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Abstract

Identifying genetic correlations between complex traits and diseases can provide useful etio-
logical insights and help prioritize likely causal relationships. The major challenges preventing
estimation of genetic correlation from genome-wide association study (GWAS) data with cur-
rent methods are the lack of availability of individual genotype data and widespread sample
overlap among meta-analyses. We circumvent these difficulties by introducing a technique for
estimating genetic correlation that requires only GWAS summary statistics and is not biased
by sample overlap. We use our method to estimate 300 genetic correlations among 25 traits,
totaling more than 1.5 million unique phenotype measurements. Our results include genetic
correlations between anorexia nervosa and schizophrenia/ body mass index and associations
between educational attainment and several diseases. These results highlight the power of a
polygenic modeling framework, since there currently are no genome-wide significant SNPs for
anorexia nervosa and only three for educational attainment.
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Introduction

Understanding the complex relationships between human behaviours, traits and diseases is a fun-
damental goal of epidemiology. In the absence of randomized controlled trials and longitudinal
studies, many disease risk factors are identified on the basis of population cross-sectional correla-
tions of variables at a single time point. Such approaches can be biased by confounding and reverse
causation, leading to spurious associations [1, 2]. Genetics can help elucidate cause or effect, since
inherited genetic effects cannot be subject to reverse causation and are biased by a smaller list of
confounders.

The first methods for testing for genetic overlap were family studies [3–7]. The disadvantage
of these methods is the requirement to measure all traits on the same individuals, which scales
poorly to studies of multiple traits, especially traits that are difficult or costly to measure (e.g.,
low-prevalence diseases). Genome-wide association studies (GWAS) produce effect-size estimates
for specific genetic variants, so it is possible to test for shared genetics by looking for correlations
in effect-sizes across traits, which does not require measuring multiple traits per individual.

A widely-used technique for testing for relationships between phenotypes using GWAS data
is Mendelian randomization (MR) [1, 2], which is the specialization to genetics of instrumental
variables [8]. MR is effective for traits where significant associations account for a substantial
fraction of heritability [9, 10]. For many complex traits, heritability is distributed over thousands
of variants with small effects, and the proportion of heritability accounted for by significantly
associated variants at current sample sizes is small [11]. For such traits, MR suffers from low power
and weak instrument bias [8, 12].

A complementary approach is to estimate genetic correlation, a quantity that includes the
effects of all SNPs, including those that do not reach genome-wide significance (Methods). Genetic
correlation is also meaningful for pairs of diseases, in which case it can be interpreted as the genetic
analogue of comorbidity. The two main existing techniques for estimating genetic correlation from
GWAS data are restricted maximum likelihood (REML) [13–18] and polygenic scores [19,20]. These
methods have only been applied to a few traits, because they require individual genotype data,
which are difficult to obtain due to informed consent limitations.

In response to these limitations, we have developed a technique for estimating genetic correlation
using only GWAS summary statistics that is not biased by sample overlap. Our method is based on
LD Score regression [21] and is computationally very fast. We apply this method to data from 25
GWAS and report genetic correlations for 300 pairs of phenotypes, demonstrating shared genetic
bases for many complex diseases and traits.

Results

Overview of Methods

The method presented here for estimating genetic correlation from summary statistics relies on the
fact that the GWAS effect-size estimate for a given SNP incorporates the effects of all SNPs in
linkage disequilibrium (LD) with that SNP [21,22]. For a polygenic trait, SNPs with high LD will
have higher χ2 statistics on average than SNPs with low LD [21]. A similar relationship holds if
we replace χ2 statistics for a single study with the product of z-scores from two studies of traits
with non-zero genetic correlation. Precisely, under a polygenic model [13,15], the expected value of
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z1jz2j is

E[z1jz2j ] =

√
N1N2ρg
M

`j +
ρNs√
N1N2

, (1)

where Ni is the sample size for study i, ρg is genetic covariance (defined in Methods), `j is LD
Score [21], Ns is the number of individuals included in both studies, and ρ is the phenotypic
correlation among the Ns overlapping samples. We derive this equation in the Supplementary
Note. If study 1 and study 2 are the same study, then Equation 1 reduces to the single-trait result
from [21], because genetic covariance between a trait and itself is heritability, and χ2 = z2. As a
consequence of equation 1, we can estimate genetic covariance using the slope from the regression
of z1jz2j on LD Score, which is computationally very fast (Methods). If there is sample overlap,
it will only affect the intercept from this regression (the term ρNs/

