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Abstract

The distribution of mutation fitness effects is central to evolutionary genetics. Typical univariate
distributions, however, cannot model the effects of multiple mutations at the same site, so we introduce
a model in which mutations at the same site have correlated fitness effects. To infer the strength of
that correlation, we developed a diffusion approximation to the triallelic frequency spectrum, which we
applied to data from D. melanogaster. We found a moderate correlation between the fitness effects
of nonsynonymous mutations at the same codon, suggesting that both mutation identity and location
are important for determining fitness effects in proteins. We validated our approach by comparing
with biochemical mutational scanning experiments, finding strong quantitative agreement, even between
different organisms. We also found that the correlation of mutation fitness effects was not affected by
protein solvent exposure or structural disorder. Together, our results suggest that the correlation of
fitness effects at the same site is a previously overlooked yet fundamental property of protein evolution.

Mutation effects on fitness range from strongly deleterious to strongly beneficial, and the distribution
of mutation fitness effects (DFE) is key to many problems in genetics, from the evolution of sex [1] to the
architecture of human disease [2]. In general, there are many strongly deleterious mutations, a similar number
of moderately deleterious or nearly-neutral mutations, and a small number of beneficial mutations [3]. The
DFE may be determined experimentally through direct measurements of mutational fitness effects in clonal
populations of viruses, bacteria, or yeast [4, 5], and recent studies have provided high resolution DFEs for
single genes [6, 7] and for beneficial mutations [8]. The DFE may also be inferred from comparative [9, 10]
or population genetic [11, 12, 13, 14] data, although this approach has little power for strongly deleterious
mutations. In the typical population genetic approach, the population demography is first inferred using a
putatively neutral class of mutations and the DFE for another class of mutations is inferred by modeling the
distribution of allele frequencies expected under a model of demography plus selection.

Most population genetic inference has focused on biallelic loci, where the ancestral and one derived allele
are segregating in the population [15]. When many individuals are sequenced, however, even single-nucleotide
loci are often found to be multiallelic, with three or more segregating alleles. Multiallelic loci pose a challenge
for modeling selection. To use a typical univariate DFE, one must assume that mutations at the same site
either all have equal fitness effects (so that mutation location completely determines fitness) or independent
fitness effects (so that mutation identity completely determines fitness). Neither of these assumptions is
biologically well-founded, suggesting the need for more sophisticated models of fitness effects. Here we
introduce a model of correlated fitness effects for mutations at the same site, and we analyze sequence data
to infer the strength of that correlation.

Our inference is based on triallelic codons, sites where three mutually nonsynonymous amino acid alleles
are segregating in the population (Fig. 1A). Hodgkinson and Eyre-Walker recently found in humans a roughly
two-fold excess of triallelic sites over the expectation under neutral conditions and random distribution of
mutations [16]. This led them to suggest an alternate mutational mechanism that could simultaneously
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Figure 1: The triallelic frequency spectrum. A: Mutually nonsynonymous triallelic loci in protein
coding regions have three observed segregating amino acid alleles. Here, with ten sampled chromosomes, at
position9 the major and minor derived alleles, Serine (S) and Leucine (L), have frequencies 4 and 1, so this
site contributes to the (4,1) bin of the TFS. Similarly, position 14 contributes to the (2,2) bin. B: The domain
of the triallelic diffusion equation, φ, from Equation 1. The corners correspond to fixation of one of the three
alleles, and the edges correspond to loss of one of the three alleles. New mutations enter the population along
the horizontal and vertical axes, with density dependent on the background biallelic frequency spectrum.
Pairs of selection coefficients for the two derived nonsynonymous mutations are sampled from a bivariate
DFE, which includes a parameter for correlation between selection coefficients ρ. C: For an uncorrelated
DFE, with ρ = 0, the selection coefficients are independent and often dissimilar. D: For strong correlation,
here ρ = 0.9, selection coefficients are typically very similar. E, F: The correlation coefficient affects the
expected frequency spectrum, with stronger correlation (F: ρ = 0.9) resulting in a higher proportion of
intermediate- to high-frequency derived alleles and more triallelic sites overall relative to weak correlation
(E: ρ = 0).
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generate two unique mutations, although recent population growth and substructure can account for the
distribution of observed triallelic variation [17]. Recently, Jenkins, Mueller and Song developed a coalescent
method to calculate the expected triallelic frequency spectrum under arbitrary single-population demography.
They showed that triallelic frequencies are sensitive to demographic history [18, 17], but their method cannot
model selection.

