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Abstract 1 

Single-cell mRNA sequencing (scRNA-seq) allows to profile heterogeneous cell 2 

populations, offering exciting possibilities to tackle a variety of biological and medical 3 

questions. A range of methods has been recently developed, making it necessary to 4 

systematically compare their sensitivity, accuracy, precision and cost-efficiency. 5 

Here, we have generated and analyzed scRNA-seq data from 479 mouse ES cells and 6 

spike-in controls that were prepared with four different methods in two independent 7 

replicates each. We compare their sensitivity by the number of detected genes and by 8 

the efficiency with which they capture spiked-in mRNAs, their accuracy by correlating 9 

spiked-in mRNA concentrations with estimated expression levels, their precision by 10 

power simulations and variance decomposition and their efficiency by their costs to 11 

reach a given amount of power. While accuracy is similar for all methods, we find that 12 

Smart-seq on a microfluidic platform is the most sensitive method, CEL-seq is the 13 

most precise method and SCRB-seq and Drop-seq are the most efficient methods. 14 

Our analysis provides a solid basis to choose among four available scRNA-seq 15 

methods and to benchmark future method development. 16 

 17 

 18 

Introduction 19 

Genome-wide quantification of mRNA transcripts is a highly informative phenotype to 20 

characterize cellular states and understand regulatory circuits1,2. Ideally, this is collected 21 

with high temporal and spatial resolution and RNA-sequencing of single cells (scRNA-seq) 22 

is starting to reveal new biological and medical insights3–5. scRNA-seq requires to isolate 23 

intact single cells and turn their mRNA into cDNA libraries that can be quantified using high-24 

throughput sequencing4,6. The sensitivity, accuracy, precision and throughput of this 25 

process determines how well single cell transcriptomes can be characterized. In order to 26 

choose among available scRNA-seq methods, it is important to estimate these parameters 27 

comparatively. It has previously been shown that scRNA-seq performed in the small 28 

volumes available via the automated microfluidic platform from Fluidigm (Smart-seq 29 

protocol on the C1-platform) performs better than Smart-seq or other commercially 30 

available kits in microliter volumes7. More recent scRNA-seq protocols have used unique 31 

molecular identifiers (UMIs) that tag mRNA molecules with a random barcode sequence 32 

during reverse transcription in order to identify sequence reads that originated during 33 

amplification8–10. This leads to a better quantification of mRNA molecules11,12. Another 34 

decisive recent development has been to add a barcode for each single cell during reverse 35 
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transcription allowing to process hundreds or thousands of scRNA-seq libraries in one 36 

reaction, increasing the throughput of scRNA-seq library generation by one to three orders 37 

of magnitude9,13–15. However, a systematic comparison of sensitivity, accuracy and precision 38 

among such recently developed methods has not been performed yet. To this end, we have 39 

generated and analysed 479 scRNA-seq libraries from mouse embryonic stem (mES) cells 40 

cultured in two-inhibitor (2i/LIF) medium using four different methods run in two replicates 41 

each (Fig. 1). 42 

 43 

Results 44 

Generation and processing of 479 scRNA-seq libraries 45 

We have used the Smart-seq protocol on the C1 platform from Fluidigm (Smart-seq/C1) 46 

that uses microfluidic chips to automatically separate up to 96 cells7. After lysis and the 47 

addition of artificial mRNAs of known concentrations (ERCCs16), cDNA is generated by 48 

oligo-dT priming, template switching and PCR amplification. These can then be turned into 49 

scRNA-seq libraries using 96 Nextera reactions. Advantages of this system are that the 50 

process of single cell isolation is automated, that captured cells can be imaged, that 51 

reaction volumes are small and that the protocol generates full length cDNAs. 52 

Disadvantages include that the protocol does not use UMIs and is expensive due to the use 53 

of the Smart-seq kit, the microfluidic chip and the separate Nextera reactions.  54 