√
N1N2) and not the slope,

so the estimates of genetic correlation will not be biased by sample overlap. Similarly, population
stratification will alter the intercept but have minimal impact on the slope, for the same reasons that
population stratification has minimal impact on the slope from single-trait LD Score regression [21].
If we know the amount of sample overlap and phenotypic correlation in advance (i.e., the true
value of ρNs/

√
N1N2), we can constrain the intercept to this value, which reduces the standard

error. We refer to this estimator as constrained intercept LD Score regression. Normalizing genetic
covariance by the heritabilities yields genetic correlation: rg := ρg/

√
h21h

2
2, where h2i denotes the

SNP-heritability [13] from study i. Genetic correlation ranges between −1 and 1. Similar results
hold if one or both studies is a case/control study, in which case genetic covariance is on the
observed scale. There is no distinction between observed and liability scale genetic correlation for
case/control traits, so we can talk about genetic correlation between a case/control trait and a
quantitative trait and genetic correlation between pairs of case/control traits without difficulties
(Supplementary Note).

Simulations

We performed a series of simulations to evaluate the robustness of the model to potential con-
founders such as sample overlap and model misspecification, and to verify the accuracy of the
standard error estimates. Details of our simulation setup are provided in the methods. Table 1
shows LD Score regression estimates and standard errors from 1,000 simulations of quantitative
traits. For each simulation replicate, we generated two phenotypes for each of 2,062 individuals in
our sample by drawing effect sizes approximately 600,000 SNPs on chromosome 2 from a bivariate
normal distribution. We then computed summary statistics for both phenotypes and estimated her-
itability and genetic correlation with LD Score regression. The summary statistics were generated
from completely overlapping samples. Results are shown in Table 1. These simulations confirm that
LD Score regression yields accurate estimates of the true genetic correlation and that the standard
errors match the standard deviation across simulations. Thus, LD Score regression is not biased by
sample overlap, in contrast to estimation of genetic correlation via polygenic risk scores, which is
biased in the presence of sample overlap [20]. We also evaluated simulations with one quantitative
trait and one case/control study and show that LD Score regression can be applied to binary traits
and is not biased by oversampling of cases (Table S1).

Estimates of heritability and genetic covariance can be biased if the underlying model of genetic
architecture is misspecified, e.g., if variance explained is correlated with LD Score or MAF [21,
23]. Because genetic correlation is estimated as a ratio, it is more robust: biases that affect the
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Parameter Truth Estimate SD SE

h2 0.58 0.58 0.072 0.075
ρg 0.29 0.29 0.057 0.058
rg 0.50 0.49 0.079 0.073

Table 1: Simulations with complete sample overlap. Truth shows the true parameter values. Estimate shows
the average LD Score regression estimate across 1000 simulations. SD shows the standard deviation of the
estimates across 1000 simulations, and SE shows the mean LD Score regression SE across 1000 simulations.
Further details of the simulation setup are given in the Methods.

numerator and the denominator in the same direction tend to cancel. We obtain approximately
correct estimates of genetic correlation even in simulations with models of genetic architecture
where our estimates of heritability and genetic covariance are biased (Table S2).

Replication of Pyschiatric Cross-Disorder Results

As technical validation, we replicated the estimates of genetic correlations among psychiatric dis-
orders obtained with individual genotypes and REML in [16], by applying LD Score regression to
summary statistics from the same data [24]. These summary statistics were generated from non-
overlapping samples, so we applied LD Score regression using both unconstrained and constrained
intercepts (Methods). Results from these analyses are shown in Figure 1. As expected, the results
from LD Score regression were similar to the results from REML. LD Score regression with con-
strained intercept gave standard errors that were only slightly larger than those from REML, while
the standard errors from LD Score regression with intercept were substantially larger, especially
for traits with small sample sizes (e.g., ADHD, ASD).

Application to Summary Statistics From 25 Phenotypes

We used cross-trait LD Score regression to estimate genetic correlations among 25 phenotypes
(URLs, Methods). Genetic correlation estimates for all 300 pairwise combinations of the 25 traits are
shown in Figure 2. For clarity of presentation, the 25 phenotypes were restricted to contain only one
phenotype from each cluster of closely related phenotypes (Methods). Genetic correlations among
the educational, anthropometric, smoking, and insulin-related phenotypes that were excluded from
Figure 2 are shown in Table S4 and Figures S1, S2 and S3, respectively. References and sample
sizes are shown in Table S3.