We developed a numerical diffusion simulation of expected triallelic allele frequencies including selection,
and we coupled that simulation to a DFE that models the correlation between fitness effects of the two derived
alleles. We applied this approach to infer the correlation coefficient of fitness effects from whole-genome
Drosophila melanogaster data [19], inferring a moderate correlation between fitness effects of nonsynonymous
mutations at the same site. To validate our inference, we compared with direct biochemical experiments,
finding strong agreement. Lastly, we applied our approach to biologically relevant subsets of nonsynonymous
mutations, to assess how the fitness effects correlation varies among classes of mutations.

Results and Discussion

The triallelic frequency spectrum with selection

The triallelic frequency spectrum summarizes sequence data from a sample of individuals by storing the
counts of triallelic loci with each set of observed derived allele frequencies [17] (Fig. 1E,F). Because the order
in which the two derived alleles arose is often unknown, we used counts of major and minor derived alleles,
which have respectively higher or lower sample frequencies.

To obtain the expected sample frequency spectrum for a given model of selection and demography, we
numerically solved the corresponding diffusion equation. First described by Kimura [20, 21, 22], the triallelic
diffusion equation models the evolution of the density function φ(x, y) for the expected number loci in the
population with derived allele frequencies (x, y), with x, y ∈ (0, 1) and x+ y < 1 (Fig. 1B):
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Time τ is measured is units of 2Na generations, where Na is the ancestral effective population size. The
spatial second derivative terms account for genetic drift, which is scaled by the relative population size
ν(τ) = N(τ)/Na, and the mixed derivative term accounts for the covariance in allele frequency changes.
The population-scaled selection coefficient is γ = 2Nas, where s is the relative fitness of the derived versus
ancestral allele. Here that selection coefficient must be adjusted (γ̃) to account for interaction between
selection acting on the two derived alleles (see Methods). Triallelic loci are created when a novel mutation
occurs at a site that is already biallelic. The new allele initially has frequency 1/2N , and the existing derived
allele has a frequency x (or y) ∈ (0, 1) drawn from the population distribution of biallelic allele frequencies.

Some analytic results are known for triallelic diffusion [23, 24, 25], but we solved Eq. 1 numerically.
We used a finite-difference method similar to that in ∂a∂i [26], although the mixed derivative term and
the x + y < 1 boundary introduce complications (Fig. S1, Methods). We directly coupled with ∂a∂i to
track the distribution of biallelic derived allele frequencies needed for creating triallelic loci. To obtain the
expected sample frequency spectrum, we integrated over the population spectrum φ using trinomial sampling
(Methods). We validated our numerical solution by comparison to the neutral coalescent solution (Fig. S2)
and Wright-Fisher simulations with selection (Fig. S3).

Because there are two derived alleles, the DFE for triallelic sites is a two-dimensional joint distribution.
We used a bivariate lognormal model for the DFE (Fig 1C,D). Because we assumed no knowledge of which
allele arose first, the two marginal distributions are identical. The correlation between selection coefficients
is then characterized by the correlation coefficient ρ. If ρ = 0, the selection coefficients of the two derived
alleles at a single triallelic locus are independent, whereas if ρ = 1, they are equal. For a fixed marginal
DFE, as the correlation coefficient ρ increases, more segregating triallelic loci are expected, particularly at
moderate and high derived-allele frequencies (Fig. 1C-F). We quantified the relative importance of identity
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Figure 2: Inferences of demographic history and marginal distribution of fitness effects from
biallelic data. A: Biallelic synonymous and nonsynonymous data (solid lines) and corresponding maximum-
likelihood model fits (shaded). Both models include a parameter to account for ancestral state misidenti-
fication, which is likely responsible for most of the excess of high-frequency derived alleles. B: Inferred
demographic model, with two instantaneous population size changes. C: Inferred distribution of fitness
effects, lognormally distributed for negatively selected mutations with a proportion of positively selected
mutations.

and location for protein mutation fitness effects through ρ; low correlation suggests that identity is more
important, whereas high correlation suggests that location within the protein is more important.