For the second approach we isolated single cells in a 96-well plate by sorting them into 55 

lysis buffer and used the SCRB-seq protocol to generate scRNA-seq libraries13. In this 56 

protocol, cDNA from cells and ERCCs is generated by oligo-dT priming, template switching 57 

and PCR amplification, similar to Smart-seq/C1. However, the oligo-dT primers contain 58 

well-specific barcodes and UMIs and the resulting cDNA is turned into scRNA-seq using a 59 

modified transposon-based fragmentation approach that enriches for 3’ ends. The protocol 60 

is optimized for small volumes and few handling steps, but it does not generate full length 61 

cDNA profiles and its performance compared to the smaller reaction volumes in the C1 is 62 

unclear.  63 

The third method we tested is Drop-seq, a recently developed microdroplet-based 64 

approach15. Similarly to SCRB-seq, each cDNA molecule is decorated with a cell-specific 65 

multiplexing barcode and a UMI to count abundance. In the case of Drop-seq, these 66 

barcoded oligo-dT primers are immobilized on beads and encapsulated with single-cells in 67 

nanoliter-sized emulsion droplets.  In Drop-seq, simultaneous inclusion of ERCC spike-ins 68 

in the library preparation is not possible, as it would have to be included in the bead 69 

suspension. However, most beads will not carry a cell transcriptome, as cell concentration 70 
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has to be relatively low to avoid doublets. To address the issue of lacking ERCCs in our 71 

data, we used a published dataset15, where ERCC spike-ins were sequenced by the Drop-72 

seq method without single-cell transcriptomes. Finally, we used data12 generated using 73 

CEL-seq9 for which also two different batches of scRNA-seq libraries were generated from 74 

the same cell type and culture conditions. Similarly to Drop-seq and SCRB-seq, cDNA is 75 

tagged with multiplexing barcodes and UMIs. As opposed to the three PCR-based 76 

methods described before, CEL-seq relies on linear amplification by in-vitro transcription 77 

(IVT) for the initial pre-amplification of single-cell material. An overview of the methods and 78 

their features is given in Supplementary Table 1.  79 

For Smart-seq/C1, SCRB-seq and Drop-seq we generated 437, 253 and 432 million reads 80 

from 192, 192 and ~200 cells in the two independent replicates. Data from CEL-seq 81 

consisted of 51 million reads from a total of 74 cells (Fig. 1). After demultiplexing and 82 

assignment of cell barcodes, we could map >50% of all reads to the mouse genome and 83 

30-40% of all reads to exons (Fig. 2a), comparable to previous results7,14. As expected, the 84 

3’ counting methods showed a strong 3’ bias while Smart-seq/C1 showed a moderate 3’ 85 

bias (Supplementary Fig. 1a). We used the Drop-seq pipeline15 to quantify UMIs and found 86 

that between 2.6% (Drop-seq, replicate B) and 59.5% (SCRB-seq, replicate A) of all exon 87 

reads were unique, i.e. that the scRNA-seq libraries had been sequenced on average 1.7- 88 

to 38-fold over (Fig. 2a). We filtered the scRNA-seq libraries for possible cell doublets either 89 

by their microscope images (Smart-seq/C1) or by discarding transcriptomes with more than 90 

twice the mean total UMI content. Furthermore, we disregarded scRNA-seq libraries with 91 

less than 100,000 reads mapped to exons, resulting in 479 single cell transcriptomes 92 

across the four methods (Fig. 1). As expected, these transcriptomes cluster according to 93 

method in a principal component analysis, whereas the biggest difference is between the 3’ 94 

counting methods and Smart-seq/C1 (Supplementary Fig. 1b). In summary, we obtained 95 

high-quality scRNA-seq data for 479 cells distributed equally across methods and 96 

replicates, allowing to compare the four different scRNA-seq methods with respect to their 97 

sensitivity, accuracy and precision. 98 

  99 

SCRB-seq and Smart-seq/C1 show the highest sensitivity 100 

As a relative measure of sensitivity we compared the number of detected genes per method 101 

and replicate (Fig. 2b). Clearly, Drop-seq had the lowest sensitivity with a median of 3158 102 

genes per cell, CEL-seq had 6384 and SCRB-seq and Smart-seq/C1 were very similar with 103 

a median of ~8800 genes detected per cell (Fig. 2b). This relative ranking remains 104 

unchanged if one subsamples 100.000 reads for each cell, but CEL-seq performs then 105 
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almost as good as SCRB-seq and Smart-seq/C1  (Supplementary Fig. 2a). While the 106 

number of detected genes per cell differs, the total number of detectable genes in all cell 107 

converges probably around 20,000 of the 39,000 annotated mouse genes for all 3’ counting 108 

methods. In contrast, the Smart-seq/C1 method converges at more than 25,000 detected 109 

genes (Fig. 2c). Furthermore, while the majority of genes is detected by all four methods, 110 

