Plant root pathogens over 120,000 years of temperate rainforest ecosystem development

Ian A. Dickie¹*, Angela M. Wakelin¹, Laura Martinez-Garcia², Sarah J. Richardson³, Andreas Makiola¹, Jason M. Tylianakis⁴,⁵

*Corresponding author: Bio-Protection Research Centre, Lincoln University, P O Box 85084, Lincoln 7647, New Zealand +64 03 423 0983
¹ Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
² Department of Soil Quality, Wageningen University, Wageningen, The Netherlands.
³ Landcare Research, Lincoln, New Zealand
⁴ Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
⁵ Department of Life Sciences, Silwood Park Campus, Imperial College London, UK

author emails: Ian.Dickie@lincoln.ac.nz; Angela.Wakelin@lincoln.ac.nz;
LauraBeatrizMartinez@gmail.com; RichardsonS@landcareresearch.co.nz;
Andreas.Makiola@lincoln.ac.nz; jason.tylianakis@canterbury.ac.nz

running title: Plant pathogens and ecosystem development

Article type: Letter

Keywords: forest diversity, molecular ecology, Oomycetes, pathogen ecology, pedogenesis, retrogression, succession

Word count: Abstract, 149; main text 5000; 50 references

4 figures; 1 supplemental file

Authorship: The original samples used in this paper were part of a study led by LMG and IAD, and were collected in the field by LMG, IAD, JMT and SJR. IAD and JMT conceived of and obtained funding for the oomycete sequencing of these samples, while AMW and AM developed the methods for, and AMW carried out, molecular characterisation. SJR collected plant community data and additional plant trait data. IAD conducted data analysis with input from AMW and JMT. IAD produced the figures and wrote the first draft with AMW, all other authors made editorial input.
Abstract

The role of pathogens, including oomycetes, in long-term ecosystem development has remained largely unknown, despite hypotheses that pathogens drive primary succession, determine mature ecosystem plant diversity, or dominate in retrogressive, nutrient-limited ecosystems. Using DNA sequencing from roots, we investigated the frequency and host relationships of oomycete communities along a 120,000 year glacial chronosequence. Oomycetes were frequent in early successional sites (5-70 yrs), occurring in 38–65% of plant roots, but rare (average 3%) in all older ecosystems (280 yrs and older). Oomycetes were highly host specific, and more frequent on plant species that declined most strongly in abundance between ecosystem ages. In contrast, oomycetes were not correlated with plant abundance or plant root traits associated with retrogression. The results support the importance of root pathogens in early succession, but not thereafter, suggesting root pathogen-driven dynamics may be important in driving succession but not long-term diversity maintenance.
Introduction

As ecosystems develop, biotic communities undergo succession both in composition and in the nature of mutualistic and antagonistic interactions. Many of these changes have been well studied, including changes in plant communities and traits, competition intensity, and mutualisms (Lambers et al. 2008). Nonetheless, long-term successional changes in composition and community interactions of many other organisms, such as pathogens, remain poorly understood. Indeed, plant pathogens are often out-of-sight out-of-mind, until large-scale forest diebacks (Scott & Williams 2014) or major crop losses (Martin & Loper 1999) occur. This lack of information is particularly apparent in forest disease outbreaks, where it is often unclear whether the pathogen is native, from where it may have originated, or what background levels of pathogens are typical in healthy ecosystems (Podger & Newhook 1971). Nonetheless, pathogens occur as part of healthy ecosystems and play an important role in ecosystem processes (Castello et al. 1995; Gomez-Aparicio et al. 2012; Bever et al. 2015). For example, *Pythium* and other oomycetes (Oomycota = Peronosporomycota) can drive negative density dependence in plants (Packer & Clay 2000) and hence are believed to contribute to the maintenance of forest plant diversity (Mangan et al. 2010a). Pathogenic organisms, including oomycetes, are also an important component of soil biodiversity, as pathogens of plant roots and soil invertebrates, and as saprotrophs (Arcate et al. 2006). However, the ecological literature is highly divided in predicting when pathogens might be important in ecosystem succession and development.

One view of soil pathogens in relation to ecosystem development is that they play a particularly critical role in driving early succession, which we define as the period of large changes in vegetation composition with time (van der Putten et al. 1993; van der Putten...
This view is based, in part, on the assumption that newly establishing plant species will encounter only low levels of pathogens in the absence of conspecific host plants during succession. Over time, these established plants accumulate pathogens, which prevent establishment of conspecific seedlings but have less negative effects on other plant species. Part of the role of pathogens in succession is driven by plant age, as pathogens that kill seedlings are often tolerated by established plants (Martin & Loper 1999; van der Putten 2003). This implies that early-successional (r-selected) plants may have limited selection for pathogen resistance. Instead, these species may accumulate and tolerate pathogens as mature plants, and rely on seed dispersal into new habitats to escape pathogens during the vulnerable seedling stage (van der Putten 2003). Support for the role of pathogens in early succession comes from studies of invertebrates in grasslands, where dominant early-successional species are more suppressed than subordinate or late-successional species (de Deyn et al. 2003) and from studies showing negative plant-soil-feedback early in succession, with mid- and late-successional ecosystems showing neutral or positive feedback, respectively (Kardol et al. 2006).

