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Abstract 29 

Bacterial genomes vary extensively in terms of both gene content and gene 30 

sequence – this plasticity hampers the use of traditional SNP-based methods for 31 

identifying all genetic associations with phenotypic variation. Here we introduce 32 

a computationally scalable and widely applicable statistical method (SEER) for 33 

the identification of sequence elements that are significantly enriched in a 34 

phenotype of interest. SEER is applicable to even tens of thousands of genomes 35 

by counting variable-length k-mers using a distributed string-mining algorithm. 36 

Robust options are provided for association analysis that also correct for the 37 

clonal population structure of bacteria. Using large collections of genomes of the 38 

major human pathogens Streptococcus pneumoniae and Streptococcus pyogenes, 39 

SEER identifies relevant previously characterised resistance determinants for 40 

several antibiotics and discovers potential novel factors related to the 41 

invasiveness of S. pyogenes. We thus demonstrate that our method can answer 42 

important biologically and medically relevant questions.  43 

  44 
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Introduction 45 

The rapidly expanding repositories of genomic data for bacteria hold an 46 

enormous and yet largely untapped potential for building a more detailed 47 

understanding of the evolutionary responses to changing environmental 48 

conditions, such as the widespread use of antibiotics and switches between host-49 

niche as farming practices change.  50 

 51 

Genome-wide association studies (GWAS) for bacterial phenotypes have only 52 

recently started to appear1–5. Use of standard GWAS methods developed 53 

originally for human SNP data have been shown to be successfully applicable to 54 

core genome mutations in bacteria2,3. However, given the high level of genome 55 

plasticity of many of the known bacterial species, we can anticipate that such 56 

methods can only partially identify genetic determinants of phenotypic variation. 57 

To enable discovery of mechanisms related for instance to gene content, 58 

alternative alignment-free methods have also been introduced1,4. These methods 59 

use k-mers, i.e. DNA words of length k, as generalized alternatives to SNPs as 60 

putative explanations for observed differences in phenotype distributions. The 61 

main advantage of k-mers is their ability to capture several different types of 62 

variation present across a collection of genomes, including mutations, 63 

recombinations, variable promoter architecture, differences in gene content as 64 

well as capturing these variations in regions not present in all genomes.    65 

 66 

The previous study using k-mers to overcome limitations of SNP-based 67 

association used Monte-Carlo simulations of word gain and loss along an 68 

inferred phylogeny to control for population structure1, whereas SNP-based 69 

studies have used clustering algorithms on a core alignment and stratified 70 

association tests on the resulting groups of samples2,3. The former does not scale 71 

computationally to the hundreds of isolates required to find lower effect-size 72 

associations, and the latter requires a core alignment, which lacks sensitivity and 73 

difficult to produce when there is a large number of samples, or they are 74 

particularly diverse. 75 

 76 
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Here we present a sequence element enrichment analysis (SEER), a method 77 

computationally scalable to tens of thousands of genomes, implemented as a 78 

stand-alone pipeline that uses either de novo assembled contigs or raw read data 79 

as input. We apply SEER to both simulated and real data from large and diverse 80 

populations, and show that it can accurately detect associations with antibiotic 81 

resistance caused by both presence of a gene and by SNPs in coding regions, as 82 

well as discover novel invasiveness factors.  83 

 84 

Results 85 

Implementation 86 

SEER implements and combines three key insights which we discuss in turn: an 87 

efficient scan of all possible k-mers with a distributed string mining algorithm, 88 

an appropriate alignment-free correction for clonal population structure, and a 89 

fast and fully robust association analysis of all counted k-mers. 90 

 91 

K-mers allow simultaneous discovery of both short genetic variants and entire 92 

genes associated with a phenotype. Longer k-mers provide higher specificity but 93 

less sensitivity than shorter k-mers. Rather than arbitrarily selecting a length 94 

prior to analysis or having to count k-mers at multiple lengths and combine the 95 

results, we provide an efficient implementation that allows counting and testing 96 

simultaneously at all k-mers at lengths over 9 bases long.  97 

 98 

We offer three different methods to count k-mers in all samples in a study. For 99 

very large studies, or for counting directly from reads rather than assemblies, we 100 

provide an implementation of distributed string mining (DSM)6,7 which limits 101 

maximum memory usage per core, but requires a large cluster to run. For data 102 

sets up to around 5 000 sample assemblies we have implemented a single core 103 

version fsm-lite (https://github.com/nvalimak/fsm-lite). For comparison with 104 

older datasets, or where resources do not allow the storage of the entire k-mer 105 