Smart-seq/C1 detects 3974 genes not seen by the 3’ counting methods (Supplementary 111 

Fig. 2b,c). This pattern remains when subsampling 50 cells à 100,000 reads per method 112 

(data not shown). 113 

As an absolute measure of sensitivity, we compared the probabilities of detecting the 92 114 

artificially spiked-in mRNAs (ERCCs) since their concentration per cell is known. We 115 

recorded the number of cells with an expression value of zero for each ERCC per method 116 

and applied a maximum likelihood method17 to estimate the probability of successful 117 

detection of an ERCC mRNA with a given number of molecules per cell as a binomial 118 

process (Fig. 2d). This is more informative than non-zero detections of ERCC, as in that 119 

case it is only known that some copies were successfully captured but not how many 120 

exactly. Additionally, this method is also superior to other approaches as it does not try to 121 

relate the expression level to the capture efficiency. For Smart-seq/C1, a gene is detected 122 

in half of the cells when it has a concentration of ~8 molecules per cell. Drop-seq and 123 

SCRB-seq show similar estimates of 11 molecules per cell. However, CEL-seq needs 92 124 

molecules to reach the 50% detection probability (Supplementary Fig. 2d). Similar 125 

estimates of 16, 17, 18 and 93 molecules per cell for Smart-seq/C1, SCRB-seq, Drop-Seq 126 

and CEL-seq are made when subsampling 10,000 ERCC reads for 50 cells per method. The 127 

drastically lower sensitivity of CEL-seq when using ERCCs contradicts the just slightly 128 

lower sensitivity when considering the number of detected genes. This discrepancy was 129 

also noted in the original CEL-seq publication and explained with a potential degradation of 130 

the ERCCs12. Hence, the ERCC reads in this CEL-seq data set might underestimate the 131 

sensitivity of this method considerably. The other discrepancy between the two sensitivity 132 

estimates is seen for Drop-seq. While it detects less than half the number of genes than 133 

Smart-seq/C1 and SCRB-seq, it shows a similar sensitivity for the ERCCs. However, it is 134 

important to realize that ERCCs can not be spiked in when using the Drop-seq approach, 135 

but have to be run separately from the cells15. It is unclear to what extend the lower 136 

complexity in an “ERCC-only” run might lead to higher sensitivities and/or to what extent 137 

this reflects a difference between data generated by Macosko et al and data generated by 138 

us. For now, we conservatively assume that our data is representative and hence that Drop-139 

seq is less than half as sensitive as the other methods.  140 
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In summary, we find that Smart-seq/C1 is the most sensitive method as it detects at least 141 

as many genes per cell as CEL-seq and SCRB-seq and detects in total ~ 4000 genes that 142 

are not detected by the 3’ counting methods. 143 

  144 

Accuracy is similar between Drop-seq, SCRB-seq and Smart-seq/C1 145 

In order to quantify the accuracy of transcript level quantifications, we compared observed 146 

expression values with annotated molecule concentration of the 92 ERCC transcripts (Fig 147 

3a). For each cell, we calculated the correlation coefficient (R2) for a linear model fit (Fig 3b). 148 

Clearly, CEL-seq performed worst in this measure, while Drop-Seq, SCRB-seq and Smart-149 

seq/C1 showed largely similar accuracy. This pattern remained with downsampled ERCC 150 

data (data not shown). As discussed above, this low performance of CEL-seq could be 151 

consistently explained with a potential degradation of the ERCCs. A previous study using 152 