For the majority of pairs of traits in Figure 2, no GWAS-based genetic correlation estimate has
been reported; however, many associations have been described informally based on the observation
of overlap among genome-wide significant loci. Examples of genetic correlations that are consistent
with overlap among top loci include the correlations between plasma lipids and cardiovascular
disease [10]; age at onset of menarche and obesity [25]; type 2 diabetes, obesity, fasting glucose,
plasma lipids and cardiovascular disease [26]; birth weight, adult height and type 2 diabetes [27,28];
birth length, adult height and infant head circumference [29, 30]; and childhood obesity and adult
obesity [29]. For many of these pairs of traits, we can reject the null hypothesis of zero genetic
correlation with overwhelming statistical significance (e.g., p < 10−20 for age at onset of menarche
and obesity).
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Figure 1: Replication of Psychiatric Cross-Disorder Results. This plot compares LD Score regression esti-
mates of genetic correlation using the summary statistics from [24] to estimates obtained from REML with
the same data [16]. The horizontal axis indicates pairs of phenotypes, and the vertical axis indicates genetic
correlation. Error bars are standard errors. Green is REML; orange is LD Score with intercept and white
is LD Score with constrained intercept. The estimates of genetic correlation among psychiatric phenotypes
in figure 2 use larger sample sizes; this analysis is intended as a technical validation. Abbreviations: ADHD
= attention deficit disorder; ASD = autism spectrum disorder; BPD = bipolar disorder; MDD = major
depressive disorder; SCZ = schizophrenia.

The first section of table 2 lists genetic correlation results that are consistent with epidemiolog-
ical associations, but, as far as we are aware, have not previously been reported using genetic data.
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Figure 2: Genetic Correlations among 25 GWAS. Blue represents positive genetic correlations; red represents
negative. Larger squares correspond to more significant p-values. Genetic correlations that are different from
zero at 1% FDR are shown as full-sized squares. Genetic correlations that are significantly different from
zero after Bonferroni correction for the 300 tests in this figure have an asterisk. We show results that do not
pass multiple testing correction as smaller squares in order to avoid whiting out positive controls where the
estimate points in the expected direction, but does not achieve statistical significance due to small sample
size. This multiple testing correction is conservative, since the tests are not independent.

The estimates of the genetic correlation between age at onset of menarche and adult height [31],
cardiovascular disease [32] and type 2 diabetes [32,33] are consistent with the epidemiological asso-
ciations. The estimate of a negative genetic correlation between anorexia nervosa and obesity (and

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2015. ; https://doi.org/10.1101/014498doi: bioRxiv preprint 

https://doi.org/10.1101/014498


Phenotype 1 Phenotype 2 rg (se) p-value

Epidemiological

Age at Menarche Height (Adult) 0.11 (0.03) 6× 10−5 ∗∗

Age at Menarche Type 2 Diabetes -0.13 (0.04) 3× 10−3

Age at Menarche Triglycerides -0.15 (0.04) 1× 10−3 ∗

Coronary Artery Disease Age at Menarche -0.11 (0.05) 4× 10−2

Coronary Artery Disease College (Yes/No) -0.278 (0.07) 1× 10−4 ∗∗

Coronary Artery Disease Height (Adult) -0.17 (0.05) 2× 10−4 ∗

Alzheimer’s College (Yes/No) -0.30 (0.08) 1× 10−4 ∗∗

Bipolar Disorder College (Yes/No) 0.026 (0.064) 6× 10−5 ∗∗

Obesity (Adult) College (Yes/No) -0.23 (0.04) 2× 10−8 ∗∗

Triglycerides College (Yes/No) -0.30 (0.04) 5× 10−12 ∗∗

Anorexia Nervosa Obesity (Adult) -0.20 (0.04) 4× 10−6 ∗∗

Ever/Never Smoker College (Yes/No) -0.39 (0.07) 1× 10−9 ∗∗

Ever/Never Smoker Obesity (Adult) 0.22 (0.05) 7× 10−5 ∗∗

New/Nonzero
Autism Spectrum Disorder College (Yes/No) 0.28 (0.08) 5× 10−4 ∗

Ulcerative Colitis Childhood Obesity -0.33 (0.08) 3.9× 10−5 ∗∗

Anorexia Nervosa Schizophrenia 0.19 (0.04) 1.5× 10−5 ∗∗

New/Low

Schizophrenia Alzheimer’s 0.05 (0.05) 0.58
Schizophrenia Ever/Never Smoker 0.03 (0.06) 0.26
Schizophrenia Triglycerides -0.05 (0.04) 0.21
Schizophrenia LDL Cholesterol -0.02 (0.03) 0.64
Schizophrenia HDL Cholesterol 0.03 (0.04) 0.50
Schizophrenia Rheumatoid Arthritis -0.05 (0.05) 0.38
Crohn’s Disease Rheumatoid Arthritis -0.02 (0.09) 0.83
Ulcerative Colitis Rheumatoid Arthritis -0.09 (0.09) 0.33

