Running Head: Genetic determinants of seed element composition

Corresponding Author:
Ivan Baxter
975 North Warson Road
Saint Louis, MO 63132
Phone: 314.587.1438
Fax: 314.587.1538
ivan.baxter@ars.usda.gov

Research Area: Biochemistry and Metabolism

Secondary Research Area: Genes, Development and Evolution
Title: Integration of experiments across diverse environments identifies the genetic determinants of variation in *Sorghum bicolor* seed element composition

Authors: Nadia Shakoor¹, Greg Ziegler⁵, Brian P. Dilkes², Zachary Brenton³, Richard Boyles³, Erin L. Connolly⁴, Stephen Kresovich³ and Ivan Baxter⁵*

¹Donald Danforth Plant Science Center, St. Louis, Missouri, 63132 (N.S.)
²Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.P.D.)
³Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29631 (Z.B., R.B., S.K.)
⁴Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208 (E.C.)
⁵USDA-ARS, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132 (G.Z., I.B.)

Email Addresses

Ivan Baxter (ivan.baxter@ars.usda.gov)
Nadia Shakoor (nshakoor@danforthcenter.org)
Greg Ziegler (greg.ziegler@ars.usda.gov)
Brian P. Dilkes (bdilkes@purdue.edu)
Zachary Brenton (zwbrent@clemson.edu)
Richard Boyles (rboyles@clemson.edu)
Erin Connolly (erinc@mailbox.sc.edu)
Stephen Kresovich (skresov@clemson.edu)

One sentence summary: High-throughput measurements of element accumulation and genome-wide association analysis across multiple environments identified novel alleles controlling seed mineral accumulation in *Sorghum bicolor.*
This project was partially funded by the iHUB Visiting Scientist Program (http://www.ionomicshub.org), Chromatin, Inc., NSF EAGER (1450341) to I.B. and BPD, NSF IOS 1126950 to IB, NSF IOS-0919739 to EC, and BMGF (OPP 1052924) to B.P.D.

*Corresponding Author
Ivan Baxter
975 North Warson Road
Saint Louis, MO 63132
Phone: 314.587.1438
Fax: 314.587.1538
ivan.baxter@ars.usda.gov
Abstract:
Seedling establishment and seed nutritional quality require the sequestration of sufficient mineral nutrients. Identification of genes and alleles that modify element content in the grains of cereals, including *Sorghum bicolor*, is fundamental to developing breeding and selection methods aimed at increasing bioavailable mineral content and improving crop growth. We have developed a high throughput workflow for the simultaneous measurement of multiple elements in Sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel (SAP), representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome wide association was demonstrated by implementing rank transformation and a multilocus mixed model (MLMM) to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc (Zn), manganese (Mn), nickel (Ni), calcium (Ca) and cadmium (Cd) in sorghum seed. In addition to strong candidates for these four elements, we provide a list of candidate loci for several other elements. Our approach enabled identification of SNPs in strong LD with causative polymorphisms that can be used directly in plant breeding and improvement.
Introduction:

Sorghum bicolor is a globally cultivated source of food, feed, sugar and fiber. Classified as a bioenergy feedstock, sorghum biomass also has unique advantages for sustainable biofuel production (Kimber et al., 2013). The mineral composition of stems, leaves and reproductive organs significantly contribute to biomass quality, and high levels of inorganic elements can limit the effectiveness of biomass conversion (Obernberger et al., 1997; Amaducci et al., 2004; Monti et al., 2008; Kimber et al., 2013). Targeted reduction of specific elements and compositional traits via transgenic and breeding approaches can be implemented to improve biomass quality.

Increasing the bioavailable elemental nutrient content in the edible portions of the crop has the potential to increase the value of sorghum for human and animal nutrition. Plant-based diets, in which grains compose the major food source, require the availability of essential elements in the plant seed. Iron (Fe) and Zn deficiencies affect over 2 billion people worldwide (Organization, 2002), and increases in the accumulation and bioavailability of these elements in cereal grains, including sorghum, could potentially make a significant impact towards ameliorating this nutritional crisis (Graham et al., 1999; Organization, 2002). Additional global health benefits could be achieved by increasing magnesium (Mg), selenium (Se), Ca and copper (Cu) (White and Broadley, 2005) and reducing the concentration of toxic elements, including arsenic (As) and Cd (Ma et al., 2008).