CEL-seq from 10 pg of total RNA input and ERCC spike-in reported a mean correlation 153 

coefficient of R2=0.879, similar to the ones reported for the other three methods. Assuming 154 

that this is representative for CEL-seq, we find that the accuracy is similarly high across the 155 

four methods. 156 

  157 

Precision is highest for CEL-seq and strongly increased by UMIs 158 

While a high accuracy is necessary to quantify absolute expression values, one most often 159 

analyses relative differences among cells or samples in order to identify differentially 160 

expressed genes or biological variation. Hence, the precision of the method, i.e. its 161 

reproducibility or amount of technical variation matters more.  162 

We use the probabilistic model proposed by Kim et al18 that estimates the proportion of 163 

technical variation from ERCCs. Since we use the same cells under the same culture 164 

conditions we assume that the remaining fraction of biological variation is the same across 165 

the data sets. We find that Smart-seq/C1 has the lowest proportion of technical variation, 166 

which is surprising given that it is the only method that lacks UMIs that are expected to 167 

increase the precision. Indeed, the total amount of variation is higher for Smart-seq/C1 than 168 

for the other three methods (Supplementary Figure 3a) suggesting that the technical 169 

variation is underestimated for Smart-seq/C1. Indeed, when we repeat the analysis without 170 

considering the UMI information, Drop-seq and SCRB-seq have now more total variation 171 

(Supplementary Fig. 3a) and less technical variation (Fig. 4a). Interestingly, the technical 172 

variation of CEL-seq remains almost unaffected and is the lowest among the four methods 173 

when considering the effect of UMIs (Fig. 4a). This pattern remains when filtering out lowly 174 

expressed genes and ERCCs (data not shown). When using another variance 175 
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decomposition method19, we do not observe the difference between using and not using 176 

UMIs, probably due to filtering of genes whose variance composition can not be reliably 177 

estimated. Although this filtering makes it difficult to compare the fraction of technical 178 

variation, it is worth mentioning that CEL-seq has again the lowest amount of technical 179 

variation (Supplementary Fig. 3b).  Hence, when using variance decomposition methods 180 

CEL-seq shows the highest precision. Maybe even more important, our analysis shows that 181 

some variance  decomposition method can severely underestimate the technical variation 182 

from ERCCs for PCR-based amplification protocols. 183 

In order to investigate precision in scRNA-seq methods independent of spike-in transcripts, 184 

we used power simulation. Based on the method by Wu et al20, we used the mean-185 

dispersion distributions of the data (Supplementary Fig. 4) to simulate the power and the 186 

false discovery rate for differential gene expression by DESeq221. While the three UMI-187 

based methods all had false discovery rates (FDRs) close to the expected 5%, Smart-188 

seq/C1 resulted in progressive FDRs considerably above 5% (Fig. 4b). Furthermore, CEL-189 

seq needed just 52 cells per group to detect small expression differences with 80% power, 190 

followed by SCRB-seq (112) and Drop-seq (170), while Smart-seq/C1 reached 80% power 191 

only for highly expressed genes (Fig. 4b and Supplementary Fig. 5a). Accordingly, when 192 

simulating the power to detect larger expression differences (log2 fold-change of 0.5-3) with 193 

a fixed sample size of 16 cells per group, CEL-seq performed best (Supplementary Fig. 6b), 194 

followed by SCRB-seq and Drop-seq, while Smart-seq/C1 had the lowest power. Notably, 195 

when analysing power without using UMIs, SCRB-seq and CEL-seq perform similar to 196 

Smart-seq/C1, while Drop-seq performs very poorly (Supplementary Fig. 5b). Hence, UMIs 197 

strongly increase the power to detect differentially expressed genes by scRNA-seq, 198 

especially for methods that use PCR amplification. 199 

In summary, when using power simulations to compare precision among methods, CEL-200 

seq performs best, followed by SCRB-Seq and Drop-Seq. Smart-seq/C1 performs worst, 201 

probably because it does not include UMIs. 202 

 203 

Efficiency is highest for SCRB-seq and Drop-seq when considering costs and power 204 

 205 

Practically, the costs of a method also matter when judging the performance of different 206 

scRNA-seq methodologies. Here, we estimate the cost-efficiency by calculating the costs 207 

for generating scRNA-seq data at a given amount of power. Given the number of single 208 

cells that are needed per group to reach 80% power (50% for Smart-seq/C1) as simulated 209 

above (Figure 4b), we calculate the costs to generate these libraries and to sequence 210 
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enough to obtain 100,000 exon-mapped reads (Figure 2). For example, SCRB-seq requires 211 

112 cells per group and generating 224 SCRB-seq libraries costs ~450€. To generate 212 