Table 2: Genetic correlation estimates, standard errors and p-values for selected pairs of traits. Results are
grouped into genetic correlations that are new genetic results, but are consistent with established epidemio-
logical associations (“Epidemiological”), genetic correlations that are new both to genetics and epidemiology
(“New/Nonzero”) and interesting null results (“New/Low”). The p-values are uncorrected p-values. Results
that pass multiple testing correction for the 300 tests in Figure 2 at 1% FDR have a single asterisk; results
that pass Bonferroni correction have two asterisks. We present some genetic correlations that agree with
epidemiological associations but that do not pass multiple testing correction in these data.

a similar genetic correlation with BMI) suggests that the same genetic factors influence normal
variation in BMI as well as dysregulated BMI in psychiatric illness. This result is consistent with
the observation that BMI GWAS findings implicate neuronal, rather than metabolic, cell-types and
epigenetic marks [34,35]. The negative genetic correlation between adult height and coronary artery
disease agrees with a replicated epidemiological association [36–38]. We observe several significant
associations with the educational attainment phenotypes from Rietveld et al. [39]: we estimate a
statistically significant negative genetic correlation between college and Alzheimer’s disease, which
agrees with epidemiological results [40, 41]. The positive genetic correlation between college and
bipolar disorder is consistent with previous epidemiological reports [42,43]. The estimate of a neg-
ative genetic correlation between smoking and college is consistent with the observed differences in
smoking rates as a function of educational attainment [44].

The second section of table 2 lists three results that are, to the best of our knowledge, new both
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to genetics and epidemiology. One, we find a positive genetic correlation between anorexia nervosa
and schizophrenia. Comorbidity between eating and psychotic disorders has not been thoroughly
investigated in the psychiatric literature [45, 46], and this result raises the possibility of similarity
between these classes of disease. Two, we estimate a negative genetic correlation between ulcerative
colitis (UC) and childhood obesity. The relationship between premorbid BMI and ulcerative colitis is
not well-understood; exploring this relationship may be a fruitful direction for further investigation.
Three, we estimate a positive genetic correlation between autism spectrum disorder (ASD) and
educational attainment, which itself has very high genetic correlation with IQ [39,47,48]. The ASD
summary statistics were generated using a case-pseudocontrol study design, so this result cannot be
explained by the tendency for the parents of children who receive a diagnosis of ASD to be better
educated than the general population [49]. The distribution of IQ among individuals with ASD has
lower mean than the general population, but with heavy tails [50] (i.e., an excess of individuals
with low and high IQ). There is evidence that the genetic architectures of high IQ and low IQ ASD
are dissimilar [51].

The third section of table 2 lists interesting examples where the genetic correlation is close to
zero with small standard error. The low genetic correlation between schizophrenia and rheumatoid
arthritis is interesting because schizophrenia has been observed to be protective for rheumatoid
arthritis [52]. The low genetic correlation between schizophrenia and smoking is notable because of
the high prevalence of smoking among individuals with schizophrenia [53]. The low genetic corre-
lation between schizophrenia and plasma lipid levels contrasts with a previous report of pleiotropy
between schizophrenia and triglycerides [54]. Pleiotropy (unsigned) is different from genetic correla-
tion (signed; see Methods); however, this observation from Andreassen, et al. [54] could be explained
by the sensitivity of the method used to the properties of a few regions with strong LD, rather than
trait biology (Figure S5). We estimate near-zero genetic correlation between Alzheimer’s disease
and schizophrenia. The genetic correlations between Alzheimers disease and the other psychiatric
traits (anorexia nervosa, bipolar, major depression, ASD) are also close to zero, but with larger
standard errors, due to smaller sample sizes. This suggests that the genetic basis of Alzheimer’s
disease is distinct from psychiatric conditions. Last, we estimate near zero genetic correlation be-
tween rheumatoid arthritis (RA) and both Crohn’s disease (CD) and UC. Although these diseases
share many associated loci [55, 56], there appears to be no directional trend: some RA risk alleles
are also risk alleles for UC and CD, but many RA risk alleles are protective for UC and CD [55],
yielding near-zero genetic correlation. This example highlights the distinction between pleiotropy
and genetic correlation (Methods).

Finally, the estimates of genetic correlations among metabolic traits are consistent with the esti-
mates obtained using REML in Vattikuti et al. [17] (Supplementary Table S4), and are directionally
consistent with the recent Mendelian randomization results from Wuertz et al. [57]. The estimate
of 0.57 (0.074) for the genetic correlation between CD and UC is consistent with the estimate of
0.62 (0.042) from Chen et al. [18].

