Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates

Mathieu Gautier∗,§,1

∗INRA, UMR CBGP (INRA – IRD – Cirad – Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France,
§Institut de Biologie Computationnelle, 95 rue de la Galera, 34095 Montpellier, France

ABSTRACT In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BAYENV model, this study investigates several modeling extensions i) to improve the estimation accuracy of the population covariance matrix and all the related measures; ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XIX statistics; and iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows to deal with multiple testing issues and, providing the relative marker positions are available, to capture some Linkage Disequilibrium information. A comprehensive simulation study is further carried out to investigate and compare the performance of the different models. For illustration purpose, genotyping data on 18 French cattle breeds are also analyzed leading to the identification of thirteen strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3 and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool–Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help addressing relevant ecological question in non–model species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BAYPASS program implementing the different models is available at http://www1.montpellier.inra.fr/CBGP/software/baypass/.

KEYWORDS Genome Scan; Bayesian statistics; population genomics; association studies; Linkage Disequilibrium

Contrasting patterns of local genetic variation over the whole genome represents a valuable strategy to identify loci underlying the response to adaptive constraints (Cavalli-Sforza 1966). As further noted by Lewontin and Krakauer (1973): “while natural selection will operate differently for each locus and each allele at a locus, the effect of breeding structure is uniform over all loci and all alleles”. Hence, genome scan approaches to detect footprints of selection aim at discriminating among the global effect of the demographic evolutionary forces (e.g., gene flow, inbreeding and genetic drift) from the local effect of selection (Vitalis et al. 2001; Balding and Nichols 1995). In practice, applications of these methods have long been hindered by technical difficulties in assessing patterns of genetic variation on a whole genome scale. However, the advent of next-generation sequencing and genotyping molecular technologies now allows to provide a detailed picture of the structuring of genetic variation across populations in both model and non–model species (Davey et al. 2011). As a result, in the population genomics era, a wide range of approaches have been developed and applied to detect selective sweeps using population data (see Vitti et al. 2013; Oleksyk et al. 2010, for reviews). Among these, population differentiation (FST) based methods still remain among the most popular, particularly in non–model species since they do not require accurate genomic resources (e.g., physical or linkage maps) and experimental designs with only a few tens of genotyped individuals per population are generally informative enough. Also, FST–based methods are also well suited to the analysis of data from Pool–Seq experiments that consist in sequencing pools of indi-
individual DNAs (Schlötterer et al. 2014) and provide cost-effective alternatives to facilitate and even improve allele frequency estimation at genome-wide markers (Gautier et al. 2013).

In practice, assuming the vast majority of the genotyped markers behave neutrally, overly differentiated loci that are presumably subjected to selection might simply be identified from the extreme tail of the empirical distribution of the locus-specific F_{ST} (Akey et al. 2002; Weir et al. 2005; Flori et al. 2009). Even if such a model–free strategy does not rely any arbitrary assumptions about the (unknown) demographic history of the sampled populations, it prevents from controlling for false positive (and negative) signals. Conversely, model–based approaches have also been developed and are basically conceived as locus–specific tests of departure from expectation under neutral demographic models (e.g., Gautier et al. 2010a). These include, for instance, demographic models under pure-drift (Gautier et al. 2010a; Nicholson et al. 2002) and at migration-drift equilibrium without (Beaumont and Balding 2004; Foll and Gaggiotti 2008; Rieber et al. 2008; Guo et al. 2009) or with selection (Vitalis et al. 2014). Although robust, to some extent, to more complex history (Beaumont and Nichols 1996; Beaumont 2005), these methods remain limited by the oversimplification of the underlying demographic models. In particular, hierarchically structured population history, as produced under tree–shaped phylogenies, have been shown to increase false positive rates (Excoffier et al. 2009). To cope with these issues, two kind of modeling extensions have recently been explored. They either rely on hierarchical island models thus requiring a prior definition of the markers within a given pool to its haploid sample size n, that is, twice the number of geno-

Whatever the method used, the main limitation of the indirect genome scan approaches ultimately resides in the biological interpretation of the footprints of selection identified, i.e., to which adaptive constraints the outlier loci are responding. In species with functionally annotated reference genomes, the characterization of co-functional relationships among the genes localized within regions under selection might help gaining insights into the underlying driving physiological pathways (e.g., Flori et al. 2009). Although, following a "reverse ecology" approach (Li et al. 2008), they may further lead to the definition of candidate adaptive traits for validation studies, such interpretations remain prone to misleading storytelling issues (Pavlidis et al. 2012). Alternatively, prior knowledge about some characteristics discriminating the populations under study could provide valuable insights. Focusing on environmental gradients, several modeling strategies and decision criteria to perform association studies with population–specific covariables (if available). In particular, we introduce a model with a binary auxiliary variable to classify each locus as associated or not. Through the prior distribution on this latter variable, the approach deals with the problem of multiple testing (e.g., Rieber et al. 2008). In addition, providing information about marker positions is available, this modeling also allows to account for Linkage Disequilibrium (LD) between markers via an Ising prior. As a by–product of this study, a user–friendly and freely available program, named BAYPASS, was developed to implement inferences under the different models. To evaluate the accuracy of the methods, we further carry out comprehensive simulation studies. In addition, two real data sets are analyzed in more details to illustrate the range of application of the methods. The first consists in 453 individuals from 18 French cattle breeds genotyped at 42,056 SNPs (Gautier et al. 2010b) and the second in a Pool–Seq data on 12 Littorina saxatilis populations from three distinct geographical regions and living in two different ecotypes (Westram et al. 2014).

Overall, the Bayesian hierarchical model proposed by Coop et al. (2010) and implemented in the BAYENV2 software represents one the most flexible and powerful framework to both identify outlier loci (Günther and Coop 2013) and to further annotate the resulting footprints of selection by quantifying their association with population-specific covariables (if available). Indeed, although it might be viewed as purely instrumental, the (scaled) population covariance matrix across population allele frequencies explicitly incorporates their neutral correlation structure. This matrix is in turn highly informative for demographic inference purposes (Lipson et al. 2013; Pickrell and Prichard 2012). Elaborating on the BAYENV model (Coop et al. 2010; Günther and Coop 2013), the purpose of this paper is threefold. First, we introduce modeling modifications and extensions to improve the estimation accuracy of the population covariance matrix and the different related measures. Second, we propose a posterior checking procedure to identify markers subjected to adaptive differentiation based on a calibration of the XTX statistics (Günther and Coop 2013). Third, we investigate alternative modeling strategies and decision criteria to perform association studies with population–specific covariables. In particular, whatever the method used, the main limitation of the indirect genome scan approaches ultimately resides in the biological interpretation of the footprints of selection identified, i.e., to which adaptive constraints the outlier loci are responding. In species with functionally annotated reference genomes, the characterization of co-functional relationships among the genes localized within regions under selection might help gaining insights into the underlying driving physiological pathways (e.g., Flori et al. 2009). Although, following a "reverse ecology" approach (Li et al. 2008), they may further lead to the definition of candidate adaptive traits for validation studies, such interpretations remain prone to misleading storytelling issues (Pavlidis et al. 2012). Alternatively, prior knowledge about some characteristics discriminating the populations under study could provide valuable insights. Focusing on environmental gradients, several modeling strategies and decision criteria to perform association studies with population–specific covariables (if available). In particular, we introduce a model with a binary auxiliary variable to classify each locus as associated or not. Through the prior distribution on this latter variable, the approach deals with the problem of multiple testing (e.g., Rieber et al. 2008). In addition, providing information about marker positions is available, this modeling also allows to account for Linkage Disequilibrium (LD) between markers via an Ising prior. As a by–product of this study, a user–friendly and freely available program, named BAYPASS, was developed to implement inferences under the different models. To evaluate the accuracy of the methods, we further carry out comprehensive simulation studies. In addition, two real data sets are analyzed in more details to illustrate the range of application of the methods. The first consists in 453 individuals from 18 French cattle breeds genotyped at 42,056 SNPs (Gautier et al. 2010b) and the second in a Pool–Seq data on 12 Littorina saxatilis populations from three distinct geographical regions and living in two different ecotypes (Westram et al. 2014).

Models

In the following we describe the different Bayesian hierarchical models considered in this study and implemented in the BAYENV program. Consider a sample made of J populations (sharing a common history) with a label, j, which varies from 1 to J. The data consist in I SNP loci, which are biallelic markers with reference allele arbitrarily defined (e.g., by randomly drawing the ancestral or the derived state). Let n_j be the total number of genes sampled at the ith locus ($1 \leq i \leq I$) in the jth population ($1 \leq j \leq J$), that is, twice the number of genotyped individuals in a diploid population. Let y_{ij} be the count of the reference allele at the ith locus in the jth sampled population. When considering allele count data, the y_{ij}’s (and the n_j’s) are the observations while for Pool–Seq data, read count are observed instead. In this case, the n_j’s correspond for all the markers within a given pool to its haploid sample size n_j (i.e., twice the number of pooled individuals for diploid species). Let further c_{ij} be the (observed) total number of reads and r_{ij} the (observed) number of reads with the reference allele. For Pool–Seq data, to integrate over the unobserved allele count, the conditional distribution of the r_{ij} given c_{ij},n_j and the (unknown) r_{ij} is assumed binomial (Gautier et al. 2013; Günther and Coop...
informative priors are also explored with $0 < \rho < J$ (Gelman et al. 2003, p381) leading to so-called singular Wishart distributions. As will become apparent, $\rho = 1$ appears as the best default choice. Note however that inspection of the full conditional distribution of Λ (see File S1) suggests the influence of the prior might become negligible with increasing number of SNPs I and populations J.

The standard covariate model (STD model)

The STD model represented in Figure 1B extends the core model as Coop et al. (2010) proposed and allows to evaluate association of SNP allele frequencies with a population–specific covariable Z_j. Note that Z_j is a (preferably scaled) vector of length J containing for each population the measures of interest. Under the STD model, the prior distribution of the vector α_i^* is multivariate Gaussian for each SNP i:

$$
\alpha_i^* \mid \Lambda, \pi_i \sim N_J \left(\pi_i I_J + \beta_i Z_j; \pi_i (1 - \pi_i) \Lambda^{-1} \right)
$$

(7)

The prior distribution for the correlation coefficients (β_i) is assumed uniform:

$$
\beta_i \sim \text{Unif}(\beta_{\min}; \beta_{\max})
$$

(8)

Unless stated otherwise, $\beta_{\min} = -0.3$ and $\beta_{\max} = 0.3$ instead of $\beta_{\min} = -0.1$ and $\beta_{\max} = 0.1$ as in Coop et al. (2010).