A second view is that pathogens are of little importance early in succession, but increase in importance in mature ecosystems, where vegetation composition is more stable (Reynolds et al. 2003; Bardgett et al. 2005; Peltzer et al. 2010). Soil biotic communities as a whole increase in biomass and species diversity over periods of tens to hundreds of years (Bardgett et al. 2005), and pathogen communities may follow similar patterns of increasing biomass and diversity. Further, Gilbert (2002) suggests that increasing nutrient competition in mature ecosystems may stress plants and increase susceptibility to pathogens. Pathogen host-specificity in these systems leads to density-dependent mortality (Augspurger 1984). Density dependence may occur within a cohort, driven by a high density of co-occurring conspecific
seedlings near seed sources, or cross-cohort, with mature plants supporting high levels of pathogens on their roots and hence reducing establishment of conspecific seedlings (Connell 1970), but most studies do not distinguish these two possibilities. Evidence for negative density dependence has come from both tropical and temperate forests (Packer & Clay 2003; Mangan et al. 2010b), although other studies have found positive density dependence or no effect (Reinhart et al. 2012).

One of the signatures of density dependence should be a correlation between plant abundance and plant-soil feedback strength, where soil feedbacks are defined as the growth of seedlings of a species in a soil community developing under con-specific plants relative to other species in the same soil (Bever et al. 2010). Several studies suggest that correlation between plant abundance and feedback strength should be negative, with more abundant species showing stronger negative feedback (Queenborough et al. 2007). However, positive correlations of plant abundance and the strength of negative soil feedbacks have also been taken as evidence supporting pathogen driven density-dependence as a mechanism for supporting mature forest plant diversity (Xu et al. 2015). A logical argument can be made for either direction of correlation, depending on whether you assume that observed abundances are the outcome of prior negative density dependence (Xu et al. 2015) as opposed to drivers of current negative density dependence. Direct measurement of pathogen frequency is not typically part of plant-soil feedback studies, but strong negative feedback is often assumed to indicate high pathogen loads. Nonetheless, other soil organisms, including mycorrhizas, can drive similar outcomes (Bever et al. 2010).

Finally, a recently proposed third view of the role of pathogens in ecosystem development is that soil pathogens may be particularly critical in retrogressive ecosystems (Laliberté et al. 2015).
2015), where declining soil nutrient availability results in declining vegetation stature and diversity (Richardson et al. 2004; Porder et al. 2007; Peltzer et al. 2010). Laliberté and colleagues (2015) suggest that the highly weathered, P-limited soils of retrogressive ecosystems favour species with ephemeral roots to maximize nutrient uptake, but that this imposes a trade-off with increased susceptibility to pathogens. Ecosystem retrogression has been linked to increased specific root length (length per unit mass), thinner roots, and increased root branching (Holdaway et al. 2011), all of which may increase susceptibility to root pathogens (Laliberté et al. 2015). This hypothesis makes no explicit prediction about how plant abundance will be correlated with pathogens.

We formalized each of these views from the literature into three testable, non-mutually exclusive, sets of hypotheses. Each set makes specific predictions about the occurrence of pathogens at different ecosystem stages (H1.1, H2.1, H3.1) and the occurrence of pathogens on different hosts based on plant strategies and root traits (H1.2, H2.2, H3.2).

H1. Early-successional ecosystem hypotheses

H1.1 Pathogen frequency and diversity are high in early-successional ecosystems relative to later stages.

H1.2 Pathogen-driven succession will be evident as plant species that decline in abundance having higher pathogen loads than plant species that increase or maintain their abundance.

H2. Mature ecosystem hypotheses

H2.1 Pathogen frequency and diversity are high in mature ecosystems relative to other stages.
H2.2 Negative density-dependent mortality in mature ecosystems will be evident as a correlation between plant abundance with pathogen frequency, either positively (Queenborough et al. 2007; Bever et al. 2015), or negatively (Xu et al. 2015).

H3. Retrogression hypotheses:

H3.1 Pathogen frequency is high in retrogressive ecosystems relative to earlier stages.

H3.2 Trade-offs between nutrient acquisition and pathogen resistance will be evident as plant species with high specific root length, thinner roots, and abundant root hairs having higher pathogen loads than species without these traits.

In addition, we tested the hypothesis (H4) that oomycete communities are host-specific in their plant associations, as host specificity is requisite for pathogens to either drive early-successional vegetation change (H1) or to contribute to maintaining plant diversity in mature ecosystems (H2).