100,000 reads mapping to exons for 224 SCRB-seq libraries requires ~64 million paired-213 

end reads generated with a 50 cycles single end kit that we assume cost 320€.  When we 214 

do analogous calculations for the three other methods (Table 1), we find that Drop-Seq and 215 

SCRB-seq are equally cost-effective, closely followed by CEL-seq, while Smart-Seq/C1 is 216 

almost ten-fold less efficient due its high library costs that arise from the microfluidic chips 217 

and the costs for generating independent libraries. The estimate should be understood as a 218 

lower boundary for the real costs since many factors are not considered such as costs to 219 

set-up the methods, costs to isolate single cells, costs due to unequal pooling of libraries or 220 

costs due to practical constraints in generating a fixed number of scRNA-seq libraries and 221 

reads. Furthermore, power for differential gene expression is not the only factor that 222 

matters and in addition to the metrics investigated above, methods differ with respect to full 223 

length coverage of cDNAs (only possible for Smart-seq/C1), possibility of imaging cells 224 

(CEL-seq and Smart-seq/C1) and the possibility to have ERCCs for each library (not 225 

possible for Drop-seq).  226 

Nevertheless, we think that our estimates allow a fair and transparent comparison of the 227 

four methods and reveal that Drop-Seq and SCRB-seq are most efficient and Smart-228 

seq/C1 is almost ten-fold less cost-efficient. 229 

 230 

  231 

Discussion 232 

Single-cell RNA-sequencing (scRNA-seq) is a powerful technology to tackle biomedical 233 

questions. To facilitate choosing among the many approaches that were recently 234 

developed, we systematically compared four scRNA-seq methods and assessed their 235 

sensitivity, accuracy, precision and cost-efficiency. We chose a leading commercial 236 

platform (Smart-seq/C1), a method that uses in-vitro transcription for amplification from 237 

manually isolated cells (CEL-seq), a PCR-based method with a very high throughput (Drop-238 

seq) and a PCR-based method that allows single cell isolation by FACS (SCRB-seq). All 239 

these methods can be set up by a molecular biology lab, as has been done by us for 240 

Smart-seq/C1, SCRB-seq and Drop-seq. 241 

We find that SCRB-seq, Smart-seq and CEL-seq detect a similar number of genes per cell 242 

while Drop-seq - at least in our hands - detects over 50% less than the other methods (Fig. 243 

2b and Supplementary Figure 2a). Whereas we detect 3,158 genes per ES cell, 5,663 genes 244 

per 3T3 cell are found in the original Drop-seq publication15. It is currently unclear whether 245 
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this discrepancy is due to biological or technical reasons. Importantly, Drop-seq does not 246 

detect generally fewer genes since the total number of detected genes converges around 247 

20,000, similar as for SCRB-seq and CEL-seq (Fig. 2c). While these three 3’ counting 248 

methods detect largely the same genes, Smart-seq/C1 detects almost 4000 additional 249 

genes (Supplementary Fig. 2b). So while ERCCs are measured with similar high accuracy 250 

by all four methods (Fig. 3), a considerable number of genes are missed by the 3’ counting 251 

methods. Hence, Smart-seq/C1 is the most sensitive method because it detects 252 

considerably more genes in addition to its full length coverage of transcripts 253 

(Supplementary Fig. 1a). However, it is difficult to gauge how much information this adds 254 

for finding and defining cell types and characterizing their biological states and networks. 255 

Probably more important than the sensitivity and accuracy for the performance of scRNA-256 

seq methods is their precision, i.e. their reproducibility of measuring gene expression levels. 257 

We find that variance decomposition methods that use ERCCs to estimate precision can 258 

severely underestimate the technical variance when PCR is used to amplify cDNA without 259 

UMIs (Fig. 4a). Further work will be needed to investigate whether more ERCCs, other 260 

ERCCs and/or different estimation methods could solve this. Assuming that variance 261 

decomposition can accurately estimate precision when using UMIs, we find that CEL-seq 262 

performs better than the PCR-based Drop-seq and SCRB-seq. When using power 263 

simulations that use the entire data, we also find that CEL-seq is more precise since it 264 

detects differentially expressed genes with fewer cells (Fig. 4b). These simulations also 265 

show that UMIs increase the power considerably, especially for the PCR-based methods 266 