The covariate model with auxiliary variable (AUX model)

The AUX model represented in Figure 1C is an extension of the STD model that consists in attaching to each locus regression coefficient β_i a Bayesian (binary) auxiliary variable δ_i. In a similar population genetics context, this modeling was also proposed by Riebler et al. (2008) to identify markers subjected to selection in genome-wide scan of adaptive differentiation (under a J-$$F$$-model). In the AUX model, the auxiliary variable actually indicates whether a specific SNP i can be regarded as associated with the covariable Z_j ($\delta_i = 1$) or not ($\delta_i = 0$). As a consequence, the posterior mean of δ_i may directly be interpreted as a posterior probability of association of the SNP i with the covariable, from which a Bayes Factor (BF) is straightforward to derive (Gautier et al. 2009). Under the AUX model, the prior distribution of the vector α_i^* is multivariate Gaussian for each SNP i:

$$
\alpha_i^* \mid \Lambda, \pi_i \sim N_J \left(\pi_i I_J + \delta_i \beta_i Z_j; \pi_i (1 - \pi_i) \Lambda^{-1} \right)
$$

(9)

Providing information about marker positions is available, the δ_i’s auxiliary variables also makes it easy to introduce spatial dependency among markers. In the context of high-throughput genotyping data, SNP associated to a given covariable might indeed cluster in the genome due to LD with the underlying (possibly not genotyped) causal polymorphisms(s). To learn from such positional information, the prior distribution of $\delta = \{\delta_i\}_{1 \ldots J}$, the vector of SNP auxiliary variables, takes the general form of a 1D Ising model with a parametrization inspired from Duforet-Frebourg et al. (2014):

$$
\pi \left(\delta \mid P, \beta_{\text{SNP}} \right) \propto P^{s_1} \left(1 - P \right)^{s_0} e^{\eta \delta^T \delta}
$$

(10)

where $s_1 = \sum_{i=1}^J I_{\delta_i = 1}$ (respectively $s_0 = I - s_1$) are the number of SNPs associated (respectively not associated) with the covariable, and $\eta = \sum_{i\sim j} I_{\delta_i = \delta_j}$ is the number of pairs of consecutive markers (neighbors) that are in the same state at the auxiliary
variable (i.e., $\delta_i = \delta_{i+1}$). The parameter P corresponds to the proportion of SNPs associated to the covariable and is assumed
Beta distributed:

$$P \sim \beta(a_P, b_P) \quad (11)$$

Unless stated otherwise, $a_P = 0.02$ and $b_P = 1.98$. This amounts to assume a priori that only a small fraction of the SNPs
($\frac{a_P}{a_P + b_P} = 1\%$) are associated to the covariable, but within a reasonably
large range of possible values (e.g., $P [P > 10\%] = 2.8\%$ a priori). Importantly, integrating over the uncertainty on the key parameter P allows to deal with multiple testing issues.

Finally, the parameter δ_{ip}, called the inverse temperature in the Ising (and Potts) model literature, determines the level of
spatial homogeneity of the auxiliary variables between neighbors. When $\delta_{ip} = 0$, the relative marker positions is ignored (no
spatial dependency among markers). This is thus equivalent to
assume a Bernoulli prior for the δ_i’s; $\delta_i \sim \text{Ber}(P)$ as in Rieber
et al. (2008). Conversely, $\delta_{ip} > 0$ leads to assume that the δ_{ip} with
similar values tend to cluster in the genome (the higher the δ_{ip}, the higher the level of spatial homogeneity). In practice, $\delta_{ip} = 1$
commonly used and value of $\delta_{ip} > 1$ are recommended. Note
that the overall parametrization of the Ising prior assumes no
external field and no weight (as in the so-called compound Ising
model) between the neighboring auxiliary variables. In other
words, the information about the distances between SNPs is
therefore not accounted for and only the relative position of
markers are considered. Hence, marker spacing is assumed
homogeneous.

Material and Methods

MCMC sampler

To explore the different models and estimate the full posterior
distribution of the underlying parameters, a Metropolis–
Hastings within Gibbs Markov Chain Monte Carlo (MCMC) al-
gorithm was developed (see the File S1 for a detailed description)
and implemented in a program called BAYPASS (for BAYesian
Population ASSociation analysis). The software package con-
taining the Fortran 90 source code, a detailed documentation
and several example files is freely available for download at
http://www1.montpellier.inra.fr/GBG/software/baypass/.

Unless otherwise stated, a MCMC chain first consists in 20 pilot runs
of 1,000 iterations each allowing to adjust to proposal distributions
(for Metropolis and Metropolis–Hastings updates) with
 targeted acceptance rates lying between 0.2 and 0.4 to achieve
good convergence properties (Gilks et al. 1996). Then MCMC
chains are run for 25,000 iterations after 5,000 iterations burn-in
period. Samples are taken from the chain every 25 post–burn–in
iterations to reduce autocorrelations using a so-called thinning
procedure. To validate the BAYPASS sampler, an independent
implementation of the core model was coded in the BUGS lan-
guage and run in the OPENBUGS software (Thomas et al. 2009)
as detailed in the File S2. Analyses of some (small) test data sets
using both implementations gave consistent results (data not
shown).

Finally, as a matter of comparison, in the analysis of prior
sensitivity in Ω estimation, the BAYENV2 (Günther and Cooper
2013) software was also used with default options except the
total number of iterations which was set to 50,000.

Estimation and visualisation of Ω

Point estimates of each elements of Ω consisted of their cor-
responding posterior means computed over the sampled ma-
trices. For BAYENV2 analyses, the first ten sampled matrices
were discarded and only the 90 remaining sampled ones
were retained. For visualization purposes, the resulting Ω
estimate was transformed into a correlation matrix P with elements
$P_{ij} = \frac{\hat{w}_{ij}}{\sqrt{\hat{w}_{ii}\hat{w}_{jj}}}$

using the cor2cor() R function (R Core Team 2015).

The graphical display of this correlation matrix was done with
the corrplot() function from the R package corrplot (Wei
2013).

In addition, hierarchical clustering of the underlying populations was performed using the hclust() R function con-
considering $1 - P_{ij}$ as a dissimilarity measure between each pair of
population i and j. The resulting bifurcating tree was plotted
with the plot.phylo() function from the R package ape (Paradis
et al. 2004).

Note that the latter representation reduces the cor-
relation matrix into a block-diagonal matrix thus ignoring gene
flow and admixture events.

Computation of the FMD metric to compare Ω matrices

The metric proposed by Förstner and Moonen (2003) for covari-
ance matrices and hereafter referred to as the FMD distance was
used to compare the different estimates of Ω and to assess esti-
mation precision and robustness in the prior sensitivity analysis.

Let Ω_1 and Ω_2 be two (symmetric positive definite) covariance
matrices with rank J, the FMD distance is defined as:

$$\text{FMD}(\Omega_1, \Omega_2) = \sqrt{\sum_{j=1}^J \lambda_j (\Omega_1, \Omega_2)} \quad (12)$$

where $\lambda_j (\Omega_1, \Omega_2)$ represent the jth generalized eigenvalue of
the matrices Ω_1 and Ω_2 that were all computed with the R
package geigen (Hasselman 2015).

Computation and calibration of the $X^T X$ statistic

Genome scan for adaptive differentiation was based on the $X^T X$
differentiation measure (Günther and Cooper 2013). This statistic
is homogeneous to a SNP–specific F_{ST} but explicitly correct for
the scale covariance of population allele frequencies. For each
SNP i, $X^T X$ was estimated from the T MCMC (post–burn–in
and thinned) parameters sampled values, $\alpha_i(t), \rho_i(t)$ and $\Lambda(t)$, as:

$$X^T X_i = \frac{1}{T} \sum_{t=1}^T \alpha_i(t) \Lambda(t)^{i,j} \alpha_i(t)$$

$$\quad (13)$$

To provide a decision criterion for discriminating between
neutral and selected markers, i.e., to identify outlying $X^T X$, we
estimated the posterior predictive distribution of this statistic
under the null (core) model by analyzing pseudo–observed data
sets (POD). PODs are produced by sampling new observations
(either allele or read count data) from the core inference model
with (hyper–)parameters α_i, ρ_i and Λ (the most distal nodes in
the DAG of Figure 1) fixed to their respective posterior means
obtained from the analysis of the original data. The sample
characteristics are preserved by sampling randomly (with
replacement) SNP vectors of n_i’s (for allele count data) or c_{ij}’s
(for read count data) among the observed ones. For Pool–Seq
data, haploid sample sizes are set to the observed ones. The
R (R Core Team 2015) function simulate.bypass() available in the BAYPASS software package was developed to carry out
these simulations. The POD is further analyzed using the same
MCMC parameters (number and length of pilot runs, burn-in,
chain length, etc.) as for the analysis of the original data set.

The $X^T X$ values computed for each simulated locus are then
combined to obtain an empirical distribution. The quantiles of this
empirical distribution are computed and are used to calibrate
the XIX observed for each locus in the original data: e.g., the 99% quantile of the XIX distribution from the POD analysis provides
a 1% threshold XIX value, which is then used as a decision cri-
teron to discriminate between selection and neutrality. Note that
this calibration procedure is similar to the one used in Vitalis
et al. (2014) for the calibration of their SNP KLD.

Population Association tests and decision rules

Association of SNPs with population-specific covariables is as-
essed using Bayes Factors (BF) or what may be called "empirical
Bayesian P−values" (eBP). Briefly, for a given SNP, BF compares
models with and without association while eBP is aimed at mea-
suring to which extent the posterior distribution of the regression
coefficient β_i excludes 0.

Two different approaches were considered to compute BF's.
The first estimate (hereafter referred to as BF$_{mc}$) relies on the
Importance Sampling algorithm proposed by Coop et al. (2010)
and uses MCMC samples obtained under the core model (see
File S3 for a detailed description). The second estimate (hereafter
referred to as BF$_{mc}$) is obtained from the posterior mean of
the auxiliary variable $\hat{\mu}(\delta_i)$ under the AUX model:

$$BF_{mc} = \frac{\hat{\mu}(\delta_i) \cdot b_p}{1 - \hat{\mu}(\delta_i) \cdot \hat{\sigma}_p}$$

(14)

where $\hat{\mu}(\delta_i)$ is the (estimated) posterior odds that the locus i is
associated to the covariable and $\hat{\sigma}_p$ is the corresponding prior
odds (Gautier et al. 2009). Hereby, BF$_{mc}$ is only derived for the
AUX model with $\beta_{i\text{m}} = 0$ (the prior odds being challenging to
compute when $\beta_{i\text{m}} \neq 0$). In practice, to account for the finite
MCMC sampled values T, $\hat{\mu}(\delta_i)$ is set equal to $\frac{T - 0.5}{T - 1}$ (respectively
0.5) when the posterior mean of the δ_i is equal to 1 (respectively
or 0). Note that, through the prior on P, the computation of
BF$_{mc}$ explicitly accounts for multiple testing issues. BF's are
generally expressed in deciban units (dB) (via the transformation
$10\log_{10}(BF)$). The Jeffreys' rule (Jeffreys 1961) provide a useful
criterion decision to quantify the strength of evidence (here
in favor of association of the SNP with the covariable) using
the following scale: "strong evidence" when $10\log_{10}(BF) < 15$, "very
strong evidence" when $15 < BF < 20$ and "decisive evidence" when
$BF > 20$.

For the computation of eBP's, the posterior distribution
of each SNP was approximated as a Gaussian distribution:

$$N\left(\hat{\mu}(\beta_j),\hat{\sigma}(\beta_j)\right)$$

where $\hat{\mu}(\beta_j)$ and $\hat{\sigma}(\beta_j)$ are the estimated pos-
terior mean and standard deviation of the corresponding β_j. The
eBP's are further defined as:

$$eBP = -10\log_{10}\left(1 - 2 \cdot 0.5 - \Phi\left(\frac{\mu(\beta_j)}{\sigma(\beta_j)}\right)\right)$$

(15)

where $\Phi(x)$ is the cumulative distribution function of the stan-
dard normal distribution. Roughly speaking, a value of β might
be viewed as "significantly" different of 0 at a level of 10^{-eBP_m}.

Two different approaches were considered to estimate the mo-
ments of the posterior distribution of the β_i's. The first, detailed
in the File S3, rely on an Importance Sampling algorithm simi-
lar to the one mentioned above and thus uses MCMC samples
obtained under the core model. The resulting eBP's estimates
are hereafter referred to as eBP$_{mc}$. The second approach relies on
posterior samples of the MCMC obtained under the STD model.
The resulting eBP's estimates are hereafter referred to as eBP$_{mc}$.