Correlation of selection coefficients for nonsynonymous mutations at the same
site

To estimate the correlation between fitness effects of amino-acid altering mutations, we used 197 Zambian
D. melanogaster whole genome sequences from Phase 3 of the Drosophila Population Genomics Project
(DPGP3) [19]. We chose this population because it has high genetic diversity (and thus many triallelic
sites) and a relatively simple demographic history [19]. We first modeled demographic history using biallelic
synonymous sites. We then inferred the marginal DFE for newly arising nonsynonymous mutations using that
demographic model and the biallelic nonsynonymous data. Lastly, we inferred the fitness effects correlation
coefficient using our inferred demography and marginal DFE and the mutually nonsynonymous triallelic loci
in the data.

We used ∂a∂i [26] to fit a three-epoch population size model to the unfolded biallelic synonymous fre-
quency spectrum (Fig. 2A-B, Table S1). For all model fits, we included a parameter to account for ancestral
state misidentification, which creates an excess of high-frequency derived alleles [27]. We fixed this demo-
graphic model for all future inferences, and we fit a univariate DFE to the biallelic nonsynonymous data.
For negatively-selected sites (γ < 0), we assumed a lognormal distribution of selection coefficients with mean
and variance parameters µ and σ, which has been previously shown to adequately describe the biallelic
DFE for D. melanogaster [28]. Our DFE also included a point-mass modeling a proportion p+ of positively
selected sites with scaled selection coefficient γ+. Our inferred biallelic DFE (Fig. 2C, Table S1) fits the data
well (Fig. 2A), with just under 1% of new mutations inferred to be beneficial (inferred γ+ = 39.9). When
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Table 1: Fitness effect correlation coefficients for nonsynonymous mutations at the same codon, inferred
from population genomic data and biochemical experiments.

Approach Dataset ρ 95% CI
Pop gen D. melanogaster all 0.45−0.57

Biochem
E. coli TEM-1 β-lactamase [6] 0.34−0.50
Yeast ubiquitin [31] 0.20−0.56
Human BRCA1 [32] 0.16−0.48

Pop gen

20% most similar amino acids 0.58−0.85
20% most dissimilar amino acids 0.15−0.32
20% highest solvent accessibility 0.43−0.65
20% lowest solvent accessibility 0.37−0.63
Disordered residues 0.45−0.62
Ordered residues 0.35−0.55

fitting the DFE to the nonsynonymous data, the parameters for the lognormal portion (negatively selected
sites) were tightly constrained, but p+ and γ+ were confounded and inversely correlated, as found in other
studies [29, 30]. Our inferred proportions of mutations in various selective regimes agreed well with prior
work (Table S2).

We worked at the codon level to assess the correlation in selection coefficients for nonsynonymous muta-
tions, so a triallelic locus could arise from two mutations at the same nucleotide or at different nucleotides in
the same codon. We extended our inferred one-dimensional DFE to two dimensions, fixing the parameters
µ, σ, γ+, and p+, so that the correlation coefficient ρ was the only free parameter of the bivariate lognor-
mal distribution, along with a single parameter for ancestral misidentification. Fitting to 10,471 mutually
nonsynonymous triallelic loci (Fig. 3A), we inferred ρ = 0.51 (Fig. 3B, Table 1). Selection coefficients for
nonsynonymous mutations at the same codon are thus somewhat but not completely correlated, so location
and identity play roughly equal roles in determining mutation fitness effects.