index in memory, DSK8 is used to count a single k-mer length in each sample 106 

individually, the results of which are then combined. 107 

 108 
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To correct for the clonal population structure of bacterial populations, a distance 109 

matrix is constructed from a random subsample of these k-mers, on which multi-110 

dimensional scaling is performed (Supplementary figure 1). Compared with 111 

modelling SNP variation9, use of k-mers as variable sequence elements has been 112 

previously shown to accurately estimate bacterial population structure. The 113 

projections of each sample in three dimensions are used as covariates to control 114 

for the clonal population structure. Simulations of bacterial genomes using a 115 

known tree showed this method gave a higher resolution control than using only 116 

population clustering (Supplementary figure 2). Before testing for association we 117 

filter k-mers based on their frequency and unadjusted p-value to reduce false 118 

positives from testing underpowered k-mers and reduce computational time. 119 

 120 

Then, for each k-mer, a logistic curve is fitted to binary phenotype data, and a 121 

linear model to continuous data, using a time efficient optimisation routine to 122 

allow testing of all k-mers. Bacteria can be subject to extremely strong selection 123 

pressures, producing common variants with very large effect sizes, such as 124 

antibiotics inducing resistance-conferring variants. This can make the data 125 

perfectly separable, and consequently the maximum likelihood estimate ceases 126 

to exist for the logistic model. Firth regression10 has been used to obtain results 127 

in these cases. 128 

 129 

For the basal cut-off for significance we use p < 0.05, which in our testing we 130 

conservatively Bonferroni corrected to the threshold 1x10-8 based on every 131 

position in the S. pneumoniae genome having three possible mutations11, and all 132 

this variation being uncorrelated. This is a strict cut-off level that prevents a 133 

large number of false-positives due to the extensive amount of k-mers being 134 

tested, but does not over-penalise by correcting directly on the basis of the 135 

number of k-mers counted. Simulations suggested a cut-off of 1.4x10-8 would be 136 

appropriate, supporting this reasoning. Association effect size and p-value of the 137 

MDS components can also be included in the output, to compare lineage and 138 

variant effects on the phenotype variation. 139 

 140 
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K-mers reaching significance are filtered post-association and mapped onto both 141 

a well-annotated reference sequence and the annotated draft assemblies to allow 142 

discovery of variation in accessory genes not present in the reference strain. The 143 

significant k-mers themselves can also be assembled into a longer consensus 144 

sequence. Annotating variants by predicted function and effect (against a 145 

reference sequence) in the resulting k-mers facilitates fine-mapping of SNPs and 146 

small indels. 147 

 148 

Meta-analysis of association studies increases sample size, which improves 149 

power and reduces false-positive rates12. To facilitate meta-analysis of k-mers 150 

across studies, the output of SEER includes effect size, direction and standard 151 

error, which can be used directly with existing software to meta-analyse all 152 

overlapping k-mers. 153 

 154 

SEER is implemented in C++, and available at https://github.com/johnlees/seer 155 

as source code and a pre-compiled binary. 156 

Application to simulated data 157 

To test the power of SEER across different sample sizes, we simulated 3 069 158 

Streptococcus pneumoniae genomes from the phylogeny observed in a Thai 159 

refugee camp13 using parameters estimated from real data including 160 

accumulation of SNPs, indels (Supplementary figure 3), gene loss and 161 

recombination events. Using knowledge of the true alignments, we then 162 

artificially associated an accessory gene with a phenotype over a range of odds-163 

ratios and evaluated power at different sample sizes (Fig. 1a). The expected 164 

pattern for this power calculation is seen, with higher odds-ratio effects being 165 

easier to detect. Currently detected associations in bacteria have had large effect 166 

sizes (OR > 28 host-specificity1, OR > 3 beta-lactam resistance2), and the required 167 

sample sizes predicted here are consistent with these discoveries. 168 

 169 

The large k-mer diversity, along with the population stratification of gene loss, 170 

makes the simulated estimate of the sample size required to reach the stated 171 

power clearly conservative. Convergent evolution along multiple branches of a 172 
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phylogeny for a real population reacting to selection pressures will reduce the 173 

required sample size14. 174 

 175 

We also used k-mers counted at constant lengths by DSK to perform the gene 176 

presence/absence association (Fig. 1b). Counting all informative k-mers rather 177 

than a range of pre-defined k-mer lengths gives greater power to detect 178 

associations, with 80% power being reached at around 1 500 samples, compared 179 

with 2 000 samples required by the pre-defined lengths. The slightly lower 180 

power at low sample numbers is due to a stricter Bonferroni adjustment being 181 

applied to the larger number of DSM k-mers over the DSK k-mers. This is exactly 182 

