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Population Location Sample size Majority size  Diploid size Date (kybp) Reference (samples)

Western Hunter-gatherers 3 3.60 485 7.7-81

WHG Loschbour Luxembourg 1 1.98 1.98 8.1 11
LaBranal Spain 1 0.94 1.60 7.8 12
HungaryGamba_HG Hungary 1 0.69 0.88 7.7 7 (K01)

Early Neolithic 26 15.27 22.77 6.9-7.2

EN Starcevo_EN Hungary 1 0.28 0.32 7.6 9
Stuttgart Germany 1 1.97 1.97 7.2 11
Spain_EN Spain 4 3.08 5.21 7.2 9
LBK_EN Germany 12 6.56 10.41 7.1 9
LBKT_EN Hungary 1 0.09 0.09 7.1 9
HungaryGamba_EN Hungary 7 3.29 4.77 6.9 7 (KO2,NE1-NE7)

Middle Neolithic 9 5.27 9.62 5.2-5.8

MN Spain_MN Spain 4 2.84 4.99 5.8 9
Baalberge_ MN Germany 3 0.64 0.71 5.4 9
Iceman Italy 1 0.99 1.93 53 10
Esperstedt_ MN Germany 1 0.79 1.99 5.2 9

Late Neolithic 15 8.90 14.01 4.2-48

LN HungaryGamba_CA Hungary 1 0.62 0.77 4.8 7 (C01)
Alberstedt_LN Germany 1 0.99 1.93 4.4 9
Corded_Ware_LN Germany 4 2.56 4.47 4.4 9
Bell_Beaker_LN Germany 6 3.19 4.63 4.3 9
BenzigerodeHeimburg_LN Germany 3 1.55 2.21 4.2 9

Bronze Age 10 6.66 10.86 3.6-4.8

BA Unetice_EBA Germany 7 4.20 6.48 4.0 9
HungaryGamba_BA Hungary 2 1.51 2.59 3.6 7 (BR1,2)
Halberstadt_LBA Germany 1 0.95 1.79 2.1 9

Scandinavian Hunter-gatherers 11 6.79 10.88 4.8-7.7

SHG SwedenSkoglund_MHG Sweden 1 0.09 0.09 7.4 13 (StoraForvarll)
Motala_HG Sweden 7 5.55 9.14 7.7 9
SwedenSkoglund_NHG Sweden 3 1.14 1.64 4.8 13 (Ajvide52,58,70)

Yamnaya 9 5.11 7.60 5.0
Yamnaya Russia 9 5.11 7.60 5.0 9

Modern 503 1006 1006 0.0
CEU NW Europe 99 198 198 0.0 14
FIN Finland 99 198 198 0.0 14
GBR Great Britain 91 182 182 0.0 14
IBS Spain 107 214 214 0.0 14
TSI Italy 107 214 214 0.0 14

Table 1: Samples analyzed in this study. Population: samples grouped by a combination of date, archaeology and
genetics. Population: Labels used in Ref. °. Location: Present-day country where samples originated. In the main text,
we refer to samples from present-day Spain, Germany, Hungary and Sweden as Iberian, Central European, Eastern
European and Scandinavian, respectively. Sample size: Number of individuals sampled. Majority size: Average over
sites of the number of chromosomes observed at each SNP targeted, if we make a single majority call at each site for
each individual. Equivalently, the average number of samples hit at least once. Diploid size: Average over sites of the
effective number of chromosomes when we use genotype likelihoods. Computed as 2 per sample for samples with
genotype calls, or I ¥ 115C ' for samples with read depth ¢. Date: Mean of the best date available for the samples in
each population, thousands of years before present. Reference: Original reference for each sample (and specific sample
names, where appropriate).
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Figure 1: Genome-wide scan for selection. A: Quantile-quantile (QQ) plot of -log;( p-value for potentially

functional SNPs (red) and probably neutral SNPs (blue), after genomic control (GC) correction. B: QQ plots
for different categories of potentially functional SNPs (Methods). All curves are significantly different from
neutral expectation. C: Plot showing the GC-corrected —log;o p-value for each marker. The red dashed line