(Supplementary Figure 5b). Hence, in-vitro transcription (IVT)-based amplification is more 267 

precise than PCR-based amplification and - in contrast to bulk RNA-seq libraries22 - UMIs 268 

decisively increase the power for differential gene expression from single cell RNA-seq 269 

libraries. However, the higher precision of CEL-seq comes with higher costs per library and 270 

in its current form also requires manual isolation of single cells (Table S1). Indeed, when we 271 

calculate the costs to reach a given power for differential gene expression, Drop-Seq and 272 

SCRB-seq are both more efficient than CEL-seq (Table 1). Smart-seq/C1 is by far the least 273 

efficient method due to its high costs and low precision. The efficiency could be improved 274 

for all methods, e.g. when implementing UMI-based protocols on the C1 platform11, or 275 

using early barcoding to increase the number of cells per chip. The CEL-seq variant MARS-276 

seq combines the higher precision of IVT-based amplification with higher throughput14 and 277 

SCRB-seq is even more cost-efficient on a 384-well format13. 278 

 279 
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In summary, we find that Drop-seq is probably the most efficient method when analysing 280 

large numbers of cells and SCRB-seq might be preferable for analyzing smaller numbers, 281 

especially when considering that ERCCs can be spiked in, cells can be preselected by 282 

FACS and the same set-up can also be used for bulk RNA-seq.  283 
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Methods 284 

Published data 285 

CEL-seq data for J1 mESC cultured in 2i/LIF condition12 were obtained under accession 286 

GSE54695. Drop-seq ERCC15 data were obtained under accession GSE66694. Raw fastq 287 

files were extracted using the SRA toolkit (2.3.5). 288 

We trimmed cDNA reads to the same length and processed raw reads in the same way as 289 

data sequenced for this study (see below). 290 

 291 

Cell culture of mESC 292 

J1 mouse embryonic stem cells were maintained on gelatin-coated dishes in Dulbecco's 293 

modified Eagle's medium supplemented with 16% fetal bovine serum (FBS, Sigma-Aldrich), 294 

0.1 mM β-mercaptoethanol (Invitrogen), 2 mM L-glutamine, 1x MEM non-essential amino 295 

acids, 100 U/ml penicillin, 100 µg/ml streptomycin (PAA Laboratories GmbH), 1000 U/ml 296 

recombinant mouse LIF (Millipore) and 2i (1µM PD032591 and 3µM CHIR99021 (Axon 297 

Medchem, Netherlands). J1 embryonic stem cells were obtained from E. Li and T. Chen and 298 

mycoplasma free determined by a PCR-based test. Cell line authentication was not recently 299 

performed. 300 

 301 

Single cell RNA-seq library preparations 302 

Drop-seq 303 

Drop-seq experiments were performed as published15 and successful establishment of the 304 

method in our lab was confirmed by a species-mixing experiment (data not shown). For this 305 

work, J1 mES cells (100/µl) and barcode-beads (120/µl, Chemgenes) were co-flown in 306 

Drop-seq PDMS devices (Nanoshift). Emulsions were broken by addition of perfluoroctanol 307 

(Sigma-Aldrich) and mRNA on beads reverse transcribed. Unused primers were degraded 308 

by addition of Exonuclease I (New England Biolabs). Washed beads were counted and 309 

aliquoted for pre-amplification (2000 beads / reaction). Nextera XT libraries were 310 

constructed from 1 ng of pre-amplified cDNA with a custom P5 primer (IDT). 311 

 312 

SCRB-seq 313 

RNA was stabilized by resuspending cells in RNAprotect Cell Reagent (Qiagen) and RNAse 314 

inhibitors (Promega). Prior to FACS sorting, cells were diluted in PBS (Invitrogen). Single 315 

cells were sorted into 5 µl lysis buffer consisting of a 1/500 dilution of Phusion HF buffer 316 