Seed element content is determined by interconnected biological processes, including element uptake by the roots, translocation and remobilization within the plant, and ultimately import, deposition and assimilation/storage in the seeds. Element availability is further affected by the accumulation of metabolites in seeds (Vreugdenhil et al., 2004). High-throughput ionomic analysis, or concurrent measurement of multiple elements, allows for the quantitative and simultaneous measurement of an organism’s elemental composition, providing a snapshot into the functional state of an organism under different experimental conditions (Salt et al., 2008). Previous studies have demonstrated that several minerals, including Fe, Mn, Zn, cobalt (Co) and Cd share mechanisms of accumulation (Yi and Guerinot, 1996; Vert et al., 2002; Connolly et al., 2003). Ionomics signatures derived from multiple minerals have been shown to better predict plant physiological status than the measurements of the minerals themselves, including the essential nutrients and phosphorus (P) (Baxter et al., 2008). Holistically examining the ionome
provides significant insights into the networks underlying ion homeostasis beyond single element studies (Baxter and Dilkes, 2012).

With over 40,000 catalogued germplasm accessions, there is significant genetic variation (Das et al., 1997) with undiscovered impact on seed element composition. Mapping quantitative trait loci (QTL) for seed element concentration has been successful in a number of species including Arabidopsis (Vreugdenhil et al., 2004; Waters and Grusak, 2008; Buescher et al., 2010), rice (Norton et al., 2010; Zhang et al., 2014), wheat (Shi et al., 2008; Peleg et al., 2009) and maize (Šimić et al., 2012; Baxter et al., 2013; Baxter et al., 2014). Genome-wide association (GWA) mapping is well suited for uncovering the genetic basis for complex traits, including seed element accumulation. One of the key strengths of association mapping is that a priori knowledge is not necessary to identify new loci associated with the trait of interest. Further, a GWA mapping population is comprised of accessions that have undergone numerous recombination events, allowing for a narrower mapping interval. Previous GWA studies in maize (Tian et al., 2011), rice (Huang et al., 2010) and sorghum (Morris et al., 2013) have been successful in identifying the genetic basis for various agronomic traits. Here, we analyzed the seed ionome from a community-generated association panel to identify potential loci underlying seed element accumulation in sorghum.

Results and Discussion:

Phenotypic diversity for seed mineral concentrations in the sorghum association panel

We grew 407 accessions from the publicly available sorghum association panel (SAP) selected for genotypic diversity and phenotypic variation (Casa et al., 2008) (Supplemental Table 1). These lines were previously genotyped by sequencing (GBS) (Morris et al., 2013). The SAP lines were grown in three experiments: Lubbock, Texas in 2008 (SAP 2008), Puerto Vallarta, Mexico in 2012 (SAP 2012), and two field replicates produced in Florence, SC in 2013 (SAP 2013-1 and SAP2013-2).

Seed samples were taken from each replicate and weighed before analysis. A simple weight normalization and established methods to estimate weight from the elemental content were attempted (Lahner et al., 2003). However, both methods created artifacts, particularly in elements with concentrations near the level of detection. To address this concern, we included weight as a cofactor in a linear model that included other sources of technical error and utilized
the residuals of the model as the trait of interest for genetic mapping. The residuals from this transformation were used for all further analyses and outperformed any other method (data not shown).