We tested our hypotheses using an extensively studied soil and ecosystem development chronosequence created by the Franz Josef glacier in New Zealand, where glacial advances and retreats have created a series of soils of varying age in close proximity (Walker & Syers 1976; Richardson et al. 2004). We focused on oomycetes as widespread pathogens that have been directly linked to plant succession and negative density-dependence in forest ecosystems, as well as forest die-back (Packer & Clay 2000). Using direct DNA sequencing from roots, we provide the first study of pathogen dynamics throughout ecosystem development from early-succession to retrogression, and find strong support for the role of oomycetes in early-succession but not in later stages of ecosystem development.

Methods
Study site and sampling

The Franz Josef chronosequence includes early successional (5, 15, 70 years of development), mature (280, 500, 1000, 5000, 12,000 years), and retrogressive (60,000, 120,000 years) sites. As soils age, there are dramatic changes in nutrient availability (declining P, increasing and then decreasing N), pH, and physical properties (Walker & Syers 1976). These changes are linked to changes in plant communities, with plant biomass increasing through succession to mature stages, and then entering retrogression where declining soil nutrients result in a concomitant decline in plant biomass, stature, and diversity (Richardson et al. 2004) and shifts in root traits (Holdaway et al. 2011). Vegetation shifts from a rock field with sparse herbaceous plants and sub-shrubs (5 years) to shrub land (15 years) to angiosperm forest (70 years), followed by an increasing dominance of large gymnosperm trees (Podocarpaceae) through mature stages, with an eventual decline in plant biomass, canopy height, and canopy closure in retrogression. Rainfall is high along the entire chronosequence, ranging from 3.5 to 6.5 m, and all sites are below 365 m elevation (Richardson et al. 2004).

In a previous study we collected 510 individual plant roots from ten sites along the chronosequence and characterized both plant identity and arbuscular mycorrhizal fungal communities in those roots (Martinez-Garcia et al. 2015). Here we use these same samples but used taxon-specific primers to amplify DNA from oomycetes. The collection of samples is described in full in Martinez-Garcia et al. (2015). In brief, we collected 51 individual root fragments, taking a single root fragment (approx. 15 mg dry weight) every 2 m along two parallel transects with equal sampling from three depths. For the 5-year-old site, which comprised sparse vegetation in rocks, we collected the nearest plant to the sample point and
sampled one root from that plant. This was a necessary given that most of the soil at the 5-
year-old site was root free. Roots from all sites were thoroughly rinsed in water and dried
before DNA extraction. DNA was extracted using a MoBio soil DNA kit, and plant species
identified by PCR amplification and DNA sequencing of the tRNl gene region, except for
the 5-year-old site, where the plant was already known due to collection method. The one
difference in the sampling between this study and the prior study (Martinez-Garcia et al.
2015) was that in the earlier paper a spare ("B") sample was used if the first ("A") sample
failed to yield both plant and arbuscular-mycorrhizal fungal PCR products. In the present
study we did not use the "B" samples, as it would have made quantification difficult.

Oomycete PCR and identification

We primarily based our oomycete detection, operational taxonomic unit (OTU) clustering,
and identification on a nested PCR of large-subunit (28S) DNA (supplementary methods). A
negative (omitting DNA template) and a positive control (including genomic DNA from a
Pythium species) were included in every PCR. PCR products were purified using DNA Clean
and Concentrator Kit (Zymo Research Corporation) prior to performing Sanger sequencing
(Canterbury Sequencing and Genotyping, University of Canterbury, New Zealand).

Some ecosystem ages had a high proportion of samples that failed to amplify a product of the
expected size in the first-round PCR. In order to ascertain whether these were true absences
of oomycetes or due to PCR inhibition, nine samples from each of these sites with the highest
failure rate (500, 100, 1200, 60 000 and 120 000 yrs) were tested for PCR inhibitors by
repeating PCR reactions in duplicate for each sample, with one of the duplicate reactions
spiked with 20 ng positive control DNA. Only one out of the 45 samples spiked with positive
control DNA failed to amplify, suggesting PCR inhibitors were not likely to be causing low
detection rates.

To confirm identities of sequenced oomycetes, samples that produced positive large subunit
PCR products were sequenced for the internal transcribed spacer (ITS) 1 region
(supplementary material). As DNA sequences were obtained from environmental samples
(root fragments) potentially containing multiple oomycetes, the ITS sequence may or may not
represent the same species as the 28S sequence. ITS sequences were therefore used to help
inform identification, but all analyses were based on the 28S results.