Comparison to experimental mutation scanning studies

Our population genetic approach allows us to simultaneously study the whole genome, but it is an indirect
approach to measuring the selection coefficient correlation. Complementary experimental data come from
mutational scanning experiments, which use deep sequencing to simultaneously assay the function of thou-
sands of mutant forms of a protein [33] (Fig. 4A). To measure selection coefficient correlations from such data,
we sampled pairs of mutually nonsynonymous mutations for each site assayed in the protein and calculated
the resulting correlations (Fig. 4B, Supporting Text). Because our population genetic inference is insensitive
to strongly deleterious mutations, we restricted our analysis to the moderately deleterious mutations found
in each experiment (Fig. S4). We analyzed proteins from E. coli [6], S. cerevisiae [31], and humans [32]
(Table 1). In all three cases these direct biochemical assays yielded a fitness effects correlation in agreement
with our population genetic estimate, although the limited number of sites within each experiment yielded
large confidence intervals, and experimental noise would tend to systematically bias the experimental corre-
lations downward. These results suggest that the moderate correlation of mutation fitness effects we found
in D. melanogaster also holds true for other organisms and proteins.

Selection coefficient correlation for subsets of data

Sites within proteins vary in their evolutionary properties [34, 35], so we asked how the fitness effect cor-
relation coefficient differs among subsets of the D. melanogaster population genomic data. We first tested
our expectation that biochemically similar derived amino acids would have more tightly correlated selection
coefficients than dissimilar derived amino acids [36, 37]. We assessed similarity using the Grantham matrix
[38], which scores pairs of amino acids based on similarity of biochemical properties. We then refit the
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Figure 3: Inference of selection correlation coefficient from triallelic data. A: The observed triallelic
frequency spectrum for mutually nonsynonymous triallelic sites, which contained 10,471 triallelic sites. B:
The best fit model, optimizing the correlation coefficient ρ and the ancestral misidentification parameters.
C: Joint distribution of selection coefficients from the maximum likelihood inferred correlation coefficient of
ρ = 0.51. Selection coefficients for nonsynonymous mutations at the same site are moderately correlated.
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Figure 4: Mutational scanning data. A: Partial mutational fitness landscape for E. coli TEM-1 β-
lactamase, adapted from [6]. For almost all possible single mutants, fitness was assayed as relative antibiotic
resistance. Gray entries denote mutations not measured, and green squares highlight the ancestral sequence.
B: Joint distribution of fitnesses for mutually nonsynonymous mutations for TEM-1 β-lactamase, using data
from [6]. For other data sets in Table 1, see Fig. S4.

correlation coefficient and misidentification parameter to the subsets of loci with the top and bottom 20%
of similarity scores. We indeed found that highly similar derived amino acids exhibited stronger correlation
than dissimilar amino acids (Table 1), validating our approach.

We also assessed the correlation of fitness effects for subsets of amino acids that are buried or exposed,
based on solvent accessibility, as well as subsets that are ordered or disordered, because protein structural
properties are known to affect the amino acid substitution process [39]. We used SPINE-D [40] to separate
sites into the top and bottom 20% of solvent accessibility scores and into disorder and ordered classes. For
each subset, we refit the underlying marginal DFE and then fit the bivariate DFE to measure the correlation
coefficient. As expected [41, 42, 43, 44], for buried residues with low solvent accessibility and for ordered
residues, we inferred DFEs that were more negatively skewed than for residues with high solvent accessibility
or that were structurally disordered (Table S3). We found, however, that these structural features did not
affect the inferred fitness effects correlation coefficient (Table 1). Together, these results suggest that models
of protein evolution that incorporate structural features [45, 46], do need to account for differences in the
marginal DFE, but not for differences in correlation.

Conclusions

We developed a novel numerical solution to the triallelic diffusion equation that simultaneously models the
effects of demography and selection on pairs of derived alleles (Fig. 1). Using our method, we inferred,
for the first time, the correlation of mutation fitness effects at the same site within proteins from triallelic
nonsynonymous SNP data (Fig. 3). We found that the correlation coefficient is intermediate between com-
pletely uncorrelated and completely correlated. Early mutation-selection models of protein evolution made
the unrealistic assumption that the fitness effects of multiple mutations occurring at the same site were
identical [9]. More recent methods estimate selection coefficients for every possible amino acid at every site
[10], but these complex models require a great deal of data [47]. Our model of correlated fitness effects is a
useful intermediate complexity model.