Note finally, that for estimating BF$_{mc}$ (under the AUX model)
and eBP$_{mc}$ (under the STD model), the value of the Λ was fixed
to its posterior mean as obtained from an initial analysis carried
out under the core model.

Simulated Data sets

All the simulated data sets were obtained under the core or
the STD inference models defined above (Figure 1) using the
function simulate.baypass() available in the BAYPASS soft-
ware package. Briefly, a simulated data set is specified by the
Ω matrix, the parameters of the Beta distribution for the an-
cestral allele frequencies (a_i and b_i) and the sample sizes. As
a matter of expedience, ancestral allele frequencies below 0.01
(respectively above 0.99) were set equal to 0.01 (respectively
0.99) and markers that were not polymorphic in the resulting
simulated data set were discarded from further analyses. For
the generation of PODs (see above), the n_j's (or the c_j's for
Pool−Seq data) were sampled (with replacement) from the ob-
served ones and for the power analyses, these were fixed to
$n_j = 50$ for all the populations. To simulate under the STD
model, the simulated β's (SNP regression coefficients) were
specified and the population covariable vector Z was simply
taken from the standard normal cumulative distribution func-
tion such that $z_j = \Phi\left(0.01 + 0.98\frac{1}{\sqrt{j}}\right)$ for the jth population
(out of the J ones).

Real Data sets

The HSA$_{snp}$ data set. This data set is the same as in Coop et al.
(2010) and was downloaded from the BAYENV2 software web-
page (http://gcbias.org/bayenv/). It consists of genotypes at 2,333
SNPs for 927 individuals from 52 human population of the
HGDPC panel (Conrad et al. 2006).

The BTA$_{snp}$ data set. This data set is a subset of the data from
Gautier et al. (2010b) and consists of 453 individuals from
18 French cattle breeds (from 18 to 46 individuals per breed)
genotyped for 42,046 autosomal SNPs displaying an overall
MAF>0.01. As detailed in File S4, two breed-specific covar-
iables were considered for association analyses. The first co-
variable corresponds to a synthetic morphology score (SMS)
defined as the (scaled) first principal component of breed aver-
age weights and wither heights for both males and females
(taken from the French BRG website: http://www.brg.prdf.fr/). The
second covariable is related to coat color and corresponds to the
piebald coloration pattern of the different breeds that was coded
as 1 for pied breed (e.g., Holstein breed) and −1 for breeds with
a uniform coloration pattern (e.g., Tarine breed).

The LSA$_{snp}$ data set. This data set was obtained from whole
transcriptomes of pooled Littorina saxatilis (LSA) individuals
belonging to 12 different populations originating (Westram et al.
2014). These populations originate from three distinct geographical
regions (UK, the United Kingdom; SP, Spain and SW, Swe-
den) and lived in two different ecotypes corresponding to the
so-called "wave" habitat (subjected to wave action) and "crab"
habitat (i.e., subjected to crab predation). The mpileup file with
the aligned RNA−seq reads from the 12 pools (three countries ×
two ecotypes × two replicates) onto the draft LSA genome
assembly was downloaded from the Dryad Digital Repository
file was further processed using a custom awk script to perform
SNP calling and derive read counts for each alternative base (after discarding bases with a BAQ quality score < 25). A position was considered as variable if i) it had a coverage of more than 20 and less than 250 reads in each population; ii) only two different bases were observed across all the five pools and; iii) the minor allele was represented by at least one read in two different pool samples. Note that tri-allelic positions for which the two most frequent alleles satisfied the above criteria and with the third allele represented by only one read were included in the analysis as bi-allelic SNPs (after filtering the third allele as a sequencing error). The final data set then consisted in allele counts for 53,387 SNPs. As a matter of expedience, the haploid sample size was set to 100 for all the populations because samples consisted of pools of ca. 40 females with their embryos (from tens to hundreds per female) (Westram et al. 2014). To carry out the population analysis of association with ecotype and identify loci subject to parallel phenotypic divergence, the habitat is considered as a binary covariable respectively coded as 1 for the "wave" habitat and -1 for the "crab" habitat.

Results

Performance of the core model for estimation of the scaled population covariance matrix Ω

The scaled covariance matrix Ω of population allele frequencies represents the key parameter of the models considered in this study. Evaluating the precision of its estimation is thus crucial. To illustrate how prior parametrization might influence estimation of Ω, we first analyzed the BTA$_{\text{BTA}}$ (with $J=18$ French cattle populations) and the HSA$_{\text{HSA}}$ (with $J=52$ worldwide human populations) data sets using both BAYPASS (under the core model represented in Figure 1A with $\rho = 1$) and BAYENV2 (in which $\rho = J$ and $a_\pi = b_\pi = 1$ according to Coop et al. (2010)).

Note that the sampled populations in these two data sets have similar characteristics in terms of the overall F_{ST} ($F_{ST} = 9.84\%$ and $F_{ST} = 10.8\%$ for the cattle and human sampled populations respectively). The resulting estimated Ω matrices are hereafter denoted as $\hat{\Omega}_{\text{BTA}}$ and $\hat{\Omega}_{\text{BTA}}$, respectively for the cattle data set and are represented in Figure 2. Similarly, for the human data set, the resulting $\hat{\Omega}_{\text{HSA}}$ and $\hat{\Omega}_{\text{HSA}}$ are represented in Figure S1. For both data sets, the comparisons of the two different estimates of Ω reveal clear differences that suggest in turn some sensitivity of the model to the prior assumption. Analyses under three other alternative BAYPASS model parameterizations (i) $\rho = 1$ and $a_\pi = b_\pi = 1$; ii) $\rho = J$ and; iii) $\rho = J$ and $a_\pi = b_\pi = 1$ confirmed this intuition (Figure S2). For the human data set, the FMD between the different estimates of Ω varied from 1.73 (BAYPASS with $\rho = 1$ vs BAYPASS with $\rho = 1$ and $a_\pi = b_\pi = 1$) to 31.1 (BAYPASS with $\rho = 1$ vs BAYPASS with $\rho = 52$). However, for the cattle data set that contains about 20 times as many SNPs for 3 times less populations, the four BAYPASS analyses gave consistent estimates (pairwise FMD always below 0.5) that clearly depart from the BAYENV2 one (pairwise FMD always above 14). Note also that BAYPASS estimates were in better agreement with the historical and geographic origins of the sampled breeds (see Figure 2 and Gautier et al. (2010b) for further details).

[Figure 2 about here.]

Overall these contrasting results call for a detailed analysis of the sensitivity of the model to prior specifications on both Ω (c-value) and the π, Beta distribution parameters (a_π and b_π), but also to data complexity (number and polymorphism of SNPs). To that end we first simulated under the core inference model (Figure 1A) data sets for four different scenarios labeled SpsH1, SpsH2, SpsB1 and SpsB2. In SpsH1 and SpsH2 (respectively SpsB1 and SpsB2), the population covariance matrix was set equal to $\hat{\Omega}_{\text{HSA}}$ (respectively $\hat{\Omega}_{\text{BTA}}$), and in SpsH1 and SpsB1 (respectively SpsH2 and SpsB2) the π’s were sampled from a Uniform distribution over (0,1) (respectively a $\text{Beta}(0.2,0.2)$ distribution). Note that the two different π distributions lead to quite different SNP frequency spectrum, the Uniform one approaching (ascertained) SNP chip data (i.e., good representation of SNPs with an overall intermediate MAF) while the $\text{Beta}(0.2,0.2)$ one is more similar to that obtained in whole genome sequencing experiments with an over-representation of poorly informative SNPs (see, e.g., results obtained on the LSA$_{\text{psPool-Seq}}$ data below). To assess the influence of the number of genotyped SNPs, data sets consisting of 1,000, 5,000, 10,000 and 25,000 SNPs were simulated for each scenario. For each set of simulation parameters, ten independent replicate data sets were generated leading to a total of 160 simulated data sets (10 replicates x 4 scenarios x 4 SNP numbers) that were each analyzed with BAYENV2 (Coop et al. 2010) and four alternative BAYPASS model parameterizations (i) $\rho = 1$; ii) $\rho = 1$ and $a_\pi = b_\pi = 1$; iii) $\rho = J$ and; iv) $\rho = J$ and $a_\pi = b_\pi = 1$). FMD distance (averaged across replicates) of the resulting Ω estimates from their corresponding true matrices are represented in Figure 3. Note that for a given simulation parameter set, the FMD distances remained quite consistent (under a given model parametrization) across the ten replicates (Figure S3).

[Figure 3 about here.]

Except for BAYENV2 analyses, the estimated matrices converged to the true ones as the number of SNPs (and thus the information) increase. In addition, as observed above for real data sets, the BAYENV2 estimates were always quite different from those obtained with BAYPASS parametrized under the same model assumptions ($\rho =$npop and $a_\pi = b_\pi = 1$). It should also be noticed that reproducing the same simulation study by using the $\hat{\Omega}_{\text{BTA}}$ and $\hat{\Omega}_{\text{BTA}}$, matrices in the four different scenarios lead to similar patterns (Figure S4). Reasons for this behavior of BAYENV2 (possibly the result of some minor implementation issues) were not investigated further and we hereafter only concentrated on results obtained with BAYPASS.

As expected, the optimal number of SNPs also depends on the overall level of polymorphism. Hence, when the simulated π’s were sampled from a $\text{Beta}(0.2,0.2)$ (Figure 3B and D) instead of a $\text{Unif}(0,1)$ distribution, a higher number of SNPs was required (compare Figures 3B and A; and Figures 3D and C, respectively) to achieve the same accuracy. Likewise, all else being equal, the estimation precision was found always lower for the SpsH1 (and SpsH2) than SpsB1 (and SpsB2) scenarios. This shows that the optimal number of SNPs is an increasing function of the number of sampled populations. One might also expect that more SNPs are required when population differentiation is lower (although this was not formally tested here). Regarding the sensitivity of the models to the prior definition, the parametrization with $\rho = 1$ clearly outperformed the more informative one ($\rho = J$), most particularly for smaller number of SNPs and more complex data sets. Naturally, estimating the parameters a_π and b_π compared to setting them to $a_\pi = b_\pi = 1$ had almost no effect in the estimation precision of Ω for the SpsH1 and SpsB1 scenarios, their resulting posterior means being slightly larger than one (≈ 1.1 due probably to the simulation SNP ascertainment scheme.
as described in Material and Methods). Interestingly however, a substantial gain in precision was obtained for the SpssB2 and SpsB2 data sets (for which $\pi_{j|\text{sim}} \sim \text{Beta}(0.2, 0.2)$). Hence, for the SpssB2 data sets (Figure 3D), the FMD curves reached a plateau with the $a_{i\pi} = b_{i\pi} = 1$ parametrization (for both $\rho = 1$ and $\rho = 18$) as the number of SNPs increase whereas precision kept improving when $a_{i\pi}$ and $b_{i\pi}$ were estimated.

We finally investigated to which extent estimation of $a_{i\pi}$ and $b_{i\pi}$ might improve robustness to SNP ascertainment. To that end, ten additional independent data sets of 100,000 SNPs were simulated under both the SpssH1 and SpssB1 scenarios. For each of the twenty resulting data sets, six subsamples were constituted by randomly sampling 25,000 SNPs with an overall MAF >0.01, >0.025, >0.05, >0.075 and >0.10 respectively. The 120 resulting data sets (2 scenarios \times 10 replicates \times 6 MAF thresholds) were analyzed with BayPass (assuming $\rho = 1$) by either estimating $a_{i\pi}$ and $b_{i\pi}$ or setting $a_{i\pi} = b_{i\pi} = 1$. Although the estimation precision of Ω was found to decrease with increasing MAF thresholds (Figure S5), estimating $a_{i\pi}$ and $b_{i\pi}$ allowed to clearly improve accuracy in these examples. Note however, that the effect of the ascertainment scheme remained limited, in particular for small MAF thresholds (MAF<0.05).