We calculated broad-sense heritability for each trait to determine the proportion of the phenotypic variation explained by the genetic variation present in the SAP across the three environments (Table 1). Heritability estimates ranged from 59% (boron, B) to 85% (Cu). We obtained high heritability (> 70%) for the majority of minerals including: Mg, P, sulfur (S), potassium (K), Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, strontium (Sr), molybdenum (Mo) and Cd. Moderate heritability (40-70%) was estimated for B, sodium (Na), aluminum (Al), As and rubidium (Rb). Low heritabilities were reported previously for seed accumulation of Al and As (Norton et al., 2010) as well as for Na, Al, and Rb in a similarly designed study in maize seed kernels (Baxter et al., 2014). The relatively lower heritabilities for these elements could be explained by uncontrolled environmental differences between the experiments, element accumulation near the limits of detection via ICP-MS, or the absence of genetic variation affecting these element's concentrations. Consistent with the hypothesis that field environment was masking genetic variation, we calculated the heritability for two field replicates of the SAP in 2013, and found higher heritabilities for all 20 elements (Table 1).

We detected significant effects of both genotype and environment on most of the elements (Figure 1). The measured element concentrations of the present study corroborate the broad range observed in the sorghum mineral literature (Mengesha, 1966; Neucere and Sumrell, 1980; Lestienne et al., 2005; Ragaee et al., 2006). Similar to a study carried out in wild emmer wheat (Gomez-Becerra et al., 2010), grain Na and Ca showed large variation (5 and 4 fold, respectively). Compared to micronutrients, the remaining macronutrients (P, K, S and Mg) measured in the study exhibited less phenotypic variation overall (Table 1 and Supplemental Table 2) ranging between 1.6 and 1.8 fold across the SAP. Of the micronutrients, high variation was detected for Al and Ni (8 and 6 fold, respectively). With the exception of these two elements, seed micronutrient concentration showed phenotypic variation ranging between 2.4 to 5.6 fold. High variation in Ni and Al may indicate strong environmental effects on grain Ni and Al concentration or contamination during handling and analysis of the seeds as previously suggested (Baxter et al., 2014).
We used two different approaches to identify the shared regulation of elemental accumulation. Pairwise correlations were calculated and graphed, and principal component analysis (PCA) was carried out (Figures 2a and 2b and Supplemental Table 3). Highly correlated element pairs in our data included Mg-P, Mg-Mn, P-S and Mg-S. Divalent cations Ca$^{2+}$ and Sr$^{2+}$ are chemical analogs and strong correlation was observed between these two elements, consistent with previous reports in other species (Queen et al., 1963; Hutchin and Vaughan, 1968; Ozgen et al., 2011; Broadley and White, 2012). In the SAP, the first two principal components accounted for a large fraction of the phenotypic covariance (36%). Clustering of elements reflected known elemental relationships, including the covariation of Ca and Sr (Figure 2b). A cluster of the essential metal micronutrients, Fe, Zn and Cu is distinguishable suggesting that their accumulation can be affected by a shared mechanism. Similarly clustering of Mg and P is consistent with previous studies in wheat (Peleg et al., 2009). Seed P is predominately stored in the Mg$^{2+}$ chelator inositol-hexaphosphate IP$_6$ or phytic acid in cereal grains, which may explain the significant positive correlation of these elements (Maathuis, 2009; Marschner and Marschner, 2012).

Genome-wide association mapping of seed mineral traits

To dissect the genetic basis of natural variation for seed element concentration in sorghum seed, GWA mapping was performed using both an optimal model obtained from the multi-locus mixed model (MLMM) algorithm and a compressed mix linear model (CMLM) that accounts for population structure. With P values below a Bonferroni-corrected threshold (P = 0.05), we identified a large number of SNPs significantly associated with seed mineral concentration using both approaches. Significant SNPs identified with the MLMM approach were prioritized for further analysis (Supplemental Table 4). Compared to traditional single-locus approaches (e.g. CMLM), MLMM utilizes multiple loci in the model, which contribute to a higher detection power and lower potential of false discoveries (Segura et al., 2012). Briefly, MLMM is based on EMMA (Kang et al., 2008) and relies on the iterative use of a simple K, or Q+K, mixed-model algorithm. At each step of the MLMM, the phenotypic variance is divided into genetic, random and explained variance. The most significant marker is included as a cofactor, and the variance components of the model are recalculated. With each successive
iteration, the remaining genetic variance approaches zero, and an optimal model including cofactors that explain the genetic fraction of the phenotypic variance is determined.