the expected advantage from including shorter k-mers to increase sensitivity, but 183 

as k-mers are correlated with each other due to evolving along the same 184 

phylogeny, using the same Bonferroni correction for multiple testing does not 185 

decrease specificity. 186 

 187 

The strong linkage disequilibrium (LD) caused by the clonal reproduction of 188 

bacterial populations means that non-causal k-mers may also appear to be 189 

associated. This is well documented in human genetics; non-causal variants tag 190 

the causal variant increasing discovery power, but make it more difficult to fine-191 

map the true link between genotype and phenotype15. In simulations it is difficult 192 

to replicate the LD patterns observed in real populations, as recombination maps 193 

for specific bacterial lineages are not yet known. To evaluate fine-mapping 194 

power of a SNP we instead used the real sequence data and simulated 195 

phenotypes based on changing the effect size of a known causal variant and 196 

evaluating the physical distance of significant k-mers from the variant site. 197 

 198 

Using DSM we counted 68M k-mers which we then tested for association. The 199 

2 639 significant k-mers were placed into three categories if after mapping to a 200 

reference genome they contained the causal variant I100L (10), were within the 201 

same gene (74), or within 2.5kb in either direction (207). Figure 1c) shows the 202 

resulting power when random subsamples of the population are taken. As 203 

expected, power is higher when not specifying that the causal variant must be 204 
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hit, as there are many more k-mers which are in LD with the SNP than directly 205 

overlapping it, thus increasing sensitivity. 206 

Confirmation of known resistance mechanisms in a large population of S. 207 

pneumoniae 208 

SEER was applied to the sequenced genomes from the study described above, 209 

using measured resistance to five different antibiotics as the phenotype: 210 

chloramphenicol, erythromycin, β-lactams, tetracycline and trimethoprim. 211 

Chloramphenicol resistance is conferred by the cat gene on the integrative 212 

conjugative element (ICE) Tn5253 in the S. pneumoniae chromosome, and 213 

similarly tetracycline resistance is conferred by the tetM gene which is also 214 

carried on the ICE16. For both of these drug resistance phenotypes the ICE 215 

contains 99% of the significant k-mers, and the causal genes rank highly within 216 

the clusters (Table 1, Supplementary figure 4). 217 

 218 

Resistance to erythromycin is also conferred by presence of a gene, but there are 219 

multiple genes that can perform the same function (ermB, mef, mel)17. In the 220 

population studied, this phenotype was strongly associated with two large 221 

lineages (Supplementary figure 5), making the task of disentangling association 222 

with a lineage versus a specific locus more difficult. Significant k-mers are found 223 

in the mega and omega cassettes, which carry the mel/mef and ermB resistance 224 

elements respectively. Some k-mers do not map to the reference, as they are due 225 

to lineage specific associations with genetic elements not found in the reference 226 

strain. This highlights both the need to map to a close reference or draft 227 

assembly to interpret hits, as well as the use of functional follow-up to validate 228 

potential hits from SEER. 229 

 230 

Multiple mechanisms of resistance to β-lactams are possible2. Here, we consider 231 

just the most important (i.e. highest effect size) mutations, which are SNPs in the 232 

penicillin binding proteins pbp2x, pbp2b and pbp1a. In this case looking at 233 

highest coverage annotations finds these genes, but is not sufficient as so many 234 

k-mers are significant – either due to other mechanisms of resistance, physical 235 

linkage with causal variants or co-selection for resistance conferring mutations. 236 

Instead, looking at the k-mers with the most significant p-values gives the top 237 
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four hit loci as pbp2b (p=10-132), pbp2x (p=10-96), putative RNA pseudouridylate 238 

synthase UniParc B8ZPU5 (p=10-92) and pbp1a (p=10-89). The non-pbp hit is a 239 

homologue of a gene in linkage disequilibrium with pbp2b, which would suggest 240 

mismapping rather than causation of resistance. 241 

 242 

Trimethoprim resistance in S. pneumoniae is conferred by the SNP I100L in the 243 

folA/dyr gene18. The dpr and dyr genes, which are adjacent in the genome, have 244 

the highest coverage of significant k-mers (Fig. 2). Following our fine-mapping 245 

procedure, we call four high-confidence SNPs that are predicted to be more likely 246 

to affect protein function than synonymous SNPs. One is the causal SNP, and the 247 

others appear to be hitchhikers in LD with I100L. By evaluating whether sites are 248 

conserved across the protein family19, the known causal SNP is ranked as the 249 

highest variant, showing that in this case fine-mapping is possible using the 250 

output from SEER. 251 

 252 

We then compared the results from SEER with the results from two existing 253 

methods (as described in online methods). The first method uses mapping of 254 

SNPs against a reference, followed by applying the Cochran–Mantel–Haenszel 255 

test at every variable site2. The second uses dsk8 to count k-mers of length 31, 256 

and a highly robust correction for population structure which scales to around 257 