Sequence bioinformatics

All DNA sequences were matched against GenBank using BLAST to find the closest
matching sequence, and, where the closest match had no reliable taxonomic identity, the
closest matching sequence associated with a taxonomic identity. Sequences that matched
non-oomycete specimens were discarded. Three sequences had a closest match to a
Cercozoan sequence, but only at 78% identity. The phylogeny of Cercozoans remains
unclear, but some classifications place this group within the same kingdom (Chromista) as
oomycetes (Cavalier-Smith 2010). We therefore considered these three sequences to be
potentially basal oomycetes and retained them in the analysis. Out of 510 root samples, 122
had positive PCR products with oomycete primers. After filtering for sequence quality and
matching to an oomycete sequence, the final dataset contained 91 DNA sequences of
oomycetes with a mean sequence length of 310 bp. Plant IDs were obtained for 458 samples
overall and 86 of the 91 samples with oomycete products through DNA sequencing of the
trnL gene (Martinez-Garcia et al. 2015). We clustered sequences into OTUs using BLASTn
to merge any sequences with > 97% similarity over at least 95% of the shorter sequence length based on single-linkage clustering. Finally, we assembled all of our environmental DNA sequences and a selection of named sequences from GenBank to examine how our OTUs were reflected in phylogenetic clustering. Phylogenetic clustering was determined using Clustal Omega for alignment and ClustalW2 phylogeny based on both UPGMA clustering (ebi.ac.uk). The single-linkage BLAST clustering and phylogenetic clustering were broadly consistent.

Root traits

Root trait data (root diameter, root hairs per mm, and specific root length (SRL)) had been previously obtained for most of our plant species in Holdaway et al. (2011). Intraspecific root trait variability across sites is minimal (Holdaway et al. 2011). We collected new trait data for two species that were abundant in our data but missing from Holdaway et al. (2011), Raoulia hookeri and Epilobium glabellum. Additional trait data were obtained for Nertera depressa root diameter from Johnson (1976). Roots that could not be identified to species (e.g., Coprosma spp.) were excluded from root trait analysis due to high variability of traits within genus (Holdaway et al. 2011).

Vegetation cover

The percent cover of all vascular plants within sites was measured following standard protocols (Hurst & Allen 2007) in a 20 x 20 m area located within 50 m of the root sample transects. For testing H1.2 and 2.2 we used the mid-point of vegetation cover classes summed across height tiers as a measure of the abundance of each plant species. Vegetation data are

Statistics

Changes in the frequency of oomycetes as a function of site age were tested by treating site age as a factor, and as a function of successional stage were tested by treating age as a three-level factor. Sites were allocated to successional stage levels on the basis of soil nutrient concentrations, vegetation height, species richness and biomass, and plant traits (Walker & Syers 1976; Richardson et al. 2004). Early-successional sites (5, 15, 70 years) had abundant N-fixing trees; vascular plant traits of high foliar nutrient concentrations, low leaf mass per unit area; very high soil P, rapidly accumulating biomass and species richness of vascular plants, and increasing nitrate-N. Mature ecosystems (280 to 12 000 years) had slow rates of change in species richness, height and biomass among sites. These sites also had the highest biomass and plant diversity. Retrogressive sites (60 000, 120 000 years) had a decline in vegetation height, richness and biomass and exceptionally proficient phosphorus resorption (Richardson et al. 2005; Peltzer et al. 2010; Vitousek et al. 2010).

The significance of changes in the frequency of oomycetes as a function of site age (H1.1, 1.2 and 1.3) was tested using a chi-square test, treating site age as a factor. We tested changes in the frequency of oomycetes as a function of successional stage using a binomial glm, fitted with quasi-likelihood to account for over-dispersion. To test whether declining plant species had higher than random oomycete levels (H1.2), we calculated the change in cover of each plant species from one time point \(t_0\) to the next \(t_1\) as a log ratio (log((cover \(t_0\) +1) / (cover \(t_1\) +1))) and then used a binomial mixed effects model to test whether the presence / absence of oomycetes in root fragments at \(t_0\) could be predicted by change in cover from \(t_0\) to \(t_1\) across the nine intervals between site ages. This test was carried out using lmer in...
the R package lme4, with site age and plant species (to account for species occurring across multiple sites) as random effects and the canonical logit link function. For trait correlations, only observations with more than three root samples were included in order to have some degree of confidence in oomycete frequency estimation. We similarly tested the correlation between oomycete frequency and vegetation abundance as cover scores (H2.2) and root traits (H3.2), again using mixed effects models and including random terms for plant species and site. For all binary tests, over dispersion was tested using the Pearson residuals divided by degrees of freedom, tested against a chi-square distribution (from http://glmm.wikidot.com/start; accessed 10 July 2015). Host-specificity was tested within ecosystem age using chi-square tests.

Results

Oomycete frequency as a function of stage of ecosystem development (H1.1, 2.1 and 3.1)

In early-successional ecosystems (5, 15 and 70 years), 38 to 65% of root samples had oomycete DNA detected (Figure 1). In contrast, in mature and retrogressive ecosystems (280 to 120 000 years) an average of only 2% and never more than 8% of roots had oomycete DNA found (Figure 1; $\chi^2 = 194$, df = 9, $P < 2.2 \times 10^{-16}$). Treating the sites as representing three stages following our hypotheses, the early successional stages had a significantly higher frequency of oomycetes than mature stages (quasibinomial family glm; $t = -6.6$, $P = 0.00050$) or retrogressive stages ($t = -4.6$, $P = 0.0025$), and the difference between mature and retrogressive ecosystems was not significant ($t = -1.1$, $P = 0.32$).