represents a genome-wide significance level of 107, Insets show chromosomes 11 and 15 on a larger scale.
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Figure 2: Time series of derived allele frequencies for alleles with genome-wide significant signals of
selection, or otherwise mentioned in the text. A: Estimated mainland European frequencies. Boxes show the
estimated frequency and approximate time range of the observations. Small numbers give the effective
sample size as described in Table 1. B: Frequencies in other ancient populations. C: Frequencies in modern
European populations from the 1000 Genomes Project.
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Figure 3: Evidence for polygenic selection in Europe. A-C: Each row represents a different trait (Height,
body mass index, waist-hip ratio, type 2 diabetes, irritable bowel disease, and lipid levels), and each point
represents a test statistic. Red, labeled points have bootstrap p-values < 0.01. A: Z scores for each population
tested against CEU B: Z scores for the difference between populations existing at approximately the same
time. Populations ordered so the difference is positive. C: Z scores for the difference between populations
existing at the same location. Populations ordered so the difference is positive. D: A hypothesis, based on
these results, for when selection on height may have occurred (see Table 1 for abbreviations).
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Extended data Figure 1: Fine scale maps of
genome-wide significant signals of selection. In
each case, the most significant SNP is labeled,
and other SNPs are colored according to their LD
with the most significant SNP. The blue line
shows the recombination rate and the lower
panel in each plot shows gene locations.
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Extended data Figure 2: Genome wide scan for selection using majority called alleles. As Figure 1 in
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by category. C: Manhattan plot of scan results.


http://dx.doi.org/10.1101/016477
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online Mar. 14, 2015; doi: http://dx.doi.org/10.1101/016477. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

o _
@
®© 4

>

[$)

c

[}

z <@

£ ° N

(0]

°

E <

8 o7

i

w

T — WHG
o — SHG
= 1 ———1 —— Central Europe

— Iberia
Yamnaya

g _ Eastern Europe

[ T T T 1
8,000 6,000 4,000 2,000 0

Years before present

Extended data Figure 3: Estimated frequencies of the derived allele of rs12913832 in HERC2. We divided
our samples by date and location. Boxes show the maximum likelihood estimate of the frequency as in
main text Figure 2 and vertical lines show approximate 95% confidence intervals.
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Extended data Figure 4: Motala haplotypes carrying the derived, selected EDAR allele. This figure
compares the genotypes at all sites within 100kb of rs3827760 (in blue) for the 7 Motala samples
and 20 randomly chosen CHB (Chinese from Beijing) and CEU (Central European) samples. Each
row is a sample, and each column is a SNP. Grey means homozygous for the minor (in CEU) allele.
Pink denotes heterozygotes and red homozygotes for the other allele. For the Motala samples, an
open circle means that there is only a single read, otherwise the circle is colored according to the
number of reads observed. Note that the original haplotype on which rs3827760 arose appears to
be common in CEU (marked with arrows on the right). Four of the Motala samples appear to be
heterozygous for the rs3827760 haplotype, and one of the samples carries the original haplotype
without the derived rs3827760 allele.
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Extended data Figure 6: Predicted genetic heights for populations split up by region and date. We
computed the maximum likelihood allele frequencies for each SNP that was significant in the analysis in
Ref. 44 and multiplied by the effect size from that study. The genetic height here is expressed in terms of
regression effect sizes (roughly, number of standard deviations after correction for age and sex), translated
so that the mean across populations is zero.
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Extended data Figure 7: Power and robustness of the
- selection scan. A: Estimated power to detect selection at
o genome-wide significance under different scenarios, as a
function of selection coefficent. Dashed lines indicate
slelection in all populations and dotted lines indicate
o selection in only a single population. Different colors
indicate selection over different periods of time: 50, 100
and 200 generations. B: Effect of misspecifying the
. mixture matrix C, over 10,000 simulations. In blue (left
hand axis), the genomic inflation factor as a function of
K the proportion of the matrix that is random. In orange
| / (right hand axis), the corresponding power, for a selection
/‘ coefficient of 0.02 over a period of 100 generations. C:
Genomic inflation constant as a function of admixture
/ from Yoruba into a random modern population.
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