100 genomes1. 258 

 259 

The results are shown in supplementary table 1. Both SEER and association of a 260 

core mapping of SNPs identify resistances caused by presence of a gene, when it 261 

is present in the reference used for mapping. Both produce their most significant 262 

p-values in the causal element, though SEER appears to have a lower false-263 

positive rate. However, as demonstrated by chloramphenicol resistance, if not 264 

enough SNP calls are made in the causal gene this hinders fine-mapping. SNP-265 

mediated resistance showed the same pattern since many other SNPs were 266 

ranked above the causal variant. In the case of β-lactam resistance both methods 267 

seem to perform equally well, likely due to the higher rate of recombination and 268 

the creation of mosaic pbp genes. 269 

 270 
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Additionally, as for erythromycin resistance, when an element is not present in 271 

the reference SNPs have been called against it is not detectable in SNP-based 272 

association analysis. In such cases multiple mappings against other reference 273 

genomes would have to be made, which is a tedious and computationally costly 274 

procedure. Alternatively a draft assembly with the phenotype from the study 275 

could be picked as a second reference to map to, however this may be lower 276 

quality than those in public databases picked by genetic content rather than 277 

phenotype, and would not necessarily be able to detect multiple genetic 278 

mechanisms (as in the case of erythromycin resistance, no single sequenced 279 

genome contains all known resistance mechanisms).  280 

 281 

Since the k-mer results from SEER are reference-free, these issues are avoided as 282 

just the significant k-mers can quickly be mapped to all available references. 283 

Alternatively, the significant k-mers can be mapped to all draft assemblies in the 284 

study, at least one of which is guaranteed to contain the k-mer, to check if any 285 

annotations are overlapped. 286 

 287 

For the small sample, 31mer approach significance was not reached for 288 

chloramphenicol, tetracycline or trimethoprim as the effect size of any k-mer is 289 

too small to be detected in the number of samples accessible by the method. 290 

Erythromycin had 19 307 hits, and β-lactams 419 hits, at between 1-2% MAF 291 

which are all false positives that would likely have been excluded by a fully 292 

robust population structure correction method. 293 

Discovery of conjugative elements associated with Streptococcus pyogenes 294 

isolation location and invasiveness 295 

Most bacterial GWAS studies to date have searched for genotypic variants that 296 

contribute towards or completely explain antibiotic resistance phenotypes. As a 297 

proof of principle that SEER can be used for the discovery stage of sequence 298 

elements associated with other clinically important phenotypes, we applied our 299 

tool to 675 S. pyogenes (group A Streptococcus) genomes from invasive and non-300 

invasive isolates. 301 

 302 
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The top hit was the tetM gene in a conjugative transposon (Tn916) carried by 303 

23% of isolates (Supplementary figures 6 and 7). These elements are variably 304 

present in the chromosome of S. pyogenes20, and the lack of co-segregation with 305 

population structure explains our power to discover the association. However, as 306 

a different proportion of the isolates from each collection were invasive (Fiji – 307 

13%; Kilifi – 43%), the significant k-mers will also include elements specific to 308 

Kilifi. Indeed, we found that this version of Tn916 was never present in genomes 309 

collected from Fiji. When country of isolation was included as a covariate in the 310 

regression, these hits were no longer significant – highlighting the importance of 311 

such considerations in performing association studies in large bacterial 312 

populations.  313 

 314 

After applying this correction, we find two significant hits (Supplementary figure 315 

8). The first corresponds to SNPs associating a specific allele of pepF 316 

(Oligoendopeptidase F; UniProt:P54124) with invasive isolates. This could 317 

indicate a recombination event, due to the high SNP density and discordance 318 

with vertical evolution with respect to the inferred phylogeny21,22. The second hit 319 

represents SNPs in the intergenic region upstream of both IgG-binding protein H 320 

and nrdI (ribonucleotide reductase). If this were found to affect expression of the 321 

