Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate

Duy Pham Thanh 1, Ha Thanh Tuyen 1, To Nguyen Thi Nguyen 1, Hao Chung The 1, Ryan R. Wick 3,4, Guy Thwaites 1,2, Stephen Baker 1,2,5* and Kathryn E. Holt 1,4

1 The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
2 Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
3 Centre for Systems Genomics, The University of Melbourne, Australia
4 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
5 The London School of Hygiene and Tropical Medicine, London, United Kingdom

* Corresponding Author: Dr. Stephen Baker, the Hospital for Tropical Diseases, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam. Tel: +84 89241761; Fax: +84 89238904; Email: sbaker@oucru.org

Abstract
The mcr-1 gene, which confers resistance against the last-resort antimicrobial colistin, was recently discovered in Enterobacteriaceae circulating in China. Through genome sequencing we identified a plasmid-associated inactive form of mcr-1 in a 2008 Vietnamese isolate of Shigella sonnei. The plasmid was conjugated into E. coli and mcr-1 was activated upon exposure to colistin, suggesting the gene has been circulating in human-restricted pathogens for some time but carries a selective fitness cost.
Introduction
The \textit{mcr-1} gene, which confers resistance to colistin, was recently described in Enterobacteriaceae in China. The index isolate, \textit{E. coli} SHP45, was isolated at a pig farm in Shanghai in July 2013 and displayed a minimum inhibitory concentration (MIC) against colistin of 8 mg/L. \textit{Mcr-1} was associated with a transposable element located on an IncI2 plasmid, pHNSHP45. Subsequent PCR screening using primers targeting the 5’ end of \textit{mcr-1} detected the gene in approximately 20% of \textit{E. coli} isolated from pigs at slaughter and 15% of \textit{E. coli} isolated from retail meat in China. The gene was also detected amongst clinical isolates of various Gram-negative bacteria cultured from inpatients in Chinese hospitals (1.4% of \textit{E. coli} and 0.7% of \textit{Klebsiella pneumoniae}).

By screening available isolate collections via PCR, or mining whole genome sequence (WGS) data, many research groups have now reported the presence of \textit{mcr-1} from widespread geographical locations and sources (food, animal and humans in Southeast Asia, Europe and Africa, and in travellers returning to Europe from Southeast Asia, South America and Africa\cite{6,7,8}). The gene has been detected in multiple \textit{Salmonella} serotypes as well as numerous \textit{E. coli} sequence types\cite{5,6,7,8} and can be carried on various plasmid backbones including IncI2, IncX4, IncH12 and IncB\cite{2,7,8}. We previously published a WGS study of >200 Vietnamese \textit{Shigella sonnei} isolated from children with dysenteric diarrhoea between 1995-2010\cite{9}. Here we report the detection of an inactivated form of the \textit{mcr-1} gene in one of these \textit{S. sonnei} isolates, and its selective re-activation resulting in high-level transferrable colistin resistance.

Results
The \textit{mcr-1} gene was detected in the genome sequence of a single \textit{S. sonnei} strain (EG430) that was isolated in 2008 from a hospitalised child with diarrhoea in Ho Chi Minh City, Vietnam. All other sequenced \textit{S. sonnei} isolates from the same study were negative for \textit{mcr-1}. Assembly analysis showed the \textit{mcr-1} gene in EG430 was associated with an IncI2 plasmid backbone, however the entire plasmid sequence could not be fully resolved using the 56 bp paired end reads\cite{9}. Upon antimicrobial susceptibility testing \textit{S. sonnei} EG430 was found to be susceptible to colistin (MIC 0.094 mg/L) but resistant to azithromycin (MIC 24 mg/L) via an \textit{ermB} gene. We attributed colistin susceptibility to a 22 bp duplication of bases 503-525 of the \textit{mcr-1} open reading frame (GAACGCCACCACAGGCAGTAAA), which induces a frameshift resulting in a truncated product (193 amino acids in length, compared to the 541 amino acid product encoded in pHNSHP45) (Fig. 1). It is also possible that a single SNP upstream of \textit{mcr-1} (-36) in pE0G430-1 may affect expression of the gene.