(New England Biolabs), spun down and frozen at -80 °C. Plates were thawed and libraries 317 

prepared as described previously13. Briefly, RNA was desiccated after protein digestion by 318 
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Proteinase K (Ambion). RNA was reverse transcribed using barcoded oligo-dT primers (IDT) 319 

and products pooled and concentrated. Unincorporated barcode primers were digested 320 

using Exonuclease I (New England Biolabs). Pre-amplification of cDNA pools were done 321 

with the KAPA HiFi HotStart polymerase (KAPA Biosystems). Nextera XT libraries were 322 

constructed from 1 ng of pre-amplified cDNA with a custom P5 primer (IDT). 323 

 324 

Smart-seq/C1 325 

Smart-seq/C1 libraries were prepared on the Fluidigm C1 system according to the 326 

manufacturer's protocol. Cells were loaded on a 10-17 µm RNA-seq microfluidic IFC at a 327 

concentration of 200,000/ml. Capture site occupancy was surveyed using the Operetta 328 

(Perkin Elmer) automated imaging platform. 329 

 330 

DNA sequencing 331 

For each scRNA-seq method, final library pools were size-selected on 2% E-Gel Agarose 332 

EX Gels (Invitrogen) by excising a range of 300-800 bp and extracting DNA using the 333 

MinElute Kit (Qiagen) according to the manufacturer's protocol. 334 

0.1 pmol of library pools were sequenced on a Illumina HiSeq1500 using High Output 335 

mode. Smart-seq/C1 libraries were sequenced 45 cycles single-end, whereas Drop-seq 336 

and SCRB-seq libraries were sequenced paired-end with 20 cycles to decode cell 337 

barcodes and UMI from read 1 and 45 cycles into the cDNA fragment. 338 

 339 

Basic data processing and sequence alignment 340 

Smart-seq/C1 libraries (i5 and i7) and Drop-seq/SCRB-seq pools (i7) were demultiplexed 341 

from the Nextera barcodes. All reads were mapped to the mouse genome (mm10) including 342 

mitochondrial genome sequences and unassigned scaffolds concatenated with the ERCC 343 

spike-in reference. Alignments were calculated using STAR 2.4.023 using all default 344 

parameters. 345 

For libraries containing UMIs, cell- and gene-wise count/UMI tables were generated using 346 

the published Drop-seq pipeline15. We discarded the last 2 bases of the Drop-seq cell and 347 

molecular barcodes to account for bead synthesis errors. 348 

For Smart-seq/C1, features were assigned and counted using the Rsubread package24.  349 
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Power Analysis 350 

We utilized the R package PROPER 20 for statistical power evaluation. For each method, we 351 

estimated mean baseline expression and dispersions using DESeq221 and all genes with 352 

log2(dispersion) >-10 were considered for simulation. For each method, 100 RNA-seq 353 

experiments were simulated with 5 percent differentially expressed genes between two 354 

groups of sample size of 24, 25, 26, 27, 28 and 29 cells. 355 

 356 

ERCC capture efficiency 357 

To estimate the single molecule capture efficiency, we assume that the success or failure of 358 

detecting an ERCC is a binomial process, as described before17. Detections are 359 

independent from each other and are thus regarded as independent Bernoulli trials. We 360 

recorded the number of cells with nonzero and zero expression values for each ERCC per 361 

method and applied a maximum likelihood estimation to fit the probability of successful 362 

detection. The fit line was shaded with the 95% Wilson score confidence interval. 363 

 364 

Variance decomposition 365 

Variance decomposition was done as implemented by Kim et al18. We estimate the variation 366 

in capture efficiency (θ) and in sequencing efficiency (γ) separately for each replicate to 367 

account for batch effects. We integrated the published Drop-seq ERCC data by scaling it 368 

with size factors from our mESC data to make up 10% of counts in one cell. 369 

We applied scLVM as described previously19, both using the log-linear fit of mean and 370 

variance relationship as well as the ERCCs for estimation of technical variation.  371 

 372 

Cost efficiency calculation 373 

We based our cost efficiency extrapolation on the power simulations performed in this 374 

study (Fig. 4b). We determined the number of cells required per group for adequate power 375 