Discussion

We have described a new method for estimating genetic correlation from GWAS summary statistics,
which we applied to a dataset of GWAS summary statistics consisting of 25 traits and more than
1.5 million unique phenotype measurements. We reported several new findings that would have
been difficult or impossible to obtain with existing methods, including a positive genetic correla-
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tion between anorexia nervosa and schizophrenia. Our method replicated many previously-reported
GWAS-based genetic correlations, and confirmed observations of overlap among genome-wide sig-
nificant SNPs, MR results and epidemiological associations.

This method is an advance for several reasons: it does not require individual genotypes, genome-
wide significant SNPs or LD-pruning (which loses information if causal SNPs are in LD). Our
method is not biased by sample overlap and is computationally fast. Furthermore, our approach
does not require measuring multiple traits on the same individuals, so it scales easily to studies of
thousands of pairs of traits. These advantages allow us to estimate genetic correlation for many
more pairs of phenotypes than was possible with existing methods.

The challenges in interpreting genetic correlation are similar to the challenges in MR. We
highlight two difficulties. First, genetic correlation is immune to environmental confounding, but
is subject to genetic confounding, analogous to confounding by pleiotropy in MR. For example,
the genetic correlation between HDL and CAD in Figure 2 could result from a causal effect
HDL→ CAD, but could also be mediated by triglycerides (TG) [10,58], represented graphically [59]
as HDL← G→ TG→ CAD, where G is the set of genetic variants with effects on both HDL and
TG. Extending genetic correlation to multiple genetically correlated phenotypes is an important
direction for future work. Second, although genetic correlation estimates are not biased by over-
sampling of cases, they are affected by other forms of selection bias, such as misclassification [16].

We note several limitations of LD Score regression as an estimator of genetic correlation. First,
LD Score regression requires larger sample sizes than methods that use individual genotypes in
order to achieve equivalent standard error. Second, LD Score regression is not currently applicable
to samples from recently-admixed populations. Third, methods built from polygenic models, such
as LD Score regression and REML, are most effective when applied to traits with polygenic genetic
architectures. For traits where significant SNPs account for a sizable proportion of heritability,
analyzing only these SNPs can be more powerful. Developing methods that make optimal use of
both large-effect SNPs and diffuse polygenic signal is a direction for future research.

Despite these limitations, we believe that the LD Score regression estimator of genetic correlation
will be a useful addition to the epidemiological toolbox, since it allows for rapid screening for
correlations among a diverse set of traits, without the need for measuring multiple traits on the
same individuals or genome-wide significant SNPs.
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Methods

Definition of Genetic Covariance and Correlation

All definitions refer to narrow-sense heritabilities and genetic covariances. Let S denote a set of
M SNPs, let X denote a vector of additively (0-1-2) coded genotypes for the SNPs in S, and
let y1 and y2 denote phenotypes. Define β := argmaxα∈RM Cor [y1, Xα], where the maximization
is performed in the population (i.e., in the infinite data limit). Let γ denote the correspond-
ing vector for y2. This is a projection, so β is unique modulo SNPs in perfect LD. Define h2S ,
the heritability explained by SNPs in S, as h2S(y1) :=

∑
j β

2
j and ρS(y1, y2), the genetic covari-

ance among SNPs in S, as ρS(y1, y2) :=
∑

j∈S βjγj . The genetic correlation among SNPs in S is

rS(y1, y2) := ρS(y1, y2)/
√
h2S(y1)h2S(y2), which lies in [-1,1]. Following [13], we use subscript g (as

in h2g, ρg, rg) when the set of SNPs is genotyped and imputed SNPs in GWAS.
SNP genetic correlation (rg) is different from family study genetic correlation. In a family study,

the relationship matrix captures information about all genetic variation, not just common SNPs.
As a result, family studies estimate the total genetic correlation (S equals all variants). Unlike
the relationship between SNP-heritability [13] and total heritability, for which h2g ≤ h2, no similar
relationship holds between SNP genetic correlation and total genetic correlation. If β and γ are more
strongly correlated among common variants than rare variants, then the total genetic correlation
will be less than the SNP genetic correlation.

Genetic correlation is (asymptotically) proportional to Mendelian randomization estimates. If
we use a genetic instrument gi :=

∑
j∈S Xijβj to estimate the effect b12 of y1 on y2, the 2SLS estimate

is b̂2SLS := gTy2/g
Ty1 [8]. The expectations of the numerator and denominator are E[gTy2] =

ρS(y1, y2) and E[gTy1] = h2S(y1). Thus, plimN→∞b̂2SLS = rS(y2, y1)
√
h2S(y1)/h2S(y2). If we use the

same set S of SNPs to estimate b12 and b21 (e.g., if S is the set of all common SNPs, as in the
genetic correlation analyses in this paper), then this procedure is symmetric in y1 and y2.