We found strong quantitative agreement between the fitness effects correlation coefficient inferred from
our population genomic inference and direct biochemical experiments (Fig. 4). Moreover, this agreement
held across a wide range of model organisms, for genes that vary dramatically in function, and using several
measures of fitness, suggesting that this correlation of mutation fitness effects is a fundamental property of
protein biology, not species- or protein-specific. We also refined our analysis to biologically-relevant subsets
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of the data (Table 1). As expected, nonsynonymous pairs of similar derived amino acids show significantly
higher correlation of fitness effects that dissimilar pairs. Although solvent accessibility and structural disorder
did affect the marginal DFE (Table S3), we did not find a difference in fitness effects correlation between
among these classes of sites (Table 1). Together, our results suggest that the fitness effects correlation we
inferred is a nearly universal property of protein evolution, with important implications for modeling protein
evolution.

Methods

Numerical solution to the triallelic PDE

The adjusted scaled selection coefficients γ̃ in Eq. 1 arise from competition between the two segregating
derived alleles, dependent on their allele frequencies. If both derived alleles are at high frequency, they
primarily compete against each other. For example, if their selection coefficients are roughly equal, even
when that selection is strong, they will be effectively neutral when at high frequency. In general,

γ̃x = γx
1− x− y

1− x
+ (γx − γy)

y

1− x
. (2)

To integrate the diffusion equation forward in time, we used operator splitting to separately apply the non-
mixed and mixed derivative terms each time step. We integrated the non-mixed terms using a conservative
alternating direction implicit (ADI) finite difference scheme [48]. We integrated the mixed term using a
standard explicit scheme for mixed derivatives. We used uniform grids in x and y with equal grid spacing
∆, so that grid points lie directly on the diagonal x+ y = 1 boundary of the domain, which readily allowed
the diagonal boundary to be absorbing. Although these integration schemes worked well in the interior of
the domain, application at the diagonal boundary led to an excess of density being lost (Supplemental Text,
Fig. S1). To avoid this excess loss of density near the diagonal boundary, we did not apply the ADI and
mixed derivative schemes at the closest grid points to the diagonal boundary. Instead, at each time step
we calculated the amount of density at each grid point that would fix along the diagonal boundary, and we
directly removed that amount from the numerical density function and added it to the boundary.

To inject density into φ for new triallelic loci arising from mutation, at each time step we added density
to the first interior rows of grid points based on the expected background biallelic frequency. For example,
we added to the row of grid points x = ∆, y = ∆, 2∆, . . . 1−∆ with weight for point (∆, y) proportional to
the biallelic population allele density at frequency y.

To obtain the expected sample frequency spectrum T from the population frequency spectrum φ, we
numerically integrated against the trinomial distribution with sample size n:

Ti,j =

∫ 1

0

∫ 1−y

0

(
n

i, j

)
xiyj(1− x− y)n−i−j φ(x, y) dx dy. (3)

We estimated model parameters by maximum composite-likelihood. Likelihoods L(D|Θ) of the data
D given the model parameters Θ were calculated by assuming that each entry in the observed triallelic
frequency spectrum (Di,j) was an independent Poisson random variable with mean Ti,j [49], where T is the
expected triallelic frequency spectrum generated under Θ:

L(Θ|D) =
∏
i,j

e−Ti,jT
Di,j

i,j

Di,j !
. (4)

The overall population-scaled mutation rate was an implicit free parameter in our model fits. We calculate
parameter uncertainties for each model fit using the Godambe Information Matrix [50]. Our code imple-
menting these methods is integrated into ∂a∂i, available at http://bitbucket.org/RyanGutenkunst/dadi.
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Calculating frequency spectra under the joint DFE