Assuming \textit{mcr-1} and \textit{ermB} were located on the same plasmid we performed conjugation of \textit{S. sonnei} EG430, using \textit{E. coli} J53 as a recipient, and selected for transconjugants using azithromycin as a marker. PCR screening for \textit{mcr-1} on azithromycin/sodium azide resistant \textit{E. coli} identified multiple \textit{mcr-1} PCR amplification-positive organisms. We subcultured the \textit{E. coli} transconjugant, \textit{S. sonnei} EG430 and \textit{E. coli} J53 on LB media containing a range of colistin concentrations (0.05 mg/L to 8 mg/L). Several colonies were identified and the organisms on the highest concentration of colistin were again subcultured on media containing increasing colistin concentrations, from 8 to 32 mg/L. We were able to isolate both \textit{E. coli} transconjugants and \textit{S. sonnei} EG430 variants that were resistant to colistin (MIC 16 and 32 mg/L, respectively); no colonies were recovered from \textit{E. coli} J53 at colistin concentrations above 4 mg/L. PCR amplification and sequencing of \textit{mcr-1} using a custom primer (previously published \textit{mcr-1} primers amplify upstream of the tandem repeat region) showed that in the colistin resistant \textit{E. coli} and \textit{S. sonnei} strains, one copy of the 22 bp tandem repeat had been deleted, restoring the open reading frame of \textit{mcr-1}. We repeated this experiment multiple times and found that the re-activation of \textit{mcr-1} was consistently reproducible.

To investigate the genetic context of \textit{mcr-1} in detail, we isolated plasmid DNA from an \textit{E. coli} transconjugant and sequenced it on an Illumina MiSeq to generate 250 bp paired end
reads. Combined assembly of the two read sets yielded two circular plasmid sequences – pEG430-1 carrying mcr-1, and pEG430-2 carrying ermB – and not just one plasmid with both determinants as previously assumed. The pEG430-2 ermB encoding plasmid sequence was 68,999 bp in size, carried an IncFI1 repA gene and shared close homology with E. coli plasmid pHK17a (accession: JF779678.1). The pEG430-1 mcr-1 encoding plasmid sequence was 61,826 bp in size and nearly identical to the previously described mcr-1 encoding plasmid pHNSHP45, differing by (i) the lack of a 2,704 bp insertion of IS683 downstream of the repA gene, (ii) a reorganisation of the pilV shufflon, and (iii) four single base substitutions, including one 36 bp upstream of mcr-1 and (iv) the 22 bp tandem repeat in mcr-1 (Fig. 1). IncI2 plasmid sequences were detected in 19 of the other Vietnamese S. sonnei isolates, however these all lacked mcr-1 and displayed 0.3% to 1.3% nucleotide divergence from pEG430-1.

Discussion

This is the first report describing mcr-1 in Shigella, and the earliest example yet of mcr-1 in a human clinical isolate. The only earlier example of mcr-1 reported to date was in E. coli isolated from calves in France in 20055, however the genetic context is not known. E. coli carrying mcr-1 were recently reported in Vietnam, isolated from a pig farm in Hanoi in 2014, six years after the isolation of EG43010. These isolates carried mcr-1 in distinct, non-IncI2, plasmid backbones. However, our data show the acquisition of mcr-1 into an IncI2 plasmid backbone, and its presence in the human population in Vietnam, occurred at least as early as 2008.

Notably, the interruption we detected occurs downstream of the PCR primers used by Liu and others to detect mcr-13, so it is possible that some isolates that test positive by PCR but not confirmed to be phenotypically resistant to colistin may carry this inactivated form of the gene. However, as we have shown, the gene can be restored again upon colistin exposure, so its presence even in inactive form could be problematic in settings where colistin is heavily used.

The fact that the mcr-1 gene was disrupted in S. sonnei EG430 is concerning. S. sonnei is a human-restricted pathogen with no known animal reservoir, and is not likely to be regularly exposed to colistin. While the activity of Mcr-1 is not yet well understood, it appears to be a membrane-anchored enzyme with phosphoethanolamine transferase activity that likely confers resistance to colistin by a modifying lipid A. We hypothesise that in the absence of colistin exposure, these modifications carry a fitness cost and impair interactions with the human host, such that the gene may be under negative selection. The MIC we observed in S. sonnei carrying mcr-1 (32 mg/L) is substantially higher than that reported previously for mcr-1 positive wildtype and transconjugant strains, which display a wide range (0.5 to 8 mg/L)1. We speculate that this variability in protection against colistin might be associated with the diversity of lipid A structures found in Enterobacteriaceae.