IgG-binding protein, this would be a plausible novel genetic mechanism affecting 322 

pathogenesis23,24. 323 

 324 

The association of both of these variations would have to be validated either in 325 

vitro or a replication cohort, and functional follow-up such as RNA-seq may also 326 

further help with their interpretation. 327 

 328 

Applying a Cochran-Mantel-Haenszel test to SNPs called against a reference 329 

sequence found no sites significantly associated with invasiveness. The tetM 330 

gene and transposon are not found in the reference sequence, and therefore 331 

cannot be discovered by this method. The population structure is so diverse that 332 

88 different clusters are found, which overcorrects leaving too few samples 333 

within each group to have power to discover associations. 334 
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Discussion 335 

SEER is a reference-independent, scalable pipeline capable of finding bacterial 336 

sequence elements associated with a range of phenotypes while controlling for 337 

clonal population structure. The sequence elements can be interpreted in terms 338 

of protein function using sequence databases, and we have shown that even 339 

single causal variants can be fine-mapped using the SEER output. 340 

 341 

Our use of all informative k-mers together with robust regression methods, and 342 

the ability to analyse very large sample sizes show improved sensitivity over 343 

existing methods. This provides a generic approach capable of analysing the 344 

rapidly increasing number of bacterial whole genome sequences linked with a 345 

range of different phenotypes. The output can readily be used in a meta-analysis 346 

of sequence elements to facilitate the combination of new studies with published 347 

data, increasing both discovery power and confirming the significance of results. 348 

As with all association methods, our approach is limited by the amount of 349 

recombination and convergent evolution that occurs in the observed population, 350 

since the discovery of causal sequence elements is principally constrained by the 351 

extent of linkage disequilibrium. However, by introducing improved 352 

computational scalability and statistical sensitivity SEER significantly pushes the 353 

existing boundaries for answering important biologically and medically relevant 354 

questions. 355 

Online methods 356 

Counting informative k-mers in samples 357 

Over all N samples, all k-mers over 9 bases long that occur in more than one 358 

sample are counted. All non-informative k-mers are omitted from the output; a 359 

k-mer X is not informative if any one base extension to the left (aX) or right (Xa) 360 

has exactly the same frequency support vector as X. The frequency support 361 

vector has N entries, each being the number of occurrences of k-mer X in that 362 

sample. Further filtering conditions are explained in the sections below. 363 

 364 

Distributed string mining (DSM)6,7 parallelises to as much as one sample per 365 

core, and either 16 or 64 master server processes. DSM includes an optional 366 
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entropy-filtering setting that filters the output k-mers based on both number of 367 

samples present and frequency distribution. On our 3 069 simulated genomes 368 

this took 2 hrs 38 min on 16 cores, and used 1Gb RAM. The distributed approach 369 

is applicable up to terabytes of short-read data7, but requires a cluster 370 

environment to run. As an easy-to-use alternative, we propose a single core 371 

version of DSM that is applicable for gigabyte-scale data. We implemented the 372 

single core version based on a succinct data structure library25 to produce the 373 

same output as DSM. On 675 S. pyogenes genomes this took 3hrs 44min and used 374 

22.3Gb RAM. 375 

 376 

To count single k-mer lengths, an associative array was used to combine the 377 

results from DSK in memory. We concatenated results from k-mer lengths of 21, 378 

31 and 41, as in previous studies1. This can scale to large genome numbers by 379 

instead using external sorting to avoid storing the entire array in memory. 380 

Filtering k-mers 381 

K-mers are filtered if either they appear in <1% or >99% of samples, or are over 382 

100 bases long. We also test if the p-value of association in a simple χ2 test (1 383 

d.f.) is less than 10-5, as in simulations this was true for all true positives. In the 384 

case of a continuous phenotype a Welch two-sample t-test is used instead. 385 

Covariates to control for population structure 386 

A random sample of between 0.1% and 1% of k-mers appearing in between 5-387 

95% of isolates is taken. We then construct a pairwise distance matrix D, with 388 

each element being equal to a sum over all m sampled k-mers: 389 

��� � � ���� � ����
�

 

where kim is 1 if the mth sampled k-mer is present in sample i, and 0 otherwise. 390 

 391 

Metric multi-dimensional scaling is then performed, projecting these distances 392 

into three dimensions. The normalised eigenvectors of each dimension are used 393 

as covariates in the regression model. The number of dimensions used is a user-394 

adjustable parameter, and can be evaluated by the goodness-of-fit and the 395 

magnitude of the eigenvalues. In species tree with two lineages and 96 isolates 396 
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one dimension was sufficient as a population control, whereas for the larger 397 

collection of 3069 isolates 10-15 dimensions were needed to give tight control 398 