To integrate over the bivariate DFE we used a logarithmically spaced grid with 50 grid points ranging from
10−4 to 2000 for negative γ, along with γ = 0 and γ+ = 39.9. We cached spectra for each possible pair
(γx, γy), yielding 522 cached spectra. A pair of selection coefficients (γx, γy) could fall into four quadrants
depending on the sign of γx and γy. The overall frequency spectrum was calculated by summing over the
weighted frequency spectra for each quadrant based on the DFE parameters p+ and ρ. The weights were
p2+ + ρ p+(1− p+) for both γx, γy > 0, (1− ρ)p+(1− p+) for one selection coefficient positive and the other
negative, and (1 − p+)2 + ρ(1 − p+)p+ for both γx, γy < 0. To integrate over the continuous distributions
with either selection coefficient negative, we used the trapezoid rule. We approximated γ ∈ (0, 10−4) as
effectively neutral and γ < −2000 as effectively lethal (Fig. S5).

Genomic data

We extracted SNPs from the Drosophila Genome Nexus Data [19] and used Annovar [51] to determine the
transcript and codon position of the coding SNPs. Ancestral states for each codon were determined using
the aligned sequences of D. melanogaster (April 2006, dm3) and D. simulans (droSim1) downloaded from
the UCSC genome database. We excluded loci with no aligned D. simulans sequence. We downloaded the
reference transcript sequences from Ensembl Biomart [52] and used the ancestral states determined by the
droSim1 alignment to determine the ancestral codon state.

Mutational scanning data

We considered data from three mutational scanning studies [6, 31, 32]. Each assayed a different protein from
a different organism using a different proxy for fitness. In all three experiments, the distribution of fitnesses
was bimodal, with peaks of moderately and strongly deleterious mutations, although the relative sizes of these
peaks differed markedly between experiments (Fig. S4A-C). To calculate the fitness correlation coefficient,
we sampled a pair of mutually nonsynonymous mutations from each site in the protein (excluding mutations
without reported fitness) and calculated the Pearson correlation of those fitnesses. The confidence intervals in
Table 1 are 2.5% and 97.5% quantiles from 10,000 repetitions of this sampling. To visualize the correlations,
we calculated the proportion of mutually nonsynonymous mutation pairs within each possible bin of joint
fitness effects (Fig. S4D-I). Because our population-genetic analysis is not sensitive to strongly deleterious
mutations, we focused our analysis on moderately deleterious mutations (shaded regions in Fig. S4A-C, joint
distributions in Fig. S4D-F). For details on each data set, see Supplemental Text.

Acknowledgments

This work was supported by the National Science Foundation (DEB-1146074 to RNG).

References

[1] Barton NH, Charlesworth B (1998) Why Sex and Recombination? Science 281(5385):1986–1990.

[2] Di Rienzo A (2006) Population genetics models of common diseases. Curr. Opin. Genet. Dev. 16(6):630–
636.

[3] Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat. Rev.
Genet. 8(8):610–8.

[4] Wloch DM, Szafraniec K, Borts RH, Korona R (2001) Direct Estimate of the Mutation Rate and the
Distribution of Fitness Effects in the Yeast Saccharomyces cerevisiae. Genetics 159(2):441–452.

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029546doi: bioRxiv preprint 

https://doi.org/10.1101/029546
http://creativecommons.org/licenses/by/4.0/


[5] Sanjuán R, Moya A, Elena SF (2004) The distribution of fitness effects caused by single-nucleotide
substitutions in an RNA virus. Proc. Natl. Acad. Sci. U. S. A. 101(22):8396–8401.

[6] Firnberg E, Labonte JW, Gray JJ, Ostermeier M (2014) A comprehensive, high-resolution map of a
Gene’s fitness landscape. Mol. Biol. Evol. 31(6):1581–1592.

[7] Bank C, Hietpas RT, Wong a, Bolon DN, Jensen JD (2014) A Bayesian MCMC Approach to Assess
the Complete Distribution of Fitness Effects of New Mutations: Uncovering the Potential for Adaptive
Walks in Challenging Environments. Genetics 196(3):841–852.