Genetic correlation is different from pleiotropy. Two traits have a pleiotropic relationship if
many variants affect both. Genetic correlation is a stronger condition than pleiotropy: to exhibit
genetic correlation, the directions of effect must also be consistently aligned.

Cross-Trait LD Score Regression

We estimate genetic covariance by regressing z1jz2j against `j
√
N1jN2j , (where Nij is the sample

size for SNP j in study i) then multiplying the resulting slope by M , the number of SNPs in the
reference panel with MAF between 5% and 50% (technically, this is an estimate of ρ5-50%, see the
Supplementary Note).

If we know the amount of sample overlap ahead of time, we can reduce the standard error by
constraining the intercept with the --constrain-intercept flag in ldsc. This works even if there
is nonzero sample overlap, in which case the intercept should be constrained to Nsρ/

√
N1N2.

Regression Weights

For heritability estimation, we use the regression weights from [21]. If effect sizes for both phenotypes
are drawn from a bivariate normal distribution, then the optimal regression weights for genetic
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covariance estimation are

Var[z1jz2j | `j ] =

(
N1h

2
1`j

M
+ 1

)(
N2h

2
2`j

M
+ 1

)
+

(√
N1N2ρg
M

`j +
ρNs√
N1N2

)2

(2)

(Supplementary Note). This quantity depends on several parameters (h21, h
2
2, ρg, ρ,Ns) which are

not known a priori, so it is necessary to estimate them from the data. We compute the weights in
two steps:

1. The first regression is weighted using heritabilities from the single-trait LD Score regressions,
ρNs = 0, and ρg estimated as ρ̂g := (¯̀

√
N1N2)

−1∑
j z1jz2j .

2. The second regression is weighted using the estimates of ρNs and ρg from step 1. The genetic
covariance estimate that we report is the estimate from the second regression.

Linear regression with weights estimated from the data is called feasible generalized least squares
(FGLS). FGLS has the same limiting distribution as WLS with optimal weights, so WLS p-values
are valid for FGLS [8]. We multiply the heteroskedasticity weights by 1/`j (where `j is LD Score
with sum over regression SNPs) in order to downweight SNPs that are overcounted. This is a
heuristic: the optimal approach is to rotate the data so that it is de-correlated, but this rotation
matrix is difficult to compute.

Assessment of Statistical Significance via Block Jackknife

Summary statistics for SNPs in LD are correlated, so the OLS standard error will be biased down-
wards. We estimate a heteroskedasticity-and-correlation-robust standard error with a block jack-
knife over blocks of adjacent SNPs. This is the same procedure used in [21], and gives accurate
standard errors in simulations (Table 1). We obtain a standard error for the genetic correlation
by using a ratio block jackknife over SNPs. The default setting in ldsc is 200 blocks per genome,
which can be adjusted with the --num-blocks flag.

Computational Complexity

Let N denote sample size and M the number of SNPs. The computational complexity of the steps
involved in LD Score regression are as follows:

1. Computing summary statistics takes O(MN) time.

2. Computing LD Scores takes O(MN) time, though the N for computing LD Scores need not
be large. We use the N = 378 Europeans from 1000 Genomes.

3. LD Score regression takes O(M) time and space.

For a user who has already computed summary statistics and downloads LD Scores from our website
(URLs), the computational cost of LD Score regression is O(M) time and space. For comparison,
REML takes time O(MN2) for computing the GRM and O(N3) time for maximizing the likelihood.

Practically, estimating LD Scores takes roughly an hour parallelized over chromosomes, and LD
Score regression takes about 15 seconds per pair of phenotypes on a 2014 MacBook Air with 1.7
GhZ Intel Core i7 processor.
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Simulations

We simulated quantitative traits under an infinitesimal model in 2062 controls from a Swedish
study. To simulate the standard scenario where many causal SNPs are not genotyped, we simu-
lated phenotypes by drawing casual SNPs from 622,146 best-guess imputed 1000 Genomes SNPs
on chromosome 2, then retained only the 90,980 HM3 SNPs with MAF above 5% for LD Score
regression. We used in-sample LD Scores for LD Score regression.

Summary Statistic Datasets

We selected traits for inclusion in the main text via the following procedure:

1. Begin with all publicly available non-sex-stratified European-only summary statistics.

2. Remove studies that do not provide signed summary statistics.

3. Remove studies not imputed to at least HapMap 2.

4. Remove studies that include heritable covariates.

5. Remove all traits with heritability z-score below 4. Genetic correlation estimates for traits
with heritability z-score below 4 are generally too noisy to interpret.