Performance of the $\mathbf{X}^2 \mathbf{X}$ statistics to detect overly differentiated SNPs.

To evaluate the performance of the $\mathbf{X}^2 \mathbf{X}$ statistics to identify SNPs subjected to selection, data sets were simulated under the STD inference model (Figure 1B), i.e., with a population–specific covariable. This simulation strategy was mainly adopted to compare covariable-free $\mathbf{X}^2 \mathbf{X}$ based decision (scan for differentiation) with association analyses (based on covariate models) as described in the next section. Obviously, the $\mathbf{X}^2 \mathbf{X}$ is a covariable-free statistic that is powerful to identify SNPs subjected to a broader kind of adaptive constraints, as elsewhere demonstrated (Bonhomme et al. 2010; Günther and Coop 2013). Hence, two different (demographic) scenarios, labeled SpaH and SpaB, were considered.

In the scenario SpaH (respectively SpaB), Ω_{sim} was set equal to Ω_{bas} (respectively $\Omega_{\text{bas}}^\text{benv}$), and the π_j’s were sampled from a Uniform distribution. For each scenario, 25,600 SNPs were simulated of which 25,000 are neutral SNPs (i.e., with a regression coefficient $\beta_j = 0$) and 600 are SNPs associated with a normally distributed population–specific covariable (see Material and Methods) and with regression coefficients $\beta_j = -0.2$ (n=100), $\beta_j = -0.1$ (n=100), $\beta_j = -0.05$ (n=100), $\beta_j = 0.05$ (n=100), $\beta_j = 0.1$ (n=100), $\beta_j = 0.2$ (n=100). For each scenario, ten independent replicate data sets, each with a randomized population covariable vector, were generated. The resulting 20 simulated data sets (10 replicates \times 2 MAF) were then analyzed with four alternative BayPASS model parameterizations corresponding to i) the core model (Figure 1A) with $\rho = 1$; ii) the core model by setting $\Omega = \Omega_{\text{sim}}$; iii) the STD model (Figure 1B) by setting $\Omega = \Omega_{\text{sim}}$ and; iv) the default AUX model (Figure 1C) i.e. with $\Omega_{\text{benv}} = 0$ and $\Omega = \Omega_{\text{sim}}$.

As expected, under the core model, the higher $|\beta_j|$ and the higher the estimated $\mathbf{X}^2 \mathbf{X}$ on average (Figure S6). As a matter of expedience, for power comparisons, 1% POD threshold were further defined for each analysis using the $\mathbf{X}^2 \mathbf{X}$ distribution obtained for SNPs with simulated $\beta_j = 0$. Note that the resulting thresholds were very similar to those obtained using independent data sets (e.g., SpssH and SpsB1) that lead to False Positive Rates close to 1%. As shown in Table 1, the power was optimal ($> 99.9\%$) for strongly associated SNPs ($|\beta_j| = 0.2$) in both scenarios but remained small ($< 10\%$) for weakly associated SNPs. In addition, power was always higher with the SpaH than with the SpaB data probably due to a more informative design (three times as many populations). Likewise, estimating Ω (i.e., including information from the associated SNPs) slightly affected the performance of the $\mathbf{X}^2 \mathbf{X}$-based criterion when compared to setting $\Omega = \Omega_{\text{sim}}$ (see Table 1 and also the ROC curve analyses in Figure S7). Yet the resulting estimated matrices Ω were close to the true simulated ones ($\mathbf{FMD} = 2.4$ across the SpaH and $\mathbf{FMD} = 0.5$ across the SpaB simulated data sets) suggesting in turn that the core model is also robust to the presence of SNPs under selection (at least in moderate proportion). Conversely, a misspecification of the prior Ω, as investigated here by similarly analyzing the SpaH (respectively SpaB) data sets under the core, the STD and the AUX models but setting $\Omega = \Omega_{\text{benv}}$ (respectively $\Omega = \Omega_{\text{benv}}^\text{benv}$) lead to an inflation of the $\mathbf{X}^2 \mathbf{X}$ estimates (Figure S8). The $\mathbf{X}^2 \mathbf{X}$ mean was in particular shifted away from J (number of populations) expected under neutrality (see also Figure 5 in Günther and Coop (2013)). As a consequence, the overall performances of the $\mathbf{X}^2 \mathbf{X}$-based criterion were clearly impacted (see Table S1 ROC and ROC curve analyses in Figure S7).

Interestingly, under both the STD and AUX models, the distribution of the $\mathbf{X}^2 \mathbf{X}$ for SNPs associated to the population covariable was similar to the neutral SNP one, whatever the underlying β_j (Figure S6). Accordingly, the corresponding true positive rates were close to the nominal POD threshold in Table 1. This suggests that both covariate models allow to efficiently correct the $\mathbf{X}^2 \mathbf{X}$ estimates for the ("fixed") covariable effect of the associated SNPs.

Table 1 about here.

Performance of the models to detect SNP associated to a population–specific covariable.

The performances of the STD and AUX models to identify SNPs associated to a population–specific covariable were further evaluated using results obtained on the SpaH and SpaB data sets (see above). As shown in Figure 4, the Importance Sampling estimates of the β_j coefficients (computed from parameter values sampled under the core model) were found less accurate than posterior mean estimates obtained from values sampled under the STD or AUX models. For smaller $|\beta_j|$ however, the introduction of the auxiliary variable (AUX model) tended to shrink the estimates towards zero in the SpaB data sets probably due, here also, to a less powerful design (three times less populations).

Figure 4 about here.

Accordingly, the BF’s estimated under the AUX model (BF$_{\text{mc}}$) had more power to identify SNPs associated to the population-specific covariables than the corresponding BF$_{\text{Fm}}$ (Table 2 and Figure S9). Indeed, although constrained by construction to a maximal value (here 53.0 db) that both depends on the number of MCMC samples (here 1,000) and on the prior expectation of P (here 0.01), at the “decisive evidence” threshold of 20 db (Jeffreys 1961), the true positive rates for SNPs with a simulated $|\beta_j| = 0.05$ were for instance equal to 81.7% with BF$_{\text{Fmc}}$ for the SpaH data compared to 31.9% with the BF$_{\text{Fm}}$ based decision criterion (Table 2). For the SpaH data (but not for the SpaB ones) a similar trend was observed when comparing decision criteria based on the eBF$_{\text{Fmc}}$ (relying on Importance Sampling algorithm) and the eBF$_{\text{Fmc}}$ as estimated under the STD model (see Table 2 and Figure S10). In addition, Table 2 shows that the intuitive, but

BayPass
still arbitrary, threshold of 3 on the eBP performed worse than the 20 dB threshold on the BF; particularly for the smallest $|\beta|$. This suggests that a decision criterion rule relying on the BFmc may be the most reliable in the context of these models.

[Table 2 about here.]

We next explored how a misspecification of the prior Ω affected the estimation of the β_i's and the different decision criteria. As in the previous section, we considered results obtained for the SpaH (respectively SpaB) data sets with analyses setting $\Omega = \hat{\Omega}_{\text{BSA}}$ (respectively $\Omega = \hat{\Omega}_{\text{BTA}}$). Surprisingly, although the Importance Sampling estimates of the β_i's obtained under the core model clearly performed poorer (particularly for the SpaB data), the estimates obtained under the STD and AUX models were not so affected (Figure S11). Nevertheless, if the resulting true and false positive rates were similar to the previous ones for the SpaH data, for the SpaB data the power to detect associated SNPs strongly decreased with both the BFsa and eBPsa criteria. Conversely, increased false positive rates were observed with the BFmc (up to 22.5%) and eBPmc based decision criteria (see Table S2 and compare with Table 2). These results thus suggest that the influence of model misspecification, although unpredictable, may be critical for association studies with the STD and AUX covariate models.

Performance of the Ising prior to account for SNP spatial dependency in association analyses.

To evaluate the ability of the AUX model Ising prior to capture SNP spatial dependency information, a study was carried out using data sets simulated under the STD inference model with $\Omega_{\text{sim}} = \Omega_{\text{BTA}}$. Two scenarios, labeled SldbA and SldbB, were considered. They respectively consisted in 1,029 and 1,019 SNPs (genotyped in 18 populations) including 1,000 "neutral" SNPs (i.e., with $\beta_i = 0$). For the SldbA scenario, the 29 remaining SNPs were associated to a population-specific covariate, the underlying β_i's coefficients varying from $\beta_i = 0.1$ to $\beta_i = 0.15$. The SNPs were then organized on a linear map in the following order: i) 500 neutral SNPs; ii) 14 associated SNPs with increasing β_i (from $\beta_i = 0.01$ to $\beta_i = 0.14$ with an increment by 0.01); iii) one SNP with $\beta_i = 0.15$; iv) 14 associated SNPs with decreasing β_i (from $\beta_i = 0.14$ to $\beta_i = 0.01$ with an increment by −0.01) and; v) 500 neutral SNPs. The SldbB scenario is similar except that the maximum β_i value is equal to $\beta_i = 0.1$ (resulting in 19 associated SNPs) leading to a weaker association signal. For each scenario, 500 independent replicate data sets with randomized population covariable vectors were generated.

Of course, the adopted simulation procedure might clearly fail to reproduce (or even approximate) the complex patterns of genomic LD expected in real data sets. It was rather aimed at providing some basic insights on how the \hat{s}_{BP} Ising prior parameter may capture spatial information. The resulting 1,000 simulated data sets (500 replicates × 2 scenarios) were thus analyzed under the AUX model (with $\Omega = \hat{\Omega}_{\text{BTA}}$) with three different parameterizations for the Ising prior: i) $s_{BP} = 0$ (no spatial dependency); ii) $s_{BP} = 0.5$ and; iii) $s_{BP} = 1$. As shown in Figure 5, for the SldbA scenario, increasing s_{BP} improved the mapping precision. Indeed, both a noise reduction at neutral position ($\beta_i = 0$) and a sharpening of the 99% envelope (containing 99% of the $\hat{\beta}_i$ posterior means across the 500 replicate data sets) around the peak position can be observed (e.g., compare Figure 5A1 and A3).

Conversely, for the SldbB scenario characterized by a weaker SNP association signal, introducing SNP spatial dependency in the AUX model ($s_{BP} > 0$) strongly reduced the mapping power.

[Figure 5 about here.]

Analysis of the French cattle SNP data

The XTIX estimates were obtained for the 42,046 SNPs of the BTA_{snp} data (Figure S12) from the previous analysis under the core model with $\rho = 1$ (e.g., Figure 2). In agreement with above results, setting instead $\Omega = \hat{\Omega}_{\text{BTA}}$, the estimate of Ω obtained in the latter analysis gave almost identical XTIX estimates ($r = 0.995$). To calibrate the XTIX's, a POD containing 100,000 simulated SNPs was generated and further analyzed leading to a posterior estimate of Ω very close to $\hat{\Omega}_{\text{BTA}}$ (FMD = 0.098). Similarly, the posterior means of a_{β_i} and b_{β_i} obtained on the POD data set ($\hat{a}_{\beta_i} = 1.44$ and $\hat{b}_{\beta_i} = 3.43$, respectively) were almost equal to the ones obtained in the original analysis of the BTA_{snp} data set ($\hat{a}_{\beta_i} = 1.43$ and $\hat{b}_{\beta_i} = 3.44$, respectively). This indicated that the POD faithfully mimics the real data set, allowing the definition of relevant POD significance thresholds on XTIX to identify genomic regions harboring footprints of selection.