In an effort to comprehensively identify significant SNPs associated with mineral concentration, we created several datasets for GWA analysis. After averaging the two SAP 2013 growouts, each location was treated as an individual experiment. To link SAP experiments across environments, we ranked the individual lines of each experiment by mineral concentration and derived a robust statistic describing element accumulation for GWAS by using the average of ranks across the four SAP environments. By utilizing rank-order, we eliminated skewness and large variation in mineral concentration due to environmental differences (Conover and Iman, 1981). GWA scans across individual experiments identified 270, 228, and 207 significant SNPs for all twenty mineral traits in the SAP2008, SAP2012 and SAP2013 panels, respectively. In total we identified 255 significant loci in the ranked dataset for the twenty mineral traits. The number of significant SNPs per element trait ranged from two (B) to 33 (Ca) (Supplemental Table 4) and roughly reflected their heritabilities.

We identified several SNPs common to multiple environments (Supplemental Table 5). For example, GWA for Ca concentration in all three of our SAP experiments identified significant SNPs within 5kb of locus Sobic.001G094200 on chromosome 1. Sobic.001G094200 is a putative calcium homeostasis regulator (CHoR1) (Zhang et al., 2012). We also identified several significant SNPs that colocalized for multiple element traits (Figure 3, Table 2 and Supplemental Table 6). Several of these SNPs were detected as significantly associated with multiple elements that are known to be coordinately regulated (Yi and Guerinot, 1996; Vert et al., 2002; Connolly et al., 2003; Lahner et al., 2003), and implicate candidate genes involved in regulation of multiple elements. For example, a SNP on chromosome 1 (S1_18898717) was a significant peak in both Mg and Mn GWA analysis (Figure 3). This SNP peak is in LD with the Arabidopsis homolog of AT3G15480. AT3G15480 is a protein of unknown function, however T-DNA knockout lines display mutant phenotypes in both Mg and Mn accumulation (www.ionomicshub.org, SALK_129213, Tray 4). T-DNA knockout lines in Arabidopsis also validated the significant peak for Co accumulation in the present study (S2_8464347). This SNP is linked to the homolog of AT5G63790, a NAC domain containing protein that imparts a significantly decreased Co phenotype in the T-DNA knockout line (www.ionomicshub.org, SALK_030702, Tray 1137).
We focused our interpretation efforts on the GWA results from the SAP rank average dataset, as these are the most likely to provide the tools to manipulate seed in multiple environments. The GWA results for each mineral trait obtained at the optimal step of the MLMM model were compiled (Supplemental Figure 1). The data for Cd using the SAP rank average dataset is presented in Figure 4 as an example of the analysis procedure. GWA across multiple environments identified one significant SNP (S3_8883293) associated with Cd levels (Figure 4A). The distribution of expected vs. observed P values suggests that population structure was well-controlled and false positive association signals were minimized (Figure 4B). The optimal MLMM model (ExtBIC) included one SNP on chromosome 2, S3_8883293, that explained 18% of the phenotypic variation in cadmium (Figure 4C), and the allelic effects of each genotype were estimated (Figure 4D). The major-effect locus on chromosome 2 is in LD with a homolog of a well-characterized cadmium transporter in plants, heavy metal ATPase 2 (HMA2).