(Supplementary figure 9). Over all our studies, generally three dimensions 399 

appeared a good trade-off between sensitivity and specificity. 400 

Logistic and linear regression 401 

For samples with binary outcome vector y, for each k-mer a logistic model is 402 

fitted: 403 

log 
 �
� � � � �� 

where absence and presence for each k-mer coded as 0 and 1 respectively in 404 

column 2 of the design matrix X (column 1 is a vector of ones, giving an intercept 405 

term). Subsequent columns j of X contain the eigenvectors of the MDS projection, 406 

user-supplied categorical covariates (dummy encoded), and quantitative 407 

covariates (normalised). The BFGS algorithm is used to maximise the log 408 

likelihood L in terms of the gradient vector β (using an analytic expression for 409 

d(log L)/dβ): 410 

log � � � �� �  log �sig������ � �1 � ��� �  log �sig�1 � �����
�

 

where sig is the sigmoid function. If this fails to converge, n Newton-Raphson 411 

iterations are applied to β: 412 

���� � �� � ������������ � ������ 

from a starting point using the mean phenotype as the intercept, and the root-413 

mean squared beta from a test of k-mers passing filtering 414 

��,� � Σ��  

��,�
� � 0.1 

which is slower, but has a higher success rate. If this fails to converge due to the 415 

observed points being separable in the high dimensional space, or the standard 416 

error of the slope is greater than 3 (which empirically indicated almost separable 417 

data, with no counts in one element of the contingency table), Firth logistic 418 

regression10 is then applied. This adds an adjustment to log L: 419 

log ����� � log ���� �  12 � log $���
���

���$ 
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using which Newton-Raphson iterations are applied as above. 420 

 421 

In the case of a continuous phenotype a linear model is fitted: 422 

% � &� 

The squared distance U(β) 423 

'��� �  (� � &�(� 

is minimised using the BFGS algorithm. If this fails to converge then the analytic 424 

solution is obtained by orthogonal decomposition: 425 

& � )* 

then back-solving for β in: 426 

*� � )T� 

 427 

In both cases the standard error on β1 is calculated by inverting the Fisher 428 

information matrix d2L/dβ2 (inversions are performed by Cholesky 429 

decomposition, or if this fails due to the matrix being almost singular the Moore-430 

Penrose pseudoinverse is taken) to obtain the variance-covariance matrix. The 431 

Wald statistic is calculated with the null hypothesis of no association (β1 = 0): 432 

+ �  ��SE���� 

which is the test statistic of a χ2 distribution with 1 d.f. This is equivalent to the 433 

positive tail of a standard normal distribution, the integral of which gives the p-434 

value. To calculate an empirical significance testing cut-off for the p-value under 435 

multiple correlated tests, we observed the distribution of p-values from 100 436 

random permutations of phenotype. Setting the family-wise error rate (FWER) at 437 

0.05 gave a cut-off of 1.4x10-8. 438 

SEER implementation 439 

SEER is implemented in C++ using the armadillo linear algebra library26, and dlib 440 

optimisation library27. On a simulation of 3 069 diverse 0.4Mb genomes, 143M k-441 

mers were counted by DSM and 25M 31-mers by DSK. On the largest DSM set, 442 

using 16 cores and subsampling 300 000 k-mers (0.2% of the total), calculating 443 

population covariates took 6hr 42min and 8.33GB RAM. This step is O(N2M) 444 
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where N is number of samples and M is number of k-mers, but can be 445 

parallelised across up to N2 cores.  446 

 447 

Processing all 143M informative k-mers as described took 69min 44s and 23MB 448 

RAM on 16 cores. This step is O(M) and can be parallelised across up to M cores. 449 

 450 

On the real dataset of full length genomes the 68M informative k-mers counted 451 

was less than the simulated dataset above, as the parameters of the simulation 452 

created particularly diverse final genomes. 453 

Interpreting significant k-mers 454 

K-mers reaching the threshold for significance are then post-association filtered 455 

requiring β1 > 0 as a negative effect size does not make biological sense. 456 

Remaining k-mers are searched for by exact match in their de novo assemblies, 457 

and annotations of features examined for overlap of function. BLAT28 is also used 458 

with a step size of 2 and minimum match size of 15 to find inexact but close 459 

matches to a well annotated reference sequence. 460 

 461 

To better search for gene clusters associated with phenotype, these k-mers are 462 

assembled using Velvet29 choosing a smaller sub-k-mer size which maximises 463 

longest contig length of the final assembly. K-mers which are then substrings of 464 

others significant k-mers are removed. 465 

Mapping of a single SNP 466 

Using the BLAT mapping of significant k-mers to a reference sequence, SNPs are 467 

called using bcftools30. Quality scores for a read are set to be identical, and are 468 

set as the Phred-scaled Holm-adjusted p-values from association. High quality 469 