To that end, the UMD3.1 bovine genome assembly (Liu et al. 2009) was first split into 5,400 consecutive 1-Mb windows (with a 500 kb overlap). Windows with at least two SNPs displaying XTIX > 35.4 (the 0.1% POD threshold) were deemed significant and overlapping “significant” windows were further merged to delineate significant regions. Among the 15 resulting regions, two regions were discarded because their peak XTIX value was lower than 40.0 (the 0.01% POD threshold). As detailed in Table 3, the 13 remaining regions lie within or overlap with a Core Selective Sweep (CSS) as defined in the recent meta-analysis by Gutiérrez-Gil et al. (2015). This study combined results of 21 published genome-scans performed on European cattle populations using various alternative approaches. The proximity of the XTIX peak allows to define positional candidate genes (Table 3) that have, for most regions, already been proposed (or demonstrated) to be either under selection or to control genes involved in traits targeted by selection (see Discussion).

[Table 3 about here.]

To illustrate how information provided by population-specific covariables might help in formulating or even testing hypotheses to explain the origin of the observed footprints of selection, characteristics of the 18 cattle populations for traits related to morphology (SMS) and coat pigmentation (piebald pattern) were further analyzed within the framework developed in this study. An across population genome-wide association studies was thus carried out under both the STD and AUX models (with $\Omega = \hat{\Omega}_{\text{BTA}}$) allowing the computation for each SNP of the corresponding BFsa and BFmc estimates (Figure S12), and eBPsa and eBPmc estimates (Figure S13). We hereafter concentrated on results obtained with BF which are more grounded from a decision theory point of view (and roughly lead to similar conclusions than eBP). For both traits, the BFsa resulted in larger BF estimates and a higher number of significant association signals (e.g., at the 20 dB threshold) than BFmc. This trend was confirmed by analyzing the POD. Indeed, the 99.9% BFsa (respectively BFmc) quantiles were equal to 24.9 dB (respectively 18.3 dB) for association with SMS and to 26.3 dB (respectively 11.7 dB) for association with piebald pattern. Nevertheless, at the BF threshold of 20 dB, the false discovery rate for BFsa remained small.
(0.035%) and similar to the one obtained in the simulation studies (e.g., Table 2). Interestingly, among the 13 regions identified in Table 3, three contained (regions #4, #11 and #12) at least one SNP significantly associated with SMS based on the BF_{mc} > 20 criterion and none with BF_{mc} > 20 criterion (although BF_{mc} > 5 for the peak of region #12 providing substantial evidence according to the Jeffreys’ rule). For the piebald pattern, results were more consistent since out of the four regions (regions #3, #7, #9 and #11) that contained at least one SNP with a BF_{is} > 20, the BF_{mc} of the corresponding peak SNP was also > 20 (although lower) for all but region #11 (although BF_{mc} = 14.4 for the peak providing strong evidence according to the Jeffreys’ rule). Except for region #7 where both BF peaks lied within the KIT gene (and to a lesser extent for region #11 with SMS), the BF peaks colocalized with (regions #3, #4 and #8) or were very close (less than 50kb) to the XIX peaks. Accordingly, the corresponding XIX estimates decreased when estimated under the STD model, i.e. accounting for the covariables (Figure S14). For instance, the SNP under the XIX peak dropped from 76.3 to 50.3 (from 40.7 to 19.3) for region #3 (respectively region #8). Overall, the posterior means of the individual SNP β_i regression coefficients estimated under the STD model ranged (in absolute value) from 2.2 × 10^{-6} (respectively 1.0 × 10^{-5}) to 0.166 (respectively 0.233) for SMS (respectively piebald pattern). These estimates remained close to those derived from Importance Sampling algorithm, although the latter tended to be lower in absolute value (Figure S15). As expected from the above simulation studies, estimates obtained under the AUX model tended to be shrunk towards 0, which was particularly striking in the case of SMS (Figure S15).

Finally, analyses of association with SMS were conducted under the AUX model with three different Ising prior parameterizations ($\is = 0$, $\is = 0.5$ and $\is = 1$) focusing on the 1,394 SNPs mapping to BTA14 (Figure 6). Under the $\is = 0$ parametrization (equivalent to the AUX model analysis conducted above on a whole genome basis), four SNPs (all lying within region #12) displayed significant signals of association at the $BF = 20$ dB threshold with a peak BF_{mc} value of 28.5 dB at position 24.6 Mb (Figure 6A). These results, obtained on a chromosome-wide basis, provide additional support to the region #12 signal previously observed. They alternatively suggest that power of the BF_{mc} as computed on a whole genome basis might have been altered by the small proportion of SNPs strongly associated to SMS due to multiple testing issues (which BF_{is} computation is not accounted for). Hence, for SMS mapping to BTA14, the BF_{is} estimated on the initial genome-wide analysis were almost identical to the BF_{is} ($r = 0.993$) and highly correlated to the BF_{mc} ($r = 0.805$) estimated in the chromosome-wide analysis. As expected from simulation results, increasing \is lead to refine the position of the peak toward a single SNP mapping about 400 kb upstream the PLAG1 gene (Figure 6B and C).

Analysis of the Littorina saxatilis Pool–Seq data

The LSA_{ps} Pool–Seq data set was first analyzed under the core model (with $\rho = 1$). In agreement with previous results (Westram et al. 2014), the resulting estimate of the population covariation matrix Ω confirmed that the 12 different Littorina populations cluster at the higher level by geographical location and then by ecotype and replicate (Figure 7A). This analysis also allowed to estimate the XIX for each of the 53,387 SNPs that were further calibrated by analyzing a POD containing 100,000 simulated SNPs to identify outlier SNPs (Figure 7). As for the cattle data analysis, the estimate of Ω on the POD was close to the matrix estimated on the original LSA_{ps} data set ($\text{FMD} = 0.516$), although the posterior means of α_{bh} and β_{bh} were slightly higher ($\hat{\alpha}_{bh} = \hat{\beta}_{bh} = 0.370$ compared to $\hat{\alpha}_{bh} = \hat{\beta}_{bh} = 0.214$ with the LSA_{ps} data set). In total, 169 SNPs subjected to adaptive divergence were found at the 0.01% POD significance threshold. To illustrate how the BAYPASS models may help discriminating between parallel phenotype divergence from local adaptation, analyses of association were further conducted with ecotype (crab vs wave) as a categorical population–specific covariable. Among the 169 XIX outlier SNPs, 65 (respectively 75) displayed BF_{is} > 20 dB (respectively BF_{mc} > 20 dB) (Figure 7B). The two BF estimates resulted in consistent decisions (113 SNPs displaying both BF_{mc} > 20 dB and BF_{mc} > 20 dB), although at the 20 dB more SNPs were found significantly associated under the AUX model (n=176) than with BF_{is} (n=117). Interestingly, several overly differentiated SNPs (high XIX value) were clearly not associated to the population ecotype covariable (small BF). These might thus be responding to other selective pressures (local adaptation) but might also, for some of them, map to sex–chromosomes (Gautier 2014). As a consequence, SNP XIX estimated under the AUX model (i.e., corrected for the “fixed” ecotype effect) remained highly correlated with the XIX estimated under the core model (including for some XIX outliers) with the noticeable exception of the SNPs significantly associated to the ecotype. For the latter, the corrected XIX dropped to values generally far smaller than the 0.01% POD threshold (Figure 7C). Finally, Figure 7D gives the posterior mean of the SNP regression coefficients quantifying the strength of the association with the ecotype covariable. It shows that several SNPs displayed strong association signals ($|\beta_i| > 0.2$) pointing towards candidate genes underlying parallel phenotype divergence. As observed above in the simulation study and in the analysis of the cattle data set, the AUX model estimates tended to be shrunk towards 0, except for the highest values (corresponding to SNP’s significantly associated to the covariable) when compared to the estimates obtained under the STD model (Figure S16A). A similar trend for the β_i estimates of the strongly associated SNPs was observed with the importance sampling estimates (Figure S16B).

Discussion

The main purpose of this study was to develop a general and robust Bayesian framework to identify genomic regions subjected to adaptive divergence across populations by extending the approach first described in Coop et al. (2010) and Günther and Coop (2013). Because of the central role played in the underlying models by the scaled population covariance matrix (Ω), a first objective was to improve the precision of its estimation. To that end, instead of defining an Inverse-Wishart prior on Ω as in Coop et al. (2010), a Wishart prior defined on the precision matrix Λ ($\Lambda = \Omega^{-1}$) was rather considered and equivalently parametrized with an identity scale matrix but varying number of degrees of freedom (ρ). As the extensive simulation study revealed, the most accurate estimates were obtained by setting $\rho = 1$ (instead of the number of populations which is equivalent to Coop et al. (2010)) leading to a weaker (and singular) informative Wishart prior. Although flexible, the purely instrumental nature of the Λ prior parametrization considered in our mod-
els makes it difficult to incorporate prior and possibly relevant information about the populations under study. For instance, spatially (Guillot et al. 2014) or even phylogenetically explicit prior might represent in some context attractive alternatives, borrowing for the latter on population genetics theory to model the effect of the demographic history on the covariance matrix (Lipson et al. 2013; Pickrell and Pritchard 2012). Apart from investigating different Ω prior specification, additional levels in the hierarchical models were also introduced to estimate the parameters of the (Beta) prior distribution on the ancestral allele frequency. Interestingly, estimating these parameters improved robustness to the SNP ascertainment scheme, in particular when the allele frequency spectrum is biased towards poorly informatve SNPs as generally obtained with data from whole genome sequencing experiment (e.g., Pool–Seq data). Simulation results on MAF filtered data sets also suggested that these additional levels might reduce sensitivity of the models to SNP ascertainment bias characterizing genotyping data obtained from SNP chip. Finally, inclusion of a moderate proportion of SNPs under selection did not significantly affect estimation of Ω. Overall, it can be concluded that the core model parametrized with a weakly informative Wishart prior (ρ = 1) and that includes the estimation of the parameters α_{i} and β_{i} provides a general robust and accurate approach to estimate Ω even with a few thousands of genotyped SNPs. It should also be noted that it outperforms previous implementations carried out under a similar hierarchical Bayesian framework, as in the BAYENV2 software (Coop et al. 2010), or relying on moment-based estimators Lipson et al. (2013); Bonhomme et al. (2010); Pickrell and Pritchard (2012) (data not shown). As the latter are based on sample allele frequencies, they also remain more sensitive to sample size (and coverage for Pool–Seq data) and, more importantly, they do not allow combining estimation of both the ancestral allele frequencies and covariance matrix that represent a serious issue for small and/or unbalanced designs. Finally, as briefly sketched with visualizations based on correlation plot or hierarchical trees in the present study, the estimation procedure implemented in the BAYPASS core model might be quite relevant for demographic inference purposes since the matrix Ω has already been shown to be informative about the population history Lipson et al. (2013); Pickrell and Pritchard (2012).