Ionomie profiling for improved sorghum seed quality

Increasing the concentration of minerals essential for human and animal nutrition (e.g. Fe and Zn) while simultaneously minimizing and increasing tolerance to anti-nutrients and toxic elements (e.g. As, Cd and Al) is a significant goal of fundamental research directed towards global crop improvement (Schroeder et al., 2013). Mineral homeostasis in plants, is affected by genotype, environment, soil properties, and nutrient interactions (Gregorio et al., 2000). While determining strategies to enhance or reduce mineral content for food or fuel, several components of seed element traits must be considered. These include: the heritability of the various mineral traits, genotype by environment interactions, and the availability of high-throughput mineral content screening tools (Ortiz-Monasterio et al., 2007). Differences in seed organic composition can also have large effects on the mineral composition of seeds, as different seed compartments will contain elements in different proportions. Variation in seed composition together with variation in sorghum seed sizes violate the assumption of a uniform elemental concentration inherent in simple weight normalizations. Indeed our data were not well modeled by a simple weight normalization (Supplemental figure 2), and we subsequently employed a rank transformation of the phenotypic data and linear model in the analysis (Ayana and Bekele, 2000; Baxter et al., 2014).
Our results demonstrate environmental effects on the range and means of mineral concentrations are largely mineral specific. In general, seed mineral concentrations did not exhibit large variation due to environmental effects. This contributed to high heritabilities for several elements and homeostasis of individual mineral concentration across very diverse environments (Figure 1 and Table 1). The high heritabilities for these traits demonstrate the feasibility of breeding strategies for the improvement of sorghum for seed element accumulation. Furthermore, due to the known genetic contributors to trait covariation, selection strategies can include alteration of multiple traits, phenotypic correlations between traits or counter selection for undesirable traits (e.g. As accumulation). The high heritability and the relationships we report between important mineral elements, including Fe and Zn are encouraging for the development of breeding schema for improved mineral profiles for the alleviation of human malnutrition. Observed correlations of several elements indicate that changes in one or more minerals can simultaneously affect the concentration of other minerals present in the seed (Figure 2A). However, the individual effects of particular alleles can deviate from this pattern.

Trait correlations and covariation were used to uncover genetic associations for multiple elements. Even without more complicated analyses, we detected colocalized effects on several mineral traits (Supplemental Table 6). For example, several significant SNPs colocalized for the strongly correlated element pairs of Ca and Sr ($r = 0.79$) as well as Mg and P ($r = 0.71$). Shared SNPs and colocalization of significant loci across multiple mineral traits suggest the possibility of tightly-linked genes or genes with pleiotropic effects and has been documented in recent GWA studies, including experiments in tomato (Sauvage et al., 2014) and rice (Zhao et al., 2011). In the present analysis, we applied a conservative threshold in our MLMM implementation and identified SNPs from the most complex model in which the P values of cofactors were below a defined threshold of 0.05. We implemented stringent parameters to eliminate false positives, but also risked the elimination of true positives. To identify additional candidate SNPs for further investigation, these stringent parameters can be relaxed to include association signals below the threshold.

Candidate genes

One of the primary goals of this study was to utilize GWA analyses to identify candidate genes and novel loci implicated in the genetic regulation of sorghum seed mineral traits. We
identified numerous significant SNPs for all twenty mineral traits that currently do not associate with known elemental accumulation genes. Although it is likely that a small fraction of these SNPs are false positives, many more may be novel associations with as-yet undiscovered causal genes and merit further investigation. We did, however, identify several significant SNPs that fall directly within a characterized candidate gene or are in close proximity, or LD, with putative candidates.

Zinc

Zinc deficiency is a critical challenge for food crop production that results in decreased yields and nutritional quality. Zinc-enriched seeds result in better seedling vigor and higher stress tolerance on Zn-deficient soils (Cakmak, 2008). Here we identify a strong candidate for genetic improvement of zinc concentration in the in sorghum seed, Sobic.007G064900, an ortholog of Arabidopsis ZIP5, zinc transporter precursor (AT1G05300). AT1G05300 is a member of the ZIP family of metal transporter genes, and overexpression lines of this gene display increased Zn accumulation in Arabidopsis (www.ionomicshub.org, SALK_35SZip5_2_Tray 700).