6. Prune clusters of correlated phenotypes (e.g., obesity classes 1-3) by picking the trait from
each cluster with the highest heritability heritability z-score.

We then applied the following filters (implemented in the script sumstats to chisq.py included
with ldsc):

1. For studies that provide a measure of imputation quality, filter to INFO above 0.9.

2. For studies that provide sample MAF, filter to sample MAF above 1%.

3. In order to restrict to well-imputed SNPs in studies that do not provide a measure of impu-
tation quality, filter to HapMap3 [60] SNPs with 1000 Genomes EUR MAF above 5%, which
tend to be well-imputed in most studies. This step should be skipped if INFO scores are
available for all studies.

4. If sample size varies from SNP to SNP, remove SNPs with effective sample size less than 0.67
times the 90th percentile of sample size.

5. Remove indels and structural variants.

6. Remove strand-ambiguous SNPs.

7. Remove SNPs whose alleles do not match the alleles in 1000 Genomes.

8. Because the presence of outliers can increase the regression standard error, we also removed
SNPs with extremely large effect sizes (χ2 > 80, as in [21]).

Genomic control (GC) correction at any stage biases the heritability and genetic covariance
estimates downwards (see the Supplementary Note of [21]. The biases in the numerator and de-
nominator of genetic correlation cancel exactly, so genetic correlation is not biased by GC correction.
A majority of the studies analyzed in this paper used GC correction, so we do not report genetic
covariance and heritability.

Data on Alzheimer’s disease were obtained from the following source:
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International Genomics of Alzheimer’s Project (IGAP) is a large two-stage study based
upon genome-wide association studies (GWAS) on individuals of European ancestry. In stage 1,
IGAP used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) to
meta-analyze four previously-published GWAS datasets consisting of 17,008 Alzheimer’s disease
cases and 37,154 controls (The European Alzheimer’s Disease Initiative, EADI; the Alzheimer
Disease Genetics Consortium, ADGC; The Cohorts for Heart and Aging Research in Genomic
Epidemiology consortium, CHARGE; The Genetic and Environmental Risk in AD consortium,
GERAD). In stage 2, 11,632 SNPs were genotyped and tested for association in an independent
set of 8,572 Alzheimer’s disease cases and 11,312 controls. Finally, a meta-analysis was performed
combining results from stages 1 and 2.

We only used stage 1 data for LD Score regression.
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URLs

1. ldsc software:
github.com/bulik/ldsc

2. This paper:
github.com/bulik/gencor tex

3. PGC (psychiatric) summary statistics:
www.med.unc.edu/pgc/downloads

4. GIANT (anthopometric) summary statistics:
www.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

5. EGG (Early Growth Genetics) summary statistics:
www.egg-consortium.org/

6. MAGIC (insulin, glucose) summary statistics:
www.magicinvestigators.org/downloads/

7. CARDIoGRAM (coronary artery disease) summary statistics:
www.cardiogramplusc4d.org

8. DIAGRAM (T2D) summary statistics:
www.diagram-consortium.org

9. Rheumatoid arthritis summary statistics:
www.broadinstitute.org/ftp/pub/rheumatoid arthritis/Stahl etal 2010NG/

10. IGAP (Alzheimers) summary statistics:
www.pasteur-lille.fr/en/recherche/u744/igap/igap download.php

11. IIBDGC (inflammatory bowel disease) summary statistics:
www.ibdgenetics.org/downloads.html

We used a newer version of these data with 1000 Genomes imputation.

12. Plasma lipid summary statistics:
www.broadinstitute.org/mpg/pubs/lipids2010/

13. SSGAC (educational attainment) summary statistics:
www.ssgac.org/

14. Beans:
www.barismo.com

www.bluebottlecoffee.com
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Supplementary Note

1.1 Quantitative Traits

Suppose we sample two cohorts with sample sizes N1 and N2. We measure phenotype 1 in cohort
1 and phenotype 2 in cohort 2. We model phenotype vectors for each cohort as y1 = Y β + δ, and
y2 = Zγ + ε, where Y and Z are matrices of genotypes with columns standardized to mean zero
and variance one1, with dimensions N1 ×M and N2 ×M , respectively; β and γ are vectors of per-
standardized genotype effect sizes, and δ and ε are vectors of residuals, representing environmental
effects and non-additive genetic effects. In this model, Y and Z are unobserved matrices of all
SNPs, including SNPs that are not genotyped.