Accounting for Ω renders the identification of SNPs subjected to selection less sensitive to the confounding effect of demography (Bonhomme et al. 2010; Günther and Coop 2013). To that end the XIX introduced by Günther and Coop (2013) provides a valuable differentiation measure for genome scan of adaptive divergence. While XIX might be viewed as a Bayesian counterpart of the FLK statistic (Bonhomme et al. 2010), its computation allows considering population histories more complex than bifurcating trees (i.e., including migration or ancestral admixture events) not to mention improved precision in the estimation of the underlying Ω. For practical purposes however, defining significance threshold for the XIX remains challenging. Indeed, although the XIX are expected under the neutral model to be χ²–squared distributed (Günther and Coop 2013), the Bayesian (hierarchical) model based procedure leads to shrink the XIX posterior mean towards their prior mean (Gelman et al. 2003). As a consequence, an empirical posterior checking procedure, similar in essence to the one previously used in a similar context (Vitalis et al. 2014), was evaluated here. It represents a relevant alternative to arbitrary threshold although it comes at a cost of some additional computational cost. The procedure indeed consists in analyzing (POD) data simulated under the inference model with hyperparameters Ω, α_{i} and β_{i} set equal to those estimated on the real data. Comparing the Ω, α_{i} and β_{i} estimates obtained on the POD to the original ones ensures that the simulated data provide good surrogates to neutrally evolving SNPs under a demographic history similar to that of the sampled populations. More generally, given the efficiency of the simulation procedure, such simulated data sets might also be relevant to investigate the properties of other estimators of genetic diversity or to evaluate the robustness of various approaches to demographic confounding factors. In the context of this study, a better estimation of Ω was hence shown to improve the performance of the XIX-based differentiation test and association studies with population–specific covariables under the STD and AUX covariate models.

Based on the STD model, Coop et al. (2010) relied on an important sampling (BF_{mc}) estimates of the BF to assess association of allele frequency differences with population–specific covariables. A major advantage of this algorithm stems from its computational efficiency, since only parameter samples drawn from the core model are required. However, the simulation study showed that estimating the β_{i} regression coefficients with this approach tended to bias (sometimes strongly) the estimates towards zero, as opposed to the posterior means from MCMC parameters values sampled under the STD model. Accordingly, the performances of decision criteria based on eBP’s, that measure to which extent the posterior distribution of the β_{i} departs from 0, were generally poorer for the eBP_{mc} than BF_{mc}. In addition, while a POD calibration, similar to the XIX one considered above is straightforward to apply in practice, eBP (eBP_{mc} and eBP_{mc}) and BF_{mc} could not per se deal with multiple testing issues. As previously proposed in a similar modeling context (Riebler et al. 2008), introducing binary auxiliary variables attached to each SNP to indicate whether or not they are associated to a given population covariable allows to circumvent these limitations. The resulting BF_{mc} showed indeed improved power in the simulation study compared to BF_{mc}. In analyses of real data sets, whereas BF_{mc} estimates were found similar to the BF_{mc} ones in analysis of association with ecotype in the Littorina data set, they lead to inflated estimates with the cattle data and thus more (possibly false) significant signals. Although not clear from the simulation study, the intrinsic multiple testing correction (through the prior on the auxiliary variable) might in turn affect the power of BF_{mc} decision based criterion. This might explain differences between the results obtained with genome-wide and chromosome-wide analyses of association with the morphology trait in cattle for the region surrounding the PLAG1 gene (BTA14). Besides, in the context of dense genomic data, the AUX model might also be viewed as relevant to more focused analyses for validation (e.g., of genome–wide BF_{mc} signals) and fine mapping purposes. Hence, the Ising prior on the SNP auxiliary variable provides a straightforward and computationally efficient modeling option to account for the spatial dependency among the neighboring markers (Duforet-Frebourg et al. 2014). It should however be noticed that the Ising prior essentially consists in a local smoothing of the association signals whose similarity stems from a correlation of the underlying allele frequencies (across all the populations). It thus does not fully capture LD information contained in the local haplotype structure. To that end further extensions of the AUX (and STD) model following the hapFLK method (Fariello et al. 2013) that directly relies on haplotype information, might be particularly appropriate although difficult...
As expected, in both simulated and real data sets, SNPs strongly associated ($|\beta_1|>0.2$) with a given covariable tended to be overly differentiated (high X\(X\) value). Interestingly however, the STD and AUX covariate models remained more powerful to identify SNPs displaying weaker association signal (typically with $|\beta_1| < 0.1$) for which the X\(X\) values did not overly depart from that of neutral SNPs. Providing information on an underlying covariable (or a proxy of it) is available, the STD and AUX models might thus allow to identify SNPs within soft adaptive sweeps or subjected to polygenic adaptation, these types of selection schemes leading to more subtle population allele frequencies differences difficult to detect (e.g., Pritchard et al. 2010). Conversely, the covariate models were shown to correct the X\(X\) differentiation measure for the fixed effects of the considered population–specific covariables, refining the biological interpretation of the remaining overly differentiated SNPs by excluding these covariable as key drivers. In principle, across-population association analyses could be performed with any population–specific covariable like environmental covariables (Coop et al. 2010; Günther and Coop 2013) but also categorical or quantitative traits as illustrated in examples treated in this study. As such, the STD and AUX covariate models might also be viewed as powerful alternatives to QT\(_F\)–F\(_T\) comparisons to assess divergence of quantitative traits (see Leinonen et al. 2013, for review) by accurately incorporating genomic information to account for the neutral covariance structure across population allele frequencies. Yet, it should be kept in mind that the considered models only capture linear relationships between allele frequencies differences and the covariable. Apart from possibly lacking power for more complex types of dependency, the correlative (and not causative) nature of the association signals might be misleading, noticeably when the (unobserved) causal covariable is correlated with the analyzed trait or with the principal axes of the covariance matrix (Günther and Coop 2013). Nevertheless, increasing the number of populations and (if possible) the number of studied covariables should overcome these limitations. Still, when jointly considering several covariables, this also advocates for an orthogonal transformation (and scaling) step, e.g. using PCA, to better assess their relationships and to further perform analysis of association on an uncorrelated set of covariables (e.g., principal components).

As a proof of concept, analyses were carried out on real data sets from both model and non model species. Results obtained for the French cattle data demonstrated the versatility of the approach and illustrated how association studies could give insights into the putative selective forces targeting footprints of selection. As a matter of experience we only hereby focused on the thirteen strongest differentiation signals. As expected from the importance of coat pigmentation in the definition of breed standards, at least six genomic regions contained genes known to be associated to coat color and patterning variation, in agreement with previous genome scan for footprints of selection (see Gutiérrez-Gil et al. 2015, for review). These include MC1R (region #13) that corresponds to the locus Extension with three alleles identified to date in cattle responsible for the red, black (or combination of both) colors (See et al. 2007). Similarly, variants localized within the KIT (region #7) and PAX5 (region #10) genes were found highly associated to patterned pigmentation (proportion of black) in Holstein, accounting for respectively 9.4% and 6.0% of the trait variance (Hayes et al. 2010). Within region #7, KIT clusters with KDR (closest to the X\(X\) peak) and PDGFRA, two other Tyrosine kinase receptor genes that have also been proposed as candidate coloration genes under selection in other studies (Flori et al. 2009; Gutiérrez-Gil et al. 2015; Qanbari et al. 2014). In region #11, the X\(X\) peak was less than 25 kb upstream EDN3 that is involved in melanocyte development and within which mutations were found associated to pigment defects in mouse, human and also chicken (Bennett and Lamoreux 2003; Dorshorst et al. 2011; Saldana-Caboverde and Kos 2010). Accordingly, Qanbari et al. (2014) recently found a variant in the vicinity of EDN3 strongly associated with coat spotting phenotype of bulls (measured as the proportion of their daughters without spotting) in the Fleckvieh breed. The peak in region #2 was 100 kb upstream the KITLG gene which is involved in the roan phenotype (mixture of pigmented and white hairs) observed in several cattle breeds (Seitz et al. 1999). Mutations in this gene have also been found to underlie skin pigmentation diseases in human (Picardo and Cardinali 2011). Finally, region #5 contains the LEF1 gene (100 kb from the X\(X\) peak) that has recently been demonstrated to be tightly involved in blond hair color in (human) Europeans (Guenther et al. 2014). Three other regions contained genes that affect cattle body conformation. These include region #1 containing the myostatin gene (MSTN), one of the best known examples of economically important genes in farm animals since it plays an inhibitory role in the development and regulation of skeletal muscle mass (Stinckens et al. 2011). MSTN is in particular responsible for the so-called double muscling phenotype in cattle (Grobet et al. 1997). Region #12 contains PLAG1 that has been demonstrated to influence bovine stature (Karim et al. 2011). Similarly, region #6 contain encompasses the NUDC3-LCORL cluster in which several polymorphisms have been found strongly associated to height in human (Allen et al. 2010), horse (Signer-Hasler et al. 2012) and cattle (Pryce et al. 2011). However, combining results from a genome-scan for adaptive selection with a comprehensive genome-wide association study with milk production traits in the Holstein cattle breed, Xu et al. (2015) proposed the LAP3 gene (within which the X\(X\) peak mapped) as the main driver of a selective sweep overlapping with region #12. Regarding the four remaining regions (#2,#4,#8 and #9), the retained candidate genes corresponded to the gene within which the X\(X\) peak is located (NUDC3, RPS26 and VDAC1 for regions #2, #4 and #9 respectively) or is the closest (less than 15 kb from ALB for region #8). As for RPS26, although NUDC3 has been highlighted in other studies (e.g., Flori et al. 2009; Xu et al. 2015), the poorly known function of these genes makes highly speculative any interpretation of the origin of the signals. Conversely, the various and important roles played by ALB (bovine serum albumin precursor) do not allow a clear hypothesis to be formulated about the trait underlying the region #8 signal. More presumably, due to the role of VDAC1 in male fertility (Kwon et al. 2010), the footprint of selection observed in region #9 might result from selection for a trait related to reproduction. Overall, association analyses carried out under the covariable models revealed strong association of SNPs within KITLG (region #3), KIT (region #7) and EDN3 (region #11) with variation in the piebald pattern across the populations thereby supporting the hypothesis of selection on coat coloration to be the main driver of the three corresponding signatures of selection. These results also confirm the already well known key role of these genes on coloration patterning. Interestingly, the observed association signals within ALB (region #8) also suggest that this gene might influence coat coloration in cattle which, to our knowledge, has
not been previously reported. Finally, association studies on the
SMS trait suggested that PLAG1 (region #12) has been under
strong selection in European cattle and contribute to morphological
differences across the breeds. Yet, the strongest association
signals was 400 kb upstream PLAG1 suggesting the existence
of some functional variants (possibly in regulatory regions) dif-
f erent from those already reported (Karim et al. 2011) although
such results need to be confirmed with denser SNP data sets.

Conversely, no association signal was found within the selection
signature under region #6 adding more credits to selection for
milk production (Xu et al. 2015) as the main underlying adaptive
constraint rather than morphological trait as previously hypoth-
esized (see above). Analysis of the Littorina saxatilis Pool–Seq
data (Westram et al. 2014) illustrate how BAYPASS can be helpful
to realize a typology of the markers relative to an ecological co-
variable in a non–model species. In agreement with the original
results, several genes represent good candidate to underlie par-
allel phenotypic divergence in this organism and might deserve
follow-up validation studies. From a practical point of view
however, compared to combining several pairwise FST popu-
lation tests (Westram et al. 2014), the approach proposed here
greatly simplified the analyses and the biological interpretation
of the results while allowing both an optimal use of the data and
a better control for multiple testing issues.