(80% in UMI-based methods and 50% for Smart-seq/C1) by an asymptotic fit to the 376 

median powers. Next, we determined the number of raw reads required to reach 100,000 377 

exonic reads per cell. For this, we used the mean exon assignment rate from Fig. 2a (CEL-378 

seq: 36%, Drop-seq: 40%, SCRB-seq: 44%, Smart-seq/C1: 44%). To account for reads 379 

that do not belong to desired cell-transcriptomes in early-barcoding methods, we assumed 380 

a loss of reads of 20% (CEL-seq), 50% (Drop-seq) and 20% (SCRB-seq). For the 381 

calculation of sequencing cost, we assumed 5€ per million raw reads, independent of 382 

method. Although UMI-based methods need paired-end sequencing, we assumed a 383 

50 cycle sequencing kit is sufficient for all methods.  384 
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Tables 

 

 

Method Power n ​cells  

(per group) 

Library cost (€) Sequencing 

cost (€) 

Experiment 

cost (€) 

CEL-seq 0.8 ​a 52 ~820 ​b ~180 ​c ~1000 

Drop-seq 0.8 ​a 170 ~30 ​b ~840 ​c ~870 

SCRB-seq 0.8 ​a 112 ~450 ​b ~320 ​c ~870 

Smart-seq/C1 0.5 ​a 129 ~6560 ​b ~290 ​c ~6850 

Table 1 ​ | Cost efficiency extrapolation for single-cell RNA-seq experiments. 

 
a ​ Based on simulations (Fig. 4b) for detection of log ​2 ​(fold-change) = 0.25 
b​ assuming per cell library preparation costs of 8€, 0.1€, 2€, 25€ respectively 
c ​ Taking into account the mapping and exon assignment rates found in this study (see Fig. 2a), as well 

as the fraction of reads that falls into undesired cell barcodes in early-barcoding methods. 
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Figure 1 | Schematic of the experimental and computational pipeline. Mouse 
embryonic stem cells cultured in 2i/LIF and ERCC spike-in RNA were used to 
prepare single-cell RNA-seq libraries. The four methods differ by the presence 
and length of a unique molecular identifier sequence (UMI) allowing to identify 
reads generated during cDNA amplification. Data processing and subsetting 
of cells was done comparatively for all methods. Final cell numbers per 
method and replicate are shown with their mean sequencing depth. Colors 
represent the compared scRNA-seq methods: purple - CEL-seq, orange - 
Drop-seq, green SCRB-seq, blue - Smart-seq and are used throughout this 
study. 
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Figure 2 | Sensitivity of scRNA-seq methods. 
(a) Percentage of the total reads that can not be assigned to a cellular 
barcode (grey), can not be mapped to the mouse genome (yellow), are 
mapped to regions outside exons (orange), inside exons (blue) and carry a 
unique UMI (green). (b) Number of genes with at least one read in all cells 
with more than 100,000 total reads in total. Each dot represents a cell and 
each boxplot represents the median, first and third quartile per replicate and 
method. (c) Cumulative number of genes detected as more cells are added. 
(d) Sensitivity per method estimated as the probability to detect ERCC 
transcripts dependent on their copy number per cell. The 95% confidence 
interval of an estimate is displayed as shaded area.
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Figure 3 | Accuracy of scRNA-seq methods. (a) Representative correlations of 
single-cell / single-bead (Drop-seq) expression values for ERCC spike-ins and 
their annotated molarity. Expression is measured as transcripts per million 
reads (TPM, Smart-seq/C1) or UMIs per million reads (UPM).  (b) Distribution 
of correlation coefficients (Pearson) across methods. Each dot represents a 
cell/bead and each boxplot represents the median, first and third quartile. 
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Figure 4 | Variance decomposition and power analysis. (a) Variance 
decomposition according to Kim et al. 2015. Technical and biological noise 
factors were estimated from complete read counts and UMI counts (where 
available) and further used to simulate mean / variance distributions per 
scRNA-seq method. Shown are simulated genes with technical and technical 
plus biological factor. Genes with technical factor only are shown in blue, with 
technical and biological factor in grey and the technical noise fit for ERCC 
spike-ins is shown in red. (b) Power simulations using empirical mean/
dispersion relationships. Boxplots represent the median, first and third quartile 
of 100 simulations. Power analysis of differentiation scenario with a small fixed 
effect size of 0.25 log2 fold-change and variable sample size n=16, n=32, 
n=64, n=128, n=256 and n=512. Shown are marginal power and observed 
FDR over 100 simulations with relevant cut-offs marked in dashed lines 
(marginal power = 0.8; FDR = 0.05).
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