(QUAL > 100) SNPs are then annotated for function using SnpEff31, and the effect 470 

of missense SNPs on protein function is ranked using SIFT19. 471 

Comparison to existing methods 472 

We compare to two existing methods. The first uses a core-genome SNP mapping 473 

along with population clusters defined from the same alignment to perform a 474 

Cochran-Mantel-Haenszel test at every called variant site2. The second uses a  475 
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fixed k-mer length of 31 as counted by dsk8, with a Monte Carlo phylogeny-based 476 

population control1.  As the second method is not scalable to this population size 477 

we used our population control as calculated from all genomes in the population, 478 

and a subsample of 100 samples to calculate association statistics, which is 479 

roughly the number computationally accessible by this method. In both cases, 480 

the same Bonferroni correction is used as for SEER. 481 

Simulating bacterial populations 482 

A random subset of 450 genes from the Streptococcus pneumoniae ATCC 483 

70066916 strain were used as the starting genome for ALF32. ALF simulated 3069 484 

final genomes along the phylogeny observed in a Thai refugee camp13. An 485 

alignment between S. pneumoniae strains R6, 19F and Streptococcus mitis B6 486 

using Progressive Cactus was used to estimate rates in the GTR matrix and the 487 

size distribution of insertions and deletions (INDELs – Supplementary figure 3). 488 

Previous estimates for the relative rate of SNPs to INDELs33 and the rate of 489 

horizontal gene transfer and loss13 were used. 490 

pIRS34 was used to simulate error-prone reads from genomes at the tips of the 491 

tree, which were then assembled by Velvet29. DSM was used to count k-mers 492 

from these de novo assemblies. 493 

 494 

To test the similarity of the population control to existing methods, 96 full 495 

Streptococcus pneumoniae ATCC 700669 genomes were evolved with ALF. 496 

Intergenic regions were also evolved using Dawg35 at a previously determined 497 

rate36. These were combined, and assemblies generated and k-mers counted as 498 

above. A distance matrix was created from 1% of the k-mers as described above, 499 

and a neighbour-joining tree produced from this. 500 

 501 

The resulting tree was ranked against the true tree by counting one for each pair 502 

of isolates in each BAPS37 cluster which had an isolate not in the same BAPS 503 

cluster as a descendent of their MRCA. 504 

Simulating phenotype based on genotype and odds-ratio 505 

Ratio of cases to controls in the population (SR) was set at 50% to represent 506 

antibiotic resistance, and a single variant (gene presence/absence or a SNP) was 507 
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designated as causal. Minor allele frequency (MAF) in the population is set from 508 

the simulation, and odds-ratio (OR) can be varied. The number of disease cases 509 

DE is then the solution to a quadratic equation38, which is related to probability of 510 

a sample being a case by: 511 

.
case|exposed

 �  /�MAF 

.
case| not exposed

 �  
3�3� � 1 �  /�

1 � MAF  

The population was then randomly subsampled 100 times, with case and control 512 

status assigned for each run using these formulae. Power was defined by the 513 

proportion of runs that had at least one k-mer in the gene associated with 514 

phenotype reaching significance. 515 

Elements enriched in S. pyogenes invasiveness 516 

We sequenced 675 isolates of S. pyogenes on the Illumina HiSeq platform, of 517 

which 347 were from Fiji and 328 were from Kilifi39. We defined those isolated 518 

from blood, cerebrospinal fluid (CSF) or broncho-pulmonary aspirate as invasive 519 

(n = 185), and those isolated from throat, skin or urine as non-invasive (n = 490). 520 

Including country as a categorical covariate was necessary, as without doing so 521 

many elements which stratify by isolate collection appear as significant. The 522 

SEER pipeline was run as described, yielding 1233 k-mers which exceeded the 523 

threshold for significance.  524 

 525 

BLAST of the k-mers with the nr/nt database was used to determine a suitable 526 

reference to map to, and after mapping SNPs were called as above. 527 
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Figure Captions 659 

Fig. 1: Using simulations and subsamples of the population as described in the 660 

online methods, power for a) detecting gene presence/absence at different odds-661 

ratios b) using all informative k-mers versus a single length c) detecting k-mers 662 

near, in the correct gene, or containing the causal variant for trimethoprim 663 

resistance. All curves are logistic fits to the mean power over 100 subsamples. 664 