Overall, the models described here and implemented in the
software package BAYPASS provide a general and robust fram-
ework to better understand the patterns of genetic divergence
across populations at the genomic level. They allow i) an accu-
rate estimation of the scaled covariance matrix whose interpreta-
tion gives insights into the history of the studied populations;
ii) a robust identification of overly differentiated markers by
correcting for confounding demographic effects; and iii) robust
analyses of association of SNP with population–specific covari-
able giving in turn insights into the origin of the observed
footprints of selection. In practice, when compared to BAYENV 2.2,
BAYPASS lead to a more accurate and robust estimation of the
matrix \(\Omega \) (and the related measures) and thus improved the
performances of the different tests. In addition, various program
options were developed to investigate the different modeling
extensions, including analyses under the STD and AUX mod-
els and exploration of the Ising prior parameters to incorporate
LD information. Finally, the decision measures (XIX, eBP and
BF) can be computed for both allele (from standard individual
genotyping experiments) and read (from Pool–Seq experiments)
count data (while also accommodating missing data). Compu-
tation times scale roughly linearly with the data set complexity
(number of populations \(\times \) number of markers). For instance
analyzing a medium sized data set consisting of 25,000 SNPs on
20 populations should only take a couple of hours on a standard
computer (a little more for Pool–Seq data). For very large data
sets, several strategies might be efficient to reduce computational
burden. For instance, because estimation of \(\Omega \) was found robust
to moderate ascertainment bias, one may filter low polymorphic
markers (e.g., overall MAF<0.01) since those are not informative
for genome scan purposes, and/or consider sub-sampling of the
initial data set (e.g., chromosome-wide analyses).

Acknowledgements
I wish to thank Anja Westram for providing early access to
the Littorina data. I am grateful to the genotoul bioinformatics
platform Toulouse Midi–Pyrenees for providing comput-
ing resources. This work was partly funded by the ERA–Net

Literature Cited
Akey, J. M., G. Zhang, K. Zhang, L. Jin, and M. D. Shriver, 2002
Interrogating a high-density SNP map for signatures of natural
Allen, H. L., K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon,
et al., 2010 Hundreds of variants clustered in genomic loci
and biological pathways affect human height. Nature 467:
832–838.
Balding, D. J. and R. A. Nichols, 1995 A method for quantifying
differentiation between populations at multi-allelic loci and its
implications for investigating identity and paternity. Genetica
96: 3–12.
Beaumont, M. A. and D. J. Balding, 2004 Identifying adaptive
genetic divergence among populations from genome scans.
Mol Ecol 13: 969–980.
in the genetic analysis of population structure. Proceedings
of the Royal Society of London B: Biological Sciences 263:
1619–1626.
Bennett, D. C. and M. L. Lamoreux, 2003 The color loci of mice–a
Bonhomme, M., C. Chevalet, B. Servin, S. Boitard, J. Abdallah,
S. Blott, and M. Sancristobal, 2010 Detecting selection in popu-
lation trees: the lewontin and krakauer test extended. Genetics
186: 241–262.
Cavalli-Sforza, L. L., 1966 Population structure and human evo-
Conrad, D. F., M. Jakobsson, G. Coop, X. Wen, J. D. Wall, N. A.
Rosenberg, and J. K. Pritchard, 2006 A worldwide survey of
haplotype variation and linkage disequilibrium in the human
Coop, G., D. Witonsky, A. D. Rienzo, and J. K. Pritchard, 2010
Using environmental correlations to identify loci underlying
local adaptation. Genetics 185: 1411–1423.
Catchen, and M. L. Blaxter, 2011 Genome-wide genetic marker
discovery and genotyping using next-generation sequencing.
De Mita, S., A.-C. Thuillet, L. Gay, N. Ahmadi, S. Manel, J. Ron-
fort, and Y. Viguouroux, 2013 Detecting selection along en-
vironmental gradients: analysis of eight methods and their
effectiveness for outbreeding and selfing populations. Mol
de Villemereuil, P. and O. E. Gaggiotti, 2015 A new FST-based
method to uncover local adaptation using environmental vari-
de Villemereuil, P., Éric Frichot, Éric Bazin, O. François, and O. E.
Gaggiotti, 2014 Genome scan methods against more complex
models: when and how much should we trust them? Mol
Dorshorst, B., A.-M. Molin, C.-J. Rubin, A. M. Johansson,
L. Strömstedt, M.-H. Pham, C.-F. Chen, F. Hallböök, C. Ash-
well, and L. Andersson, 2011 A complex genomic rearrange-
ment involving the endothelin 3 locus causes dermal hyper-

BiodivERsA2013–48 (EXOTIC), with the national funders FRB,
ANR, MEDDE, BELSPO, PT–DLR and DFG, part of the 2012–
2013 BiodivERsA call for research proposals.

Hasselman, B., 2015 geigen: Calculate Generalized Eigenvalues of a Matrix Pair. R package 1.5.

Wei, T., 2013 corrplot: Visualization of a correlation matrix. R package version 0.73.

List of Figures

1 Directed Acyclic Graphs of the different hierarchical Bayesian models considered in the study and implemented in the BAYPASS software. See the main text for details about the underlying parameters and modeling assumptions.

2 Representation of the scaled covariance matrices Ω among 18 French cattle breeds Õ_{BTA}^{bpas} (A and C) as estimated from BAYENV2 (Coop et al. 2010) and Ω_{BTA}^{bpas} (B and D) as estimated from BAYPASS under the core model with ρ = 1. Both estimates are based on the analysis of the BTA_snp data set consisting of 42,036 autosomal SNPs (see the main text). Breed codes (and branches) are colored according to their broad geographic origins (see File S4 and Gautier et al. (2010b) for further details) with populations in red, blue and green originating from South-Western and Central France, North-Western France, and Eastern France (e.g. Alps).

3 FMD distances (Fürstner and Moonen 2003) between the matrices used to simulate the data sets and their estimates. Simulation scenarios are defined according to the matrix Ω_{sim} used to simulate the data (Ω_{sim} = Ω_{HSA} in A and B; and Ω_{sim} = Ω_{BTA}^{bpas} in C and D) and the sampling distribution of the 𝑛_𝑖′ s (Unif(0,1) in A and C and Beta(0.2,0.2) in B and D). For each scenario, ten independent data sets of 1,000, 5,000, 10,000 and 25,000 markers are simulated (160 data sets in total) and analyzed with BAYENV2 (Coop et al. 2010) and four alternative BAYPASS model parameterizations (i) ρ = 1; ii) ρ = 1 and α_Ω = b_Ω = 1; iii) ρ = 1 and b_Ω = 1; iv) ρ = 1 and α_Ω = b_Ω = 1). Each point in the curves is the average of the ten pairwise FMD distances between the underlying Ω_{sim} and each of the Ω estimated in the ten corresponding simulation replicates.

4 Distribution of the estimated SNP regression coefficients β̂_i as a function of their simulated values obtained from analyses under three different model parameterizations with Ω = Ω_{HSA} for SpaH data) and Ω = Ω_{BTA}^{bpas} (for SpaB data). For a given scenario (SpaH and SpaB), results from the ten replicates are combined.

5 Comparison of the performances of three different Ising prior parameterizations for the AUX model (is_β = 0, is_β = 0.5 and is_β = 1) on the SldBa and SldBb simulated data sets. Each panel summarizes the distribution at each SNP position (x-axis) of the δ_i (auxiliary variable) posterior means over the 500 independent data sets simulated for a given scenario with the median values in black and the 99% envelope in gray. For each panel, the main figure focuses on the region containing the SNPs associated to the population-specific covariable (within the region delineated by the two vertical dashed lines where the arrow indicated the peak β̂_i position) while the distribution over the whole map is represented in the upper left corner.

6 Results of the BTA14 chromosome-wide association analyses with SMS under three different Ising prior parameterizations of the AUX model (A is_β = 0; B is_β = 0.5 and C is_β = 1). Plots give, for each SNP, the posterior probability of being associated (P [β̂_i = 1 | data]) according to their physical position on the chromosome. The main figure focuses on the region surrounding the candidate gene PLAG1 (positioned on the vertical dotted line) while results over the whole chromosome are represented in the upper left corner. In A), the horizontal dotted line represents the threshold for decisive evidence (corresponding to BF = 20dB).

7 Analysis of the LSA_{ps} Pool-Seq data. A) Inferred relationship among the 12 Littorina populations represented by a correlation plot and a hierarchical clustering tree derived from the matrix Ω estimated under the core model (with ρ = 1). Each population code indicates its geographical origin (SP for Spain, SW for Sweden and UK for the United Kingdom), its ecotype (crab or wave) and the replicate number (1 or 2). B) SNP XIX (estimated under the core model) as a function of the BF_{XIX} for association with the ecotype population covariable. The vertical dotted line represents the 0.1% POD significance threshold (XIX=28.1) and the horizontal dotted line represents the 20 dB threshold for BF. The point symbol indicates significance of the different XIX values, BF_{XIX} and BF_{me} (AUX model) estimates. C) SNP XIX corrected for the ecotype population covariable (estimated under the STD model) as a function of XIX estimated under the core model. The vertical and horizontal dotted lines represent the 0.1% POD significance threshold (XIX=28.1). Point symbols follow the same nomenclature as in B). D) Estimates of SNP regression coefficients (β̂_i) on the ecotype population covariable (under the AUX model) as a function of XIX. Point symbols follow the same nomenclature as in B).
Figure 1 Directed Acyclic Graphs of the different hierarchical Bayesian models considered in the study and implemented in the BayPASS software. See the main text for details about the underlying parameters and modeling assumptions.
Figure 2: Representation of the scaled covariance matrices Ω among 18 French cattle breeds $\hat{\Omega}_{\text{BTA}}^{\text{BTA}}$ (A and C) as estimated from BAYENV2 (Coop et al. 2010) and $\hat{\Omega}_{\text{BTA}}$ (B and D) as estimated from BAYPASS under the core model with $\rho = 1$. Both estimates are based on the analysis of the BTA SNP data set consisting of 42,036 autosomal SNPs (see the main text). Breed codes (and branches) are colored according to their broad geographic origins (see File S4 and Gautier et al. (2010b) for further details) with populations in red, blue and green originating from South-Western and Central France, North-Western France, and Eastern France (e.g. Alps).
Figure 3 FMD distances (Förstner and Moonen 2003) between the matrices used to simulate the data sets and their estimates. Simulation scenarios are defined according to the matrix Ω_{sim} used to simulate the data ($\Omega_{\text{sim}} = \Omega_{\text{bPas}}^{\text{HSA}}$ in A and B; and $\Omega_{\text{sim}} = \Omega_{\text{bPas}}^{\text{BTA}}$ in C and D) and the sampling distribution of the π_i's (Unif(0,1) in A and C and Beta(0.2,0.2) in B and D). For each scenario, ten independent data sets of 1,000, 5,000, 10,000 and 25,000 markers are simulated (160 data sets in total) and analyzed with BAYENV2 (Coop et al. 2010) and four alternative BAYPASS model parameterizations (i) $\rho = 1$; ii) $\rho = 1$ and $a_\pi = b_\pi = 1$; iii) $\rho = 1$ and $a_\pi = b_\pi = 1$; and iv) $\rho = 1$ and $a_\pi = b_\pi = 1$). Each point in the curves is the average of the ten pairwise FMD distances between the underlying Ω_{sim} and each of the Ω estimated in the ten corresponding simulation replicates.
Figure 4 Distribution of the estimated SNP regression coefficients β_i as a function of their simulated values obtained from analyses under three different model parameterizations with $\Omega = \hat{\Omega}_{BPAS}^{\text{HSA}}$ (for SpaH data) and $\Omega = \hat{\Omega}_{BPAS}^{\text{BTA}}$ (for SpaB data). For a given scenario (SpaH and SpaB), results from the ten replicates are combined.
Figure 5 Comparison of the performances of three different Ising prior parameterizations for the AUX model (isβ = 0, isβ = 0.5 and isβ = 1) on the SldBa and SldBb simulated data sets. Each panel summarizes the distribution at each SNP position (x-axis) of the δ_i (auxiliary variable) posterior means over the 500 independent data sets simulated for a given scenario with the median values in black and the 99% envelope in gray. For each panel, the main figure focuses on the region containing the SNPs associated to the population-specific covariable (within the region delineated by the two vertical dashed lines where the arrow indicated the peak β_i position) while the distribution over the whole map is represented in the upper left corner.
Figure 6 Results of the BTA14 chromosome–wide association analyses with SMS under three different Ising prior parameterizations of the AUX model (A) $\beta = 0$; (B) $\beta = 0.5$ and; (C) $\beta = 1$). Plots give, for each SNP, the posterior probability of being associated ($P[\delta_i = 1 | data]$) according to their physical position on the chromosome. The main figure focuses on the region surrounding the candidate gene PLAG1 (positioned on the vertical dotted line) while results over the whole chromosome are represented in the upper left corner. In A), the horizontal dotted line represents the threshold for decisive evidence (corresponding to $BF = 20dB$).
Figure 7 Analysis of the LSA_pool Pool-Seq data. A) Inferred relationship among the 12 Littorina populations represented by a correlation plot and a hierarchical clustering tree derived from the matrix Ω estimated under the core model (with $\rho = 1$). Each population code indicates its geographical origin (SP for Spain, SW for Sweden and UK for the United Kingdom), its ecotype (crab or wave) and the replicate number (1 or 2). B) SNP XiX (estimated under the core model) as a function of the BF$_{16}$ for association with the ecotype population covariable. The vertical dotted line represents the 0.1% POD significance threshold (XiX=28.1) and the horizontal dotted line represents the 20 dB threshold for BF. The point symbol indicates significance of the different XiX values, BF$_{16}$ and BF$_{mc}$ (AUX model) estimates. C) SNP XiX corrected for the ecotype population covariable (estimated under the STD model) as a function of XiX estimated under the core model. The vertical and horizontal dotted lines represent the 0.1% POD significance threshold (XiX=28.1). Point symbols follow the same nomenclature as in B. D) Estimates of SNP regression coefficients (β) on the ecotype population covariable (under the AUX model) as a function of XiX. Point symbols follow the same nomenclature as in B.)
List of Tables