Manganese

Associated with amino acid, lipid and carbohydrate metabolism, Mn is one of the essential minerals critical to human and animal nutritional requirements (Aschner and Aschner, 2005). We identified significant GWAS associations in the putative sorghum homolog for member of the metal transporter encoding cation diffusion facilitator gene family MTP11 (Sobic.003G349200). The Arabidopsis ortholog, AtMTP11, conferred Mn tolerance and transported Mn$^{2+}$ via a proton-antiport mechanism in *Saccharomyces cerevisiae* (Delhaize et al., 2007).

Cadmium

The seeds are a major source of essential nutrients, but can also be a source of toxic heavy metals, including cadmium. Contamination of ground water and subsequent uptake and absorption by the plant can result in high levels of Cd contamination in the seed (Arao and Ae, 2003). GWA analysis identified significant SNPs associated with a paralogous set of cation-transporting ATPases (Figure 4), Sobic.002G083000 and Sobic.002G083100. These are sorghum orthologs of Arabidopsis HMA genes in the heavy metal–transporting subfamily of the P-type ATPases. A recent study in Arabidopsis revealed that HMA3 is a major-effect locus controlling
natural variation in leaf cadmium (Chao et al., 2012). The SNP alleles could be used immediately to produce sorghum seed with lowered Cd2+ accumulation.

Nickel

Ni is an essential nutrient required for plant growth. However, similar to Cd, high Ni concentrations in soil can be toxic to the plant, resulting in reduced biomass and crop yield. The most significant SNP for Ni concentration in the SAP 2008 environment (and present in SAP 2012 and the ranked dataset) was S6_53175238. This SNP is in LD with the candidate gene Sobic.006G164300, a homolog of the Yellow Stripe-Like 3 (YSL) family of proteins. Originally identified in maize, the YSL proteins are a subfamily of oligopeptide transporters involved in metal uptake, homeostasis and long-distance transport (Curie et al., 2009). YSL3 is suggested to transport metals bound to nicotianamine (NA)(Curie et al., 2001) and in the metal hyperaccumulator *Thlaspi caerulescens* YSL3 functions as Ni–NA influx transporter (Gendre et al., 2007).

Summary/Conclusion:

In the present study, we utilized GWA mapping and rank transformation of the phenotypic data to scale GxE interactions and identify a number of genetic loci and candidate gene associations for immediate study and application to breeding strategies. The use of a multi-element, or ionomic approach, to the analysis allows for the identification of SNPs that confer multiple advantageous traits that can be selected for in breeding programs. We identify co-localization of significant SNPs for different elements, indicating potential coregulation through physiological processes of elemental uptake, transport, traffic and sequestration. Our results suggest that combining elemental profiling with GWAS approaches can be useful for understanding the genetic loci underlying elemental accumulation and for improving nutritional content of sorghum. The data and analysis scripts used for this publication can be found at www.ionomicshub.org.

Materials and Methods:

Plant material
The Sorghum Association Panel has been previously described (Casa et al., 2008). Seeds harvested from 407 lines that comprise the Sorghum Association Panel (SAP) were utilized for this study. The SAP 2008 seeds were obtained from Germplasm Resources Information Network (GRIN) and were produced in Lubbock, Texas by the USDA-ARS Cropping Systems Research Laboratory in 2008 and 2009. The SAP 2012 seeds were produced in Puerto Vallarta, Mexico in 2012. The SAP 2013 seeds were produced in Florence, SC in 2013.

Phenotypic Elemental Analysis

Four seeds per replicate were weighed from each individual and a minimum of two replicates from each accession of the SAP 2008 and SAP 2013 panels were analyzed by ICP-MS. Each sample was digested with 2.5 mL of concentrated nitric acid at 95°C for 3 hours. Elemental analysis was performed with an ICP-MS for B, Na, Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo and Cd following established protocols (Baxter et al., 2010). A reference sample derived from a pool of sorghum seed samples was generated and run after every 9th sample to correct for ICP-MS run-to-run variation and within-run drift.