[8] Levy SF et al. (2015) Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature
advance on:1–78.

[9] Nielsen R, Yang Z (2003) Estimating the distribution of selection coefficients from phylogenetic data
with applications to mitochondrial and viral DNA. Mol. Biol. Evol. 20(8):1231–1239.

[10] Tamuri AU, dos Reis M, Goldstein RA (2012) Estimating the distribution of selection coefficients from
phylogenetic data using sitewise mutation-selection models. Genetics 190(3):1101–1115.

[11] Williamson SH et al. (2005) Simultanous inference of selection and population growth from patterns of
variation in the human genome. PNAS 102(22):7882–7887.

[12] Eyre-Walker A, Woolfit M, Phelps T (2006) The Distribution of Fitness Effects of New Deleterious
Amino Acid Mutations in Humans. Genetics 173(2):891–900.

[13] Keightley PD, Eyre-Walker a (2007) Joint Inference of the Distribution of Fitness Effects of Deleterious
Mutations and Population Demography Based on Nucleotide Polymorphism Frequencies. Genetics
177(4):2251–2261.

[14] Boyko AR et al. (2008) Assessing the evolutionary impact of amino acid mutations in the human genome.
PLoS Genet. 4(5).

[15] Kimura M (1969) The Number of Heterozygous Nucleotide Sites Maintained in a Finite Population Due
to Steady Flux of Mutations. Genetics 61(4):893–903.

[16] Hodgkinson A, Eyre-Walker A (2010) Human triallelic sites: evidence for a new mutational mechanism?
Genetics 184(1):233–41.

[17] Jenkins PA, Mueller JW, Song YS (2014) General triallelic frequency spectrum under demographic
models with variable population size. Genetics 196(1):295–311.

[18] Jenkins PA, Song YS (2011) The effect of recurrent mutation on the frequency spectrum of a segregating
site and the age of an allele. Theor. Popul. Biol. 80(2):158–173.

[19] Lack JB et al. (2015) The Drosophila Genome Nexus: A Population Genomic Resource of 623
Drosophila melanogaster Genomes, Including 197 from a Single Ancestral Range Population. Genetics
199(April):1229–1241.

[20] Kimura M (1955) Random Genetic Drift in Multi-Allelic Locus. Evolution 9(4):419–435.

[21] Kimura M (1956) Random genetic drift in a tri-allelic locus; exact solution with a continuous model.
Biometrics 12(1):57–66.

[22] Kimura M (1964) Diffusion Models in Population Genetics. J. Appl. Probab. 1(2):177–232.

[23] Tier C, Keller JB (1978) A Tri-Allelic Diffusion Model with Selection.

[24] Tier C (1979) A tri-allelic diffusion model with selection, migration, and mutation. Math. Biosci.
60:41–60.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029546doi: bioRxiv preprint 

https://doi.org/10.1101/029546
http://creativecommons.org/licenses/by/4.0/


[25] Spencer HG, Barakat R (1992) Random genetic drift and selection in a triallelic locus: a continuous
diffusion model. Math. Biosci. 108(1):127–39.

[26] Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demo-
graphic history of multiple populations from multidimensional SNP frequency data. PLoS Genet.
5(10):e1000695.

[27] Baudry E, Depaulis F (2003) Effect of Misoriented Sites on Neutrality Tests with Outgroup. Genetics
165(3):1619–1622.

[28] Kousathanas A, Keightley PD (2013) A comparison of models to infer the distribution of fitness effects
of new mutations. Genetics 193(4):1197–1208.

[29] Schneider A, Charlesworth B, Eyre-Walker A, Keightley PD (2011) A method for inferring the rate of
occurrence and fitness effects of advantageous mutations. Genetics 189(4):1427–1437.

[30] Sella G, Petrov Da, Przeworski M, Andolfatto P (2009) Pervasive natural selection in the Drosophila
genome? PLoS Genet. 5(6).