In conclusion, we have identified a deactivated version of the colistin resistance gene mcr-1 in the human-restricted pathogen S. sonnei, which was isolated from a Vietnamese child in 2008. Our data suggests this gene has likely been circulating in the human population in Asia in an inducible form, suggesting a fitness cost for the active mcr-1 gene.

Transparency declaration

None to declare.

Funding

This work was funded by the Wellcome Trust. SB is a Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the Royal Society (100087/Z/12/Z). KEH is supported by fellowship #1061409 from the NHMRC of Australia. DTP is funded as a leadership fellow through the Oak Foundation.
Methods

Screening for mcr-1 and IncI2 plasmids
Raw WGS data (56 bp paired-end Illumina HiSeq reads) generated previously from genomic DNA extracted from Vietnamese S. sonnei9 were screened for mcr-1 using SRST2, which allows the detection of genes of interest direct from short reads and with higher sensitivity than assembly-based approaches11. IncI2 plasmids were detected by mapping reads to the pEG430-1 plasmid sequence using Bowtie212. Nucleotide divergence was assessed by SNP calling using SAMtools as previously described9.

Plasmid DNA extraction and sequencing
Plasmid DNA was extracted from the S. sonnei EG430 using the Qiagen Plasmid Midi kit (Quiagen, Germany) and sequenced via Illumina MiSeq (Illumina, USA) to generate 250 bp paired-end reads, following the manufacturer’s recommendations. Assemblies were generated using SPAdes v3.6.213 and the resulting plasmid sequences were annotated using Prokka v1.1114. ACT (Artemis Comparison Tool)15 was used to compare the pEG430-1 sequence to that of the reference plasmid pHNSHP45 (accession: KP347127)1 and to perform manual curation of the plasmid annotations. Annotated plasmid sequences were deposited in GenBank under accessions: [TBA; these have been submitted Feb 1].

Bacterial conjugation was performed by combining equal volumes (5 ml) of overnight Luria-Bertani (LB) cultures (approximately 5 x 10^8 CFU/mL) of S. sonnei EG430 and E. coli J53 (sodium azide resistant). Bacteria were conjugated for 12 hours in LB broth at 37°C and E. coli transconjugants were selected on media containing sodium azide (100 mg/L) and azithromycin (24 mg/L). Azithromycin and sodium azide resistant E. coli were subjected to mcr-1 PCR amplification to identify mcr-1 positive transconjugants. Etests (AB Biodisk, Sweden) were used to determine the MIC of S. sonnei EG430, S. sonnei EG430 derivatives, E. coli J53 and E. coli J53 transconjugants against colistin. Susceptibility against colistin was determined using CLSI breakpoints16 (susceptible, ≤2 mg/L; intermediate, 4 mg/L; resistant ≥8 mg/L).

PCR and sequencing
PCR amplification of mcr-1 to identify transconjugants was performed using previously published primers1. PCR amplification of mcr-1 to confirm copy number of the 22 bp tandem repeat in colistin resistant strains was performed using the published forward primer CLR5-F (5’-CGGTCAAGTCCGTTTGTC-3’) and a custom reverse primer MCR-indel-R1 (5’-TGGCTTACGCATATCAGG-3’); amplicons were sequenced using the amplification primers, using big dye terminators in both directions on an ABI 3130 sequencing machine (ABI, USA).
References

Figure 1. Schematic of mcr-1 plasmid sequences.
(a) Comparison of novel mcr-1 plasmid pEG430-1 from S. sonnei EG430 (Vietnam, 2008) with mcr-1 plasmid pHNSHP45 from E. coli (China, 2013). Blue blocks indicate protein-coding genes; genes on the forward and reverse strands are indicated above and below the line, respectively. Grey blocks indicate regions of sequence homology between the two plasmids. (b) Zoomed in view of the mcr-1 mobile element in pEG430-1. Large blue arrows indicate open reading frames (all are encoded on the forward strand). Arrows indicate binding sites for PCR primers. Red blocks indicate the position of 22 bp tandem repeats, present in two copies pEG430-1; red line indicates the position of a point mutation relative to pHNSHP45. (c) Mobile element with restored mcr-1 sequence, identified in EG430 and E. coli transconjugants carrying pEG430-1 following selection on colistin. Dashed box shows the region that was amplified and sequenced using PCR (with primers CLR5-F and indel-R1), which confirmed restoration of the open reading frame via deletion of one copy of the 22 bp repeat.