) in eq. 4, w and n are a weighted average of the effective haploid (inbred) and 
diploid (outbred) portions of the chromosome population. Diploid genotype frequencies assume 
random mating and Hardy-Weinberg equilibrium [50, 51]. 
 

€ 

11a) w = wdip (1− F) + whapF

11b) wdip = xmig
2 1+ s(xmig )( ) + 2xmig ymig 1+ h s(xmig )( ) + ymig

2

11c) whap = xmig 1+ s(xmig )( ) + ymig
11d) w = xmig

2 s(xmig ) + xmig (1− xmig )s(xmig )(F + 2h − 2hF) +1

 

 
Following the same logic as above: 
 

€ 

12a) n = ndip (1− F) + nhapF

12b) n = xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + h − hF) + xmig

 

 
Substituting eq. 11d and 12b into eq. 10 yields: 
 



€ 

13) xmig, sel =
xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + h − hF) + xmig
xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + 2h − 2hF) +1

 

 
Again, like for eq. 6, more familiar forms of eq. 13 may be derived under certain assumptions 
such as neutrality, haploid/inbred individuals, and completely outbred diploids. 
 

€ 

if s(xmig ) = 0∀x ∈ 0,1( ) (neutral) → xmig, sel = xmig

if F =1 (haploid) → xmig, sel =
xmig s(xmig ) + xmig
xmig s(xmig ) +1

if F = 0 (diploid) → xmig, sel =
xmig

2 s(xmig )(1− h) + xmig (h s(xmig ) +1)
xmig

2 s(xmig )(1− 2h) + 2xmigh s(xmig ) +1

 

 
III. Drift (with Inbreeding) 
 
For population j in generation t: 
 

€ 

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j  

 
The variable xmig,sel represents the expected frequency of the allele in generation t+1. Drift is the 
random deviation of the actual frequency of the allele from this expectation. To determine the 
actual frequency of the allele in the next generation, xt+1,j, I generate random numbers from the 
Inverse Binomial distribution with mean Nexmig,sel and variance Nexmig,sel(1-xmig,sel) using the 
following procedure: 
 

I. Random number generator Philox [48] generates a uniform random number between 0 
and 1. 

II. If Ne ≤ 50, then that uniform variable is fed into the exact Inverse Binomial. (very slow) 
III. If Nexmig,sel ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF as an 

approximation to the Binomial.  
IV. If Nexmig,sel > 6, then a Normal approximation to the Binomial is used. 

 
Adding New Mutations 
 
For population j in generation t: 
 

€ 

µ = µ( j, t), Ne = 2N( j,t) (1+ F) 
 

€ 

14) λµ = NeµL
starting frequency, x =1 Ne

 

 
The Poisson Random Field shares an important assumption with Watterson’s infinite sites 
model in that regardless of how many sites are currently polymorphic, mutations will never strike 
a currently polymorphic site and the number of monomorphic sites that a mutation can occur at 



is always the total number of sites, L [4, 52]. Eq. 14 defines the expected number of mutations 
in population j for generation t+1. The actual number of new mutations is drawn from the 
Inverse Poisson distribution using the same procedure detailed in Simulation Initialization. New 
mutations can be added to generation t+1 in parallel and simultaneously with the new frequency 
calculations. Each new mutation is given a 4-part unique ID consisting of the thread and 
compute device that birthed it (if more than one graphics card is used) as well as the generation 
and population in which it first arose.  
 
Compact 
 
The general compact algorithm is outlined in Figure 2C). GO Fish’s version uses a more 
advanced variant to speed up compaction and lower its memory requirement as discussed in 
[17] and adapted from [53].  