Oomycete frequency as a function of plant strategies and traits (H1.2, 2.2, 3.2)
The frequency of oomycetes was significantly correlated with the decline of vegetation cover between ecosystem ages (Figure 2a, $z = -2.4$, $P = 0.018$), supporting hypothesis 1.2. There was no correlation between oomycete frequency and plant abundance ($z = 0.84$, $P = 0.40$). Of the root traits tested, root hair abundance was significantly correlated with oomycete frequency (Figure 2b, $z = 3.0$, $P = 0.003$), providing partial support for hypothesis 3.2, while other root traits were not significant (SRL, $z = 0.013$, $P = 0.99$; root diameter, $z = 0.82$, $P = 0.42$).

Oomycete diversity, host specificity and ecosystem age (H4)

A total of 37 different OTUs were found (Figure 3). Five OTUs were found more than 5 times. The most abundant OTU occurred 17 times, and had DNA-sequence affinities to *Lagena radicicola* and an uncultured oomycete from New York, USA agricultural soils (17 occurrences). Other abundant OTUs included an OTU matching *Pythium dissotocum* and *Pythium aquatile* (13 occurrences); *Pythium tracheiphilum* (6 occurrences); *Pythium volutum* (6 occurrences); and *Phytophthora hedraiandra* *(28S)* / *cactorum* *(ITS)* (5 occurrences).

Within ecosystem age there was a significantly non-random distribution of oomycete OTU identity across plant species at 5 ($\chi^2 = 42.96$, df = 12, p-value = 0.000022) and 15 years ($\chi^2 = 225.87$, df = 182, p-value = 0.015), but only marginally significant at 70 years ($\chi^2 = 109.85$, df = 90, p-value = 0.076; Figure 4). There were too few observations at the ecosystem stages after 70 years to meaningfully test for plant by OTU host-specificity at later ecosystem stages.
Discussion

Our results strongly support the importance of pathogens in early succession, with high frequencies observed in the three earliest ecosystem stages (5, 15, and 70 years) but oomycetes being present only at very low levels thereafter. Although the importance of pathogens is often discussed in the ecological literature (Bagchi et al. 2014), relatively few studies have actually quantified pathogen abundance in natural ecosystems (Gomez-Aparicio et al. 2012) and we believe our results are the first study of pathogenic organisms throughout a complete ecosystem development sequence. The community of oomycetes was diverse, including multiple *Pythium* and *Phytophthora* species and, surprisingly, a very abundant sequence matching *Lagena*, a pathogen previously only reported on grass, on *Raolia hookeri* (Asteraceae) and *Epilobium glabellum* (Onagraceae).

Pathogens as drivers in early successional ecosystems

The early succession hypothesis postulates that pathogens drive early-successional change in plant communities (Kardol et al. 2006). The high frequency of oomycetes in early successional ecosystems strongly supports this hypothesis. In addition, those plant species that had the highest frequency of oomycetes at a given ecosystem stage declined in percent cover most strongly before the next stage. The higher frequency of oomycetes on plant roots in early-successional ecosystems compared to mature and retrogressive ecosystems was not due to PCR inhibition in older sites, as samples spiked with positive control oomycete DNA showed no evidence of inhibition.

Oomycetes, particularly *Pythium*, are often tolerated by established plants, but prevent seedling establishment (Martin & Loper 1999; van der Putten 2003). The correlation of oomycete frequency with decline in cover may not, therefore, reflect a direct negative effect
of the pathogens on established plants. Instead, we suggest that these pathogens are primarily
preventing re-establishment of plants and hence contributing to vegetation change across
cohorts (van der Putten 2003).

Our definition of "early succession" comprises the major transition from rock field (5
years) to shrub land (15 years) to forest (70 years). Therefore our finding of high pathogen
levels is potentially consistent with Packer & Clay (2000), who found strong negative
feedback in a shade-intolerant, seral species (Prunus serotina) in a forest described as "at
least 70 years old" (Packer & Clay 2000).

Changes in oomycete frequency may, in part, reflect a substantial site-age effect and
direct effects of changing soil environments on oomycete populations, independent of
changing plant communities (akin to the “habitat” hypothesis for mycorrhizal fungi of Zobel
& Opik (2014). Meaningful testing of soil variables as predictors of oomycetes was not
possible, as the three early-successional sites had both uniformly high oomycete frequency
and uniformly high (pH, total P) or low (total C) soil measures. Thus, while we can conclude
that oomycetes were particularly abundant in early-successional ecosystems and on early-
successional plants, our data are insufficient to determine whether this was due to the
presence of particular plant hosts, or to soil abiotic conditions driving both host plants and
oomycete frequency (Martin & Loper 1999).