1 True Positive Rates (TPR) at the 1% POD threshold as a function of the simulated $|\beta_i|$ values for four different model parameterizations. TPR are given in % and were computed by combining results over the ten replicate data sets for each SpaH (and SpaB given in parenthesis) scenarios. ... 24

2 True (TPR) and False (FPR) Positive Rates as a function of the decision criterion and the model parametrization (with $\Omega = \hat{\Omega}_{bpa}$ for the SpaH and $\Omega = \hat{\Omega}_{bpa}$ for the SpaB data sets respectively). The thresholds are set to 20 dB for both the BF$_{is}$ and BF$_{mc}$ Bayes Factors; and to 3 for both the eBP$_{is}$ and eBP$_{mc}$ (empirical) Bayesian P–values. The true and false positive rates (given in %) are computed by combining results over the ten replicate data sets from the SpaH and SpaB (given in parenthesis) scenarios. ... 25

3 Regions harboring footprints of selection based on the XtX measure of differentiation and association of the underlying SNPs with SMS (morphology related trait) and piebald coloration differences across the 18 French cattle breeds. For each region, the table gives the peak XtX value (and position in Mb) and the peak BF$_{is}$ and BF$_{mc}$ values in dB units (and positions in Mb) for each traits if the evidence for association is decisive (n.s. if BF < 20). The Table also gives the overlapping Core Selective Sweeps (CSS) regions (with their corresponding sizes and the number of supporting studies) from the meta-analysis by Gutiérrez-Gil et al. (2015). Finally, putative underlying candidate genes (and associated candidate functions) are proposed (see the main text). ... 26
Table 1 True Positive Rates (TPR) at the 1% POD threshold as a function of the simulated $|\beta_i|$ values for four different model parameterizations. TPR are given in % and were computed by combining results over the ten replicate data sets for each SpaH (and SpaB given in parenthesis) scenarios.

| Analysis $|\beta_i|$ | core model | core model with $\Omega = \Omega^{\text{sim}}$ | STD model with $\Omega = \Omega^{\text{sim}}$ | AUX model with $\Omega = \Omega^{\text{sim}}$ |
|---------------------|------------|---|---|---|
| 0.05 | 2.90 (2.30) | 9.15 (3.35) | 0.55 (0.95) | 0.70 (1.35) |
| 0.1 | 36.3 (13.5)| 82.6 (22.3) | 0.45 (1.15) | 0.65 (1.50) |
| 0.2 | 100 (86.3) | 100 (96.4) | 0.95 (0.60) | 1.10 (0.75) |
Table 2 True (TPR) and False (FPR) Positive Rates as a function of the decision criterion and the model parametrization (with $\Omega = \hat{\Omega}_{\text{HSA}}^{\text{bpas}}$ for the SpaH and $\Omega = \hat{\Omega}_{\text{BTA}}^{\text{bpas}}$ for the SpaB data sets respectively). The thresholds are set to 20 dB for both the BF_{is} and BF_{mc} Bayes Factors; and to 3 for both the eBP_{is} and eBP_{mc} (empirical) Bayesian P–values. The true and false positive rates (given in %) are computed by combining results over the ten replicate data sets from the SpaH and SpaB (given in parenthesis) scenarios.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>BF_{is}</th>
<th>BF_{mc}</th>
<th>eBP_{is}</th>
<th>eBP_{mc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPR</td>
<td>0.01 (0.02)</td>
<td>0.39 (0.11)</td>
<td>0.00 (2.03)</td>
<td>0.17 (0.01)</td>
</tr>
<tr>
<td>TPR ($</td>
<td>\beta</td>
<td>= 0.05$)</td>
<td>31.9 (4.35)</td>
<td>81.7 (13.0)</td>
</tr>
<tr>
<td>TPR ($</td>
<td>\beta</td>
<td>= 0.1$)</td>
<td>98.5 (47.0)</td>
<td>99.9 (64.1)</td>
</tr>
<tr>
<td>TPR ($</td>
<td>\beta</td>
<td>= 0.2$)</td>
<td>100 (99.9)</td>
<td>100 (99.9)</td>
</tr>
</tbody>
</table>
Table 3 Regions harboring footprints of selection based on the XrX measure of differentiation and association of the underlying SNPs with SMS (morphology related trait) and piebald coloration differences across the 18 French cattle breeds. For each region, the table gives the peak XrX value (and position in Mb) and the peak BF_{is} and BF_{mc} values in dB units (and positions in Mb) for each trait if the evidence for association is decisive (n.s. if BF < 20). The Table also gives the overlapping Core Selective Sweeps (CSS) regions (with their corresponding sizes and the number of supporting studies) from the meta-analysis by Gutiérrez-Gil et al. (2015). Finally, putative underlying candidate genes (and associated candidate functions) are proposed (see the main text).

<table>
<thead>
<tr>
<th>ID</th>
<th>Region</th>
<th>Overlapping CSS²</th>
<th>XrX (Peak Position)</th>
<th>BF_{is}-BF_{mc} for morphology</th>
<th>BF_{is}-BF_{mc} for piebald</th>
<th>Candidate Gene (Function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>BTA02:4.17-8.64</td>
<td>CSS–32</td>
<td>58.4</td>
<td>n.s.-n.s.</td>
<td>n.s.-n.s.</td>
<td>MSTN:6.214-6.220 (conformation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.47</td>
<td>13.8 (8)</td>
<td>(6.70)</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>BTA04:76.7-78.6</td>
<td>CSS–93</td>
<td>45.8</td>
<td>n.s.-n.s.</td>
<td>n.s.-n.s.</td>
<td>NUDCD3:77.599-77.670 (unknown)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.93</td>
<td>2.17 (4)</td>
<td>(77.6)</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>BTA05:18.0-19.5</td>
<td>CSS–103</td>
<td>76.3</td>
<td>n.s.-n.s.</td>
<td>69.04-52.96</td>
<td>KITLG:18.318-18.377 (pigmentation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
<td>1.77 (2)</td>
<td>(18.5)</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>BTA05:54.7-58.6</td>
<td>CSS–109</td>
<td>54.7</td>
<td>26.6-n.s.</td>
<td>n.s.-n.s.</td>
<td>RPS26:57.604-57.607 (unknown)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.93</td>
<td>22.3 (9)</td>
<td>(57.6)</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>BTA06:17.6-19.2</td>
<td>CSS–117</td>
<td>63.2</td>
<td>n.s.-n.s.</td>
<td>n.s.-n.s.</td>
<td>LEF1:18.335-18.451 (pigmentation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.54</td>
<td>0.01 (1)</td>
<td>(18.2)</td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>BTA06:37.8-40.2</td>
<td>CSS–123</td>
<td>69.4</td>
<td>n.s.-n.s.</td>
<td>n.s.-n.s.</td>
<td>LAP3:38.575-38.600 (pigmentation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.40</td>
<td>5.09 (8)</td>
<td>(38.6)</td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>BTA06:65.5-74.9</td>
<td>CSS–130</td>
<td>55.6</td>
<td>n.s.-n.s.</td>
<td>37.42-26.45</td>
<td>KIT:71.796-71.917 (conformation/dairy traits)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.38</td>
<td>15.3 (12)</td>
<td>(72.5)</td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>BTA06:89.6-90.6</td>
<td>CSS–130</td>
<td>40.7</td>
<td>n.s.-n.s.</td>
<td>52.07-38.76</td>
<td>ALB:90.233-90.251 (pigmentation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>13.3 (3)</td>
<td>(90.2)</td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td>BTA07:46.4-47.8</td>
<td>CSS–141</td>
<td>44.5</td>
<td>n.s.-n.s.</td>
<td>n.s.-n.s.</td>
<td>VDAC1:47.248-47.273 (pigmentation?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.48</td>
<td>12.5 (10)</td>
<td>(47.3)</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>BTA08:61.4-63.3</td>
<td>CSS–162</td>
<td>49.8</td>
<td>n.s.-n.s.</td>
<td>n.s.-n.s.</td>
<td>PAX5:61.400-61.580 (pigmentation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.94</td>
<td>0.06 (1)</td>
<td>(61.8)</td>
<td></td>
</tr>
<tr>
<td>#11</td>
<td>BTA13:56.6-58.6</td>
<td>CSS–248</td>
<td>71.6</td>
<td>23.7-n.s.</td>
<td>26.58-n.s.</td>
<td>EDN3:57.571-57.597 (pigmentation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.98</td>
<td>10.4 (5)</td>
<td>(57.5)</td>
<td></td>
</tr>
<tr>
<td>#12</td>
<td>BTA14:22.1-28.8</td>
<td>CSS–254</td>
<td>52.0</td>
<td>35.7-n.s.</td>
<td>n.s.-n.s.</td>
<td>PLAG1:25.007-25.009 (conformation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.76</td>
<td>7.96 (7)</td>
<td>(24.4)</td>
<td></td>
</tr>
<tr>
<td>#13</td>
<td>BTA18:13.3-16.0</td>
<td>CSS–297</td>
<td>51.8</td>
<td>n.s.-n.s.</td>
<td>n.s.-n.s.</td>
<td>MC1R:14.757-14.759 (pigmentation)</td>
</tr>
</tbody>
</table>

² Full descriptions of the CSS (including references to the original studies) are provided in Table S2 by Gutiérrez-Gil et al. (2015)