Data Processing and Analysis

Phenotype data were generated for 407 SAP lines. GBS SNP markers for the SAP lines used in this study have been previously described (Morris et al., 2013). After removing SNPs with more than 20% missing data and minor allele frequencies below 0.05, genotype data for 78,012 SNPs remained. Broad sense heritability was calculated from two-way analysis of variance from the estimates of genetic (σ^2_G) and residual variance (σ^2_e) derived from the expected mean squares as $H^2 = (\sigma^2_G) / (\sigma^2_G - \sigma^2_e) / k$ where k is the number of replications. To ensure normality in the data distribution of the phenotype, the Box-Cox procedure was carried out on the phenotype scores to identify the best transformation method (Box and Cox, 1964). The ‘boxcox’ function in the MASS package in R was utilized to carry out the transformations (R Development Core Team, 2014; Ripley et al., 2014). In order to address potential confounding factors in the GWA analysis, specifically ICP run-to-run variation and the weight correction calculation, we used linear regression to compute residuals adjusted for ICP run and sample weight. These residuals were used to test for association with qualifying SNPs in the GWA analysis.
GWAS

GWAS was executed in R using Genomic Association and Prediction Integrated Tool (GAPIT) using GLM as well as CMLM to account for population structure (Lipka et al., 2012). Significant associations were determined by estimates of false discovery rate (FDR) (P = 0.05) (Benjamini and Hochberg, 1995). In addition, MLMM procedure (Segura et al., 2012) performed a two-model selection procedure, the extended Bayesian information criterion and the multiple-Bonferroni criterion, to identify optimal models. We utilized a genome-wide significance threshold of p < 0.05 for the Bonferroni correction.

Acknowledgments

This project was partially funded by the iHUB Visiting Scientist Program (http://www.ionomicshub.org), Chromatin, Inc., NSF EAGER (1450341) to I.B. and BPD, NSF IOS 1126950 to IB, NSF IOS-0919739 to EC, and BMGF (OPP 1052924) to B.P.D.

Availability of supporting data

The datasets supporting the results of this article are available through Purdue Ionomics Information Management System (PiiMS) at http://www.ionomicshub.org

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NS, GZ and IB wrote the manuscript, carried out ionomics assays, data analysis and interpretation of the results. ZB and RB contributed to experimental design and participated in tissue sampling. BD, EC, and SK participated in data analysis and interpretation of the results. All authors read, revised and approved the final manuscript.

Literature Cited:

Hutchin ME, Vaughan BE (1968) Relation between simultaneous Ca and Sr transport rates in isolated segments of vetch, barley, and pine roots. Plant physiology 43: 1913-1918

Mengesha MH (1966) Chemical composition of teff (Eragrostis tef) compared with that of wheat, barley and grain sorghum. Economic Botany 20: 268-273

Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe (III) chelate reductase activity is necessary for iron uptake under iron deficiency†. The Plant Journal 10: 835-844