 665 

Fig. 2: Fine mapping trimethoprim resistance. The locus pictured contains 72 666 

significant k-mers, the most of any gene cluster. Coverage over the locus is 667 

pictured at the bottom of the figure. Shown above the genes are high quality 668 

missense SNPs, plotted using their p-value for affecting protein function as 669 

predicted by SIFT. 670 
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Figures 671 

Fig. 1  672 

 673 
Fig. 2 674 

 675 

Tables 676 

 677 

Table 1: Results from SEER for antibiotic resistance binary outcome on a 678 

population of 3069 S. pneumoniae. Significant k-mers are first interpreted by 679 

mapping to the ATCC 700669 reference genome. Up to the first four highest 680 

covered annotations are shown, and if the known mechanism is amongst these it 681 

is highlighted in orange. The ICE is the top hit in three analyses, as it carries 682 
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multiple drug-resistance elements and is commonly found in multi-drug 683 

resistant strains16. The distribution of phenotype across the phylogeny is shown 684 

in Supplementary figure 5. 685 

  686 
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Supplementary data 687 

 688 

Supplementary table 1: Comparison of SEER with results from existing 689 

methods in finding genetic associations with antibiotic resistance in the 690 

Chewapreecha et. al. study of 3069 Thai carriage S. pneumoniae samples. For 691 

each of the five antibiotics, the true causal variant is listed, as are the number of 692 

hits passing the significance threshold for each method (plink and dsk) and the 693 

number which map to the correct region. 694 

 695 

696 
  697 
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 698 

Supplementary figure 1: Plot of the k-mer distances projected into three 699 

dimensions by MDS for the Chewapreecha et. al. study of 3069 Thai carriage S. 700 

pneumoniae samples. Shade from black to red is by y-coordinate (2nd MDS 701 

component). 702 
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Supplementary figure 2: a) Tree used for Monte Carlo simulations of 96 S. 704 

pneumoniae genomes. b) UPGMA tree from k-mer distance matrix produced from 705 
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simulated reads. Colours are hierBAPS clusters. 706 
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 709 

Supplementary figure 3: Estimated size distribution for INDELs, as estimated 710 

from a Progressive Cactus alignment of three members of the Streptococcus 711 

genus. A power law p=Lk (Zipfian function; p is probability, L is INDEL length, k is 712 

a free parameter) is fit to the data, the parameter k is used in the simulations. 713 
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 716 
 717 

Supplementary figure 4: JScandy view of ATCC 700669 reference genome (blue 718 

blocks at top genes on forward and reverse strands) and Manhattan plot of start 719 

positions of the 1 508 of 1 526 k-mers significantly associated with 720 

chloramphenicol resistance which map to the integrative conjugative element 721 

(ICE) Tn5253. The hits are all in within the ICE, and the most significant hits 722 

cluster around the cat gene (which is outlined in red). 723 
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 726 

Supplementary figure 5: Neighbour joining tree from Chewapreecha et. al. 727 

study of 3069 Thai carriage S. pneumoniae samples, from a SNP alignment 728 

produced by mapping to the ATCC 700669 reference strain. Outer ring: red if 729 

resistant to Erythromycin, grey if sensitive. 730 
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 732 
 733 

Supplementary figure 6: JSCandy view of S. pyogenes metadata on the right, 734 

showing whether isolates are invasive/non-invasive (orange/purple), presence 735 

of tetM (orange – absent, purple – present) and country of isolation (orange – 736 

Fiji, purple – Kilifi). Tree from a core genome alignment of all isolates is drawn 737 

on the left, with tips aligned to the metadata.  738 
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 739 
Supplementary figure 7: JScandy view of S. pyogenes HKU488 reference 740 

genome (blue blocks at top genes on forward and reverse strands, tetM 741 

highlighted in red) and Manhattan plot of start positions of k-mers significantly 742 

associated with invasiveness when not adjusted for country of origin.  743 

 744 

  745 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/038463doi: bioRxiv preprint 

https://doi.org/10.1101/038463
http://creativecommons.org/licenses/by/4.0/


 746 

 747 

Supplementary figure 8: As supplementary figure 7, except with the Manhattan 748 

plot showing p-values when adjusted for country of isolation. a) pepF; b) IgG 749 

binding protein H precursor. 750 
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 752 
Supplementary figure 9: Scree plot for the first fifty dimensions of the 96 753 

Listeria monocytogenes isolates (Supplementary figure 2) in red, 3 069 754 

Streptococcus pneumoniae isolates (Supplementary figure 5) in blue, and 675 755 

Streptococcus pyogenes isolates (Supplementary figures 6 and 7) in green. 756 
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