Oomycetes in mature ecosystems and forest diversity

The mature ecosystem hypothesis suggests that pathogens are important drivers of
diversity in mature forest ecosystems, with evidence from tropical and temperate forests
(Bagchi et al. 2010; Bagchi et al. 2014), although other studies have failed to support a role
of pathogens in mature ecosystems (Reinhart et al. 2012). Our finding of only low levels of
oomycetes on roots in mature ecosystems suggest that any role of pathogens in maintaining
mature forest diversity is unlikely to be driven by oomycete populations on the roots of
established plants. Further, we found no significant correlation between the abundance of a
particular tree species and its pathogen abundance, whereas the mature ecosystems
hypothesis would predict either a positive (Queenborough et al. 2007) or negative correlation
(Xu et al. 2015) depending on interpretation.

Our findings do not rule out negative density dependent mechanisms linking pathogen
infection to forest diversity, but suggest an important restriction of potential mechanisms. In
the original formulation, negative density dependent theories distinguished between distance-
dependent and density-dependent agents of seed and seedling mortality (Janzen 1970).
Distance-dependent agents are primarily driven by the presence of the parent tree itself, while
density-dependent agents are attracted by the density of seeds and seedlings around that tree.
While it was previously known that established plant individuals are less susceptible to
oomycetes than seedlings, we had limited prior knowledge of whether roots in mature
ecosystems tolerated oomycetes, hence supporting populations that could cause distance-
dependent mortality, or resisted oomycete infection altogether (c.f., Spear et al. 2015). Our
results suggest that roots of established plants in mature ecosystems are not supporting high
oomycete populations, implying that distance-dependent oomycete infection is not an
important driver of diversity, at least in this temperate rainforest. This is consistent with a
number of studies showing positive, rather than negative, effects of established plants on
conspecific seedlings (Simard & Durall 2004). On the other hand, our results do not rule out
density-dependent mechanisms driven by oomycetes on seedlings. A high density of
conspecific seedlings may still lead to increased risk of oomycete driven mortality, as has
been found in other studies (Bagchi et al. 2010).

While Packer and Clay (2000) clearly demonstrated oomycetes driving seedling
dynamics in a relatively young temperate forest, a more recent study by Bagchi and
colleagues (2014) in a tropical seasonal forest found that eliminating fungi alone had a stronger effect on negative density-dependence than eliminating both fungi and oomycetes. Further research is needed, but this may suggest that fungal pathogens are more important drivers of forest diversity in mature ecosystems than oomycetes.

Oomycetes in retrogression

Laliberté and colleagues (2015) suggested that root traits adapted to highly P-limited retrogressive ecosystems would increase susceptibility to root pathogens. Of the root traits we tested, only root hair abundance was correlated with a high frequency of oomycetes in roots. While this supports the general concept that root traits can determine pathogen susceptibility, species with root hair abundance shows no increase with ecosystem age at this site (Holdaway et al. 2011) and hence this correlation did not drive an increase in oomycete frequency during retrogression. Studies of oomycete populations in other retrogressive ecosystems will be needed to confirm our findings, but at present the suggestion of Laliberté and colleagues (2015) of increasing pathogen loads in retrogression is not supported by our findings, despite part of the mechanistic basis of that hypothesis (root traits determining pathogen loads) was supported at least in the case of root hairs.

In comparing our results to other studies, it may be important to distinguish between ecosystem age, as in the pedogenic sequence studied here, and response of pathogens to disturbance or secondary succession (e.g., Reinhart et al. 2010). None of our older sites showed any sign of stand-replacing disturbance in the past hundreds to thousand years, but smaller-scale disturbance is a normal part of ecosystem development (Peltzer et al. 2010). The retrogressive sites, in particular, have much younger vegetation (the oldest trees being no more than 1000 years old) than underlying soils, and were unlikely to have supported tall forests during the Pleistocene when these sites were exposed by glacial retreat.
Novel organisms or native?

Having baseline data on oomycete ecology may be important for understanding and managing future pathogen outbreaks. For example, *Phytophthora agathidicida* (= *Phytophthora* taxon *Agathis*) has been implicated as a cause of forest dieback of the iconic New Zealand-endemic *Agathis australis*, but, like other oomycete disease outbreaks, the origin of the species remains uncertain (Weir et al. 2015). The single-direction sequencing we performed directly from environmental samples was not designed for accurate phylogenetic classification, even with two gene regions sequenced per sample, but it does suggest considerable diversity of *Phytophthora*. We found sequences with affinities to a number of species already known to be present in New Zealand, including *P. cinnamomi*, *P. cactorum*, *P. infestans* and *P. kernovieae* (Scott & Williams 2014). Given that our samples came from relatively pristine ecosystems, we believe these OTUs are likely to be from native *Phytophthora*.