Table 1 Mean, standard deviation, and broad sense heritability of seed element concentrations from the Sorghum Association Panel averaged across 3 environments. Element concentration values are presented as mg kg\(^{-1}\) and broad sense heritability (H\(^2\)) was calculated as described in the methods section. Data represents an average of individual samples (n=287) analyzed in 4 separate experiments. *Element concentration presented in µg kg\(^{-1}\).
<table>
<thead>
<tr>
<th>Phenotype</th>
<th>SNP</th>
<th>Locus Name</th>
<th>Chromosome</th>
<th>P value</th>
<th>Defline Annotation</th>
<th>Arabidopsis thaliana Homolog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>S2_8883293</td>
<td>Sobic.002G083000</td>
<td>2</td>
<td>9.67E-10</td>
<td>Cation-transporting ATPase</td>
<td>AthMA2; Heavy Metal ATPase2</td>
</tr>
<tr>
<td>Mo</td>
<td>S3_64935466</td>
<td>Sobic.001G443900</td>
<td>1</td>
<td>3.20E-07</td>
<td>Peptide transporter PTR2, putative, expressed</td>
<td>AtPTR2; Peptide transporter 2</td>
</tr>
<tr>
<td>Ni</td>
<td>S6_53175238</td>
<td>Sobic.006G164300</td>
<td>6</td>
<td>1.84E-07</td>
<td>Iron transport protein 2</td>
<td>AtYSL3; YELLOW STRIPE like 3</td>
</tr>
<tr>
<td>Mg</td>
<td>S1_19766418</td>
<td>Sobic.001G213400</td>
<td>1</td>
<td>4.92E-07</td>
<td>HD domain containing protein, expressed</td>
<td>Metal-dependent phosphohydrolase</td>
</tr>
<tr>
<td>Fe</td>
<td>S6_45971634</td>
<td>Sobic.006G082200</td>
<td>6</td>
<td>4.25E-06</td>
<td>OSIGBa0160114.4 protein</td>
<td>MGT4, MRS2-3; Magnesium transporter 4</td>
</tr>
<tr>
<td>B</td>
<td>S4_52068874</td>
<td>Sobic.004G174600</td>
<td>4</td>
<td>5.45E-06</td>
<td>Putative multidrug resistance protein</td>
<td>ABC transporter family protein</td>
</tr>
<tr>
<td>Rb</td>
<td>S8_6186108</td>
<td>Sobic.008G058700</td>
<td>8</td>
<td>7.06E-06</td>
<td>ZIP metal ion transporter family</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>S1_64935466</td>
<td>Sobic.001G443900</td>
<td>1</td>
<td>7.14E-06</td>
<td>Peptide transporter PTR2, putative, expressed</td>
<td>AtPTR2; Peptide transporter 2</td>
</tr>
<tr>
<td>Zn</td>
<td>S7_6880986</td>
<td>Sobic.007G064900</td>
<td>7</td>
<td>8.11E-06</td>
<td>Zinc transporter</td>
<td>ZIP5; Zinc transporter 5 precursor</td>
</tr>
<tr>
<td>Sr</td>
<td>S4_5986126</td>
<td>Sobic.004G073500</td>
<td>4</td>
<td>8.96E-06</td>
<td>Putative multidrug resistance protein</td>
<td>ABC transporter family protein</td>
</tr>
</tbody>
</table>

Table 2 Detailed information for selected significant associations detected within the 20 element traits analyzed using the MLMM.
Figure 1: Box plots depicting the distribution of 20 elements in three SAP experimental populations. The raw concentration values for each of the elements were log transformed to obtain normally distributed phenotypes.
Figure 2A Correlation network of seed element concentrations using rank average data calculated across replicates from SAP association panels. Green solid lines represent positive correlation values. Red dashed lines represent negative correlation values. Intensity and thickness of lines indicate degree of correlation. Element correlation values can be found in Supplemental Table 3. Correlation networks for SAP 2008, SAP 2012, and SAP 2013 can be found in Supplemental Figure 2.
Figure 2B Principal component analysis applied to the rank average seed concentrations for 20 elements in the SAP lines across experiments. Each symbol represents a single element. PCA analysis for SAP 2008, SAP 2012 and SAP 2013 can be found in Supplemental Figure 3. Outlined elements reflect clustering of known elemental relationships.
Figure 3 Heatmap displaying the LogP values of selected SNPS across 20 elements. Significance values below 2 are white and the ranges from 2.01 to 9.01 are shown in green (light to dark green color). Outlined in red are biologically relevant SNPs that colocalized for multiple elements.
Figure 4A Manhattan plot displaying Cd GWAS results ($-\log_{10}(P)$) for the 10 sorghum chromosomes (x-axis) and associated P values for each marker (y-axis). The red lines indicate a Bonferroni-corrected threshold of 0.05.
Figure 4B Quantile-quantile (Q–Q) of observed P-values against the expected P-values from the GWAS analysis for element concentration.
Figure 4C Evolution of genetic variance at each step of the MLMM (blue, genetic variance explained; green, total genetic variance; red, error) for the optimal model (step indicates extended Bayesian information criterion (ExtBIC)).
Figure 4D Allelic effect for the significant SNP marker on chromosome 2.