[31] Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DNA (2013) Analyses of the effects of all
ubiquitin point mutants on yeast growth rate. J. Mol. Biol. 425(8):1363–1377.

[32] Starita LM et al. (2015) Massively Parallel Functional Analysis of BRCA1 RING Domain Variants.
Genetics 200(2):413–422.

[33] Araya CL, Fowler DM (2011) Deep mutational scanning: Assessing protein function on a massive scale.
Trends Biotechnol. 29(9):435–442.

[34] Halpern AL, Bruno WJ (1998) Evolutionary distances for protein-coding sequences: modeling site-
specific residue frequencies. Mol. Biol. Evol. 15(7):910–917.

[35] Holder MT, Zwickl DJ, Dessimoz C (2008) Evaluating the robustness of phylogenetic methods to among-
site variability in substitution processes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363(1512):4013–4021.

[36] Yampolsky LY, Kondrashov FA, Kondrashov AS (2005) Distribution of the strength of selection against
amino acid replacements in human proteins. Hum. Mol. Genet. 14(21):3191–3201.

[37] Blanquart S, Lartillot N (2008) A site- and time-heterogeneous model of amino acid replacement. Mol.
Biol. Evol. 25(5):842–858.

[38] Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science
185(4154):862–864.

[39] Dimmic MW, Mindell DP, Goldstein RA (2000) Modeling evolution at the protein level using an ad-
justable amino acid fitness model. Pac. Symp. Biocomput. 29:18–29.

[40] Zhang T et al. (2012) SPINE-D: Accurate Prediction of Short and Long Disordered Regions by a Single
Neural-Network Based Method. J. Biomol. Struct. Dyn. 29(4):799–813.

[41] Goldman N, Thorne JL, Jones DT (1998) Assessing the impact of secondary structure and solvent
accessibility on protein evolution. Genetics 149(1):445–458.

[42] Bustamante CD, Townsend JP, Hartl DL (2000) Solvent accessibility and purifying selection within
proteins of Escherichia coli and Salmonella enterica. Mol. Biol. Evol. 17(2):301–308.

[43] Tseng YY, Liang J (2006) Estimation of amino acid residue substitution rates at local spatial regions
and application in protein function inference: A Bayesian Monte Carlo approach. Mol. Biol. Evol.
23(2):421–436.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029546doi: bioRxiv preprint 

https://doi.org/10.1101/029546
http://creativecommons.org/licenses/by/4.0/


[44] Lin YS, Hsu WL, Hwang JK, Li WH (2007) Proportion of solvent-exposed amino acids in a protein and
rate of protein evolution. Mol. Biol. Evol. 24(4):1005–1011.

[45] Wilke CO (2012) Bringing molecules back into molecular evolution. PLoS Comput. Biol. 8(6):6–9.

[46] Arenas M, Dos Santos HG, Posada D, Bastolla U (2013) Protein evolution along phylogenetic histories
under structurally constrained substitution models. Bioinformatics 29(23):3020–3028.

[47] Tamuri AU, Goldman N, dos Reis M (2014) A penalized-likelihood method to estimate the distribution
of selection coefficients from phylogenetic data. Genetics 197(1):257–271.

[48] Chang JS, Cooper G (1970) A Practical Difference Scheme for Fokker-Planck Equations. J. Comput.
Phys. 6(1):1–16.

[49] Sawyer SA, Hartl DL (1992) Population genetics of polymorphism and divergence. Genetics 132(4):1161–
76.

[50] Coffman AJ, Hsieh PH, Gravel S, Gutenkunst RN (2015) Computationally efficient composite likelihood
statistics for demographic inference. Submitted.

[51] Wang K, Li M, Hakonarson H (2010) ANNOVAR: Functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res. 38(16):1–7.

[52] Flicek P et al. (2014) Ensembl 2014. Nucleic Acids Res. 42(D1):749–755.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2015. ; https://doi.org/10.1101/029546doi: bioRxiv preprint 

https://doi.org/10.1101/029546
http://creativecommons.org/licenses/by/4.0/