More surprising was that the most common OTU in our data had affinities to *Lagena radicicola* in both 28S and many of the ITS sequence results. *Lagena* is a monotypic genus widespread as a pathogen of grasses in North America (Blackwell 2011), but Barr and Désaulniers (1990) suggest it may be under-reported due to being morphologically very similar to *Pythium*, and not being easily culturable. Spores described as “resembling *Lagenocystis* [syn. *Lagena*] spp.” were noted by Skipp and Christensen (1989) in New Zealand *Lolium perenne* pastures, but our finding is the first report of a putative *Lagena* species outside of grasses. We believe this most likely reflects a lack of prior knowledge, as very few prior studies have used molecular methods to detect oomycetes from healthy forest ecosystems, and none of those have taken place in temperate southern hemisphere rainforest.
Our sampling of washed plant roots and choice of primers that preferentially amplify the Peronosporales focused our analysis on putative plant pathogens within the Oomycota occurring in soils. This is reflected in the affinity of most of our sequences to known plant pathogens. Nonetheless, we note that the Oomycota also includes animal pathogens and free-living saprotrophs as well as foliar pathogens; potential pools of species that were not likely to be included in our sampling.

Conclusions

Much of the Earth’s surface is covered in young, early successional ecosystems comparable to our early successional sites of 5, 15, and 70 years (Vitousek et al. 1997; Haddad et al. 2015). Our results support the concept that oomycete pathogens are a diverse part of these ecosystems. Further, the strong plant-host specificity and correlation of plant decline and oomycete frequency is consistent with the suggestion that these pathogens contribute to vegetation succession. While we do not find abundant oomycetes in older ecosystems, oomycete DNA was detected in all but one site. These low levels of oomycetes in roots, along with oospores in soil, may still be sufficient to prevent establishment of susceptible plant species or to drive pathogen outbreaks following external climatic stressors, but seem incompatible with density dependent mortality being driven by oomycetes on established plant roots.

Acknowledgements. We thank D. Peltzer for help with locating plots, characterising vegetation, and editorial input, R. Holdaway for helping with published root trait data, H. Ridgway for providing positive control DNA, N. Merrick for sequencing, R. Buxton and C. Morse for collecting additional plant trait data, and S. Wakelin, L. Condron, J. Bufford and the Mycorum discussion group at Lincoln University who provided valued advice and input.
Funding was provided by the Bio-Protection Research Centre (IAD, AMW, JMT), Lincoln University Research Fund (IAD, AMW), a Rutherford Fellowship (JMT), and Core Funding to Crown Research Institutes (LMG, SR).

Figure 1. Frequency of oomycetes on plant roots (%) as a function of ecosystem age. The 5, 15, and 70-year-old sites represent a successional sere from rock field through shrubland to angiosperm forest. Sites 280 to 5000 years of age are mature forest with high biomass and plant diversity, while after 12 000 to 60 000 years plant biomass, stature, and diversity decline due to retrogressive P-limitation.

Figure 2. The two significant predictors of oomycete frequency on roots: vegetation cover (a) and the abundance of root hairs (b), with circles representing each plant species between site transitions (a) or within site (b). Lines indicate random effects to account for site in a binary mixed effects model with random intercepts for site and plant species. Color coding in (a) reflects the site age at t₀ for each transition, hence no points for 120 000 years are shown.

Figure 3. Mapping of DNA sequences into OTUs and against known species. Phylogenetic clustering (at left) based on 28S gene of samples and a selection of named sequences from GenBank, using Clustal Omega 1.2.1 for alignment and phylogeny based on UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering. OTUs were based on pairwise BLASTn of 28S sequences at 97% similarity; resulting clusters shown as colored squares, with singletons shown as black squares. Bold indicates representative sequence from each non-singleton OTU accessioned into GenBank (numbers KU863588-KU863606). For each collection, the best matching 28S sequence name in GenBank is shown, followed by the
sequence similarity (%) / percent of query matched and the actual length of the query sequence (in bp). ITS1 sequences were obtained from most samples, best match in GenBank shown, again with % identity over % of query and query length. Where the ITS1 sequence is likely to be a different species sequenced from the same sample, this is indicated by parentheses.

Figure 4. Plant by site age visualisation of oomycete frequency within sampled roots. Each square represents a single root sample, with coloured squares indicating the presence of oomycete pathogens with black indicating an OTU found only once and other colours indicating the OTU groupings identified in figure 3. Grey dots indicate species not found in root samples for that site.

Supplemental files S1: Detailed molecular methods and discussion.

References

Change in cover from t_0 to t_1

\[\log \left(\frac{\text{Cover}_{t_0} + 1}{\text{Cover}_{t_1} + 1} \right) \]
The copyright holder for this preprint (which was posted online Mar. 4, 2016; doi: http://dx.doi.org/10.1101/042341) preprint first posted online Mar. 4, 2016; the copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.
Detailed molecular methods and discussion

Molecular methods

We primarily based our oomycete detection, operational taxonomic unit clustering, and identification on a nested PCR of large-subunit (28S) DNA. The primer pair LR0R: ACCCGCTGAACCTTAAGC (LoBuglio et al. 1991) and LR5: TCCTGAGGGAAACTTCG (Vilgalys & Hester 1990) was used for first-round PCR amplification, followed by using 1µL of a 10-fold dilution from this PCR product as the template for the second-round PCR amplification with Oom1F: GTGCGAGACCGATAGCGAACA and Oom1R: TCAAAGTCCCGAACAGCAACAA (Arcate et al. 2006) primers, fluorochrome-labelled with VIC and 6FAM respectively. PCR reactions for LR0R-LR5 were carried out in a 20 µl volume containing 2 µl 10X PCR Buffer, 1.5 mM MgCl₂, 0.2 mM dNTPs, 0.2 µM of each primer, 0.2 mg ml⁻¹ BSA, 0.8 U Roche Faststart Taq DNA Polymerase, and 1 µl DNA extract; with thermocycling of 94°C for 1 min, then 35 cycles at 94 °C for 30s, 47 °C for 30s and 72 °C for 60s, final extension at 72 °C for 7 min. PCR reactions for the Oom1F-Oom1R primer pair were the same, with the exception that MgCl₂ was 2.5 mM, annealing temperature of 57 °C, and extension time was 45 s with final extension of 10 min. A negative (omitting DNA template) and a positive control (including genomic DNA from a Pythium species) were included in every PCR. Our intention in using fluorochrome-labelled primers was to provide the option of performing tRFLP analysis. However, initial results suggested that most samples contained a single tRFLP type. We therefore moved to a direct-sequencing technique. PCR products were purified using DNA Clean and Concentrator Kit (Zymo Research Corporation) prior to performing Sanger sequencing (Canterbury Sequencing and Genotyping, University of Canterbury, New Zealand).
To confirm identities of sequenced oomycetes, samples that produced positive large subunit PCR products were sequenced for the ITS region. The oomycete specific primer pair OOMUP18Sc: TGCGGAAGGATCATTACCACAC (Lievens et al. 2004) and ITS2-OOM: GCAGCGTTCTTCATCGATGT (Lievens et al. 2006) was used to amplify the ITS1 gene region (~ 240 bp). PCR reactions were carried out in a 25 µl volume containing 2.5 µl 10X Ex Taq Buffer, 2 µl Ex Taq dNTP Mixture (2.5 mM each), 0.5 µl of 10 µM of each primer, 5 µl of 10 mg ml⁻¹ RSA, 1 U TaKaRa Ex Taq DNA Polymerase, and 1 µl DNA extract, and sterilized distilled water up to 25 µl; with thermocycling of 94 °C for 2 min, then 35 cycles at 94 °C for 30s, 60 °C for 30s and 72 °C for 60s, final extension at 72 °C for 7 min.

Additional root trait data

Two species were present on the 5 year site that had no previously measured root traits: *Epilobium glabellum* and *Raoulia hookeri*. Root traits were measured using the same methods as for the earlier data set (Holdaway et al. 2011). Diameters = 0.22 ± 0.015 mm and 0.28 ± 0.018 mm; specific root lengths = 1437 ± 147 and 2354 ± 387 cm g⁻¹; and root hairs = 9.3 ± 4.8 and 106 ± 3.4 hairs cm⁻¹ for *Epilobium glabellum* and *Raoulia hookeri*, respectively.

Supplemental discussion of methods

Using direct Sanger sequencing from environmental samples results in somewhat short and lower quality sequences than might be achievable with other methods, such as clone libraries. Nonetheless, direct sequencing is a cost-effective and efficient way of detecting and
identifying the oomycetes in samples with a single dominant DNA sequence. This greater cost-effectiveness allows greater investment in replication; a critical factor in ecological studies of cryptic organisms (Prosser 2010).

Most samples that produced a positive PCR product in large subunit sequencing also produced a positive PCR product with ITS primers. In most cases, the two sequences appear to represent the same species (Figure 3). The exceptions tended to be samples at the base of the phylogeny, matching *Spongospora, Albugo*, and *Sapromyces* in 28S and either failing to produce ITS PCR products at all, or producing ITS sequences that were distantly related. This suggests that the ITS primers were more specific to a subset of the Oomycota, and may omit some basal groups; while the 28S primers better amplify basal Oomycota but potentially amplify other Chromalveolata as well. Neither gene region was sufficient to identify all OTUs to species, largely reflecting the relative paucity of oomycota sequences in GenBank compared to better studied groups, such as fungi. Large subunit sequences also lacked resolution within *Phytophthora* compared to ITS sequences.

References