We treat all of Y, Z, β, γ, δ and ε as random. We model all of these as independent, except for
β, γ, δ, ε. Suppose that (β, γ) has mean zero and covariance matrix2

Var[(β, γ)] =
1

M

(
h21I ρgI
ρgI h22I

)
,

and (δ, ε) has mean zero and covariance matrix

Var[(δ, ε)] =

(
(1− h21)I ρeI
ρeI (1− h22)I

)
.

Let ρ := ρg + ρe. Vectors of genotypes for each individual are drawn i.i.d. from a distribution with
covariance matrix r (i.e., r is an LD matrix with rjk = E[YijYik]). There are Ns individuals who
are included in both studies.

Lemma 1. Under this model, the expected genetic covariance (as defined in methods) between
phenotypes is ρg, justifying our use of the notation ρg.

Proof. Let X denote an 1×M vector of standardized genotypes for an arbitrary individual. Under
the model, the additive genetic component of phenotype1 1 for this individual is

∑
j Xjβj , and

the additive genetic component of phenotype 1 for this individual is
∑

j Xjγj . Thus, the genetic

1We ignore the distinction between normalizing and centering in the population and in the sample, since this
introduces only O(1/N) error.

2The assumption that all β is drawn with equal variance for all SNPs hides an implicit assumption that rare SNPs
have larger per-allele effect sizes than common SNPs. As discussed in the simulations section of the main text and in
our earlier work [21], LD Score regression is robust to moderate violations of this assumption, though it may break
down in extreme cases, e.g., if all causal variants are rare. In situations where a different model for Var[β] is more
appropriate, all proofs in this note go through with LD Score replaced by weighted LD Scores, `j =

∑
k Var[βj ]r

2
jk.

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2015. ; https://doi.org/10.1101/014498doi: bioRxiv preprint 

https://doi.org/10.1101/014498


covariance between phenotype 1 and phenotype 2 is

Cov

∑
j

Xjβj ,
∑
j

Xjγj

 = E

∑
j

Xjβj

∑
j

Xjγj


=
∑
j

∑
k

E[XjXkβjγk]

=
∑
j

E[X2
j βjγj ]

=
∑
j

E[X2
j ]E[βjγj ]

= ρg.

We compute linear regression z-scores z1j := Y T
j y1/

√
N1 and z2j := Y T

j y2/
√
N2 for genotyped

SNPs j (where Yj and Zj denote the jth columns of Y and Z).

Definition 1. The LD Score of a variant j is `j :=
∑

k r
2
jk, where the sum is taken over all other

variants k.

Proposition 1. Let j denote a genotyped SNP. Under the model described above,

E[z1jz2j ] =

√
N1N2ρg
M

`j +
Nsρ√
N1N2

. (3)

Proof. By the law of total expectation,

E[z1jz2j ] = E[E[z1jz2j |Y,Z]] (4)

First we compute the inner expectation from Equation 4, with Z and Y fixed.

E[z1jz2j |Y, Z] =
1√
N1N2

E[Y T
j y1y

T
2 Zj ]

=
1√
N1N2

Y T
j E[(Y β + δ)(Zγ + ε)T]Zj

=
1√
N1N2

Y T
j

(
Y E[βTγ]Z + E[δTZγ] + E[βTY Tε] + E[δTε]

)
Zj

=
1√
N1N2

Y T
j

(
Y E[βTγ]Z + E[δTε]

)
Zj

=
1√
N1N2

( ρg
M
Y T
j Y Z

T
j Z + ρeY

T
j Zj

)
. (5)

Next, we remove the conditioning on Y and Z.

1√
N1N2

E[Y T
j Zj ] =

Ns√
N1N2

, (6)
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and
1√
N1N2

E[Y T
j Y Z

T
j Z] = `j +

MNs√
N1N2

. (7)

Substituting equations 6 and 7 into Equation 5,

E[z1jz2j ] =

√
N1N2ρg
M

`j +
Ns (ρg + ρe)√

N1N2

=

√
N1N2ρg
M

`j +
Nsρ√
N1N2

. (8)

If study 1 and study 2 are the same study, then N1 = N2 = Ns, ρg = h2g and ρ = 1, so Equation
8 reduces to the LD Score regression equation for a single trait from [21].

1.2 Regression Weights

We can improve the efficiency of LD Score regression by weighting by the reciprocal of the con-
ditional variance function (CVF), Var[z1jz2j | `j ]. The CVF is not uniquely determined by the
assumptions about the first and second moments of β and γ used to derive Proposition 1. There-
fore we derive the CVF for the case where z1j and z2j are jointly distributed as bivariate normal3.
From a standard formula for double second moments of the bivariate normal, the CVF is

Var[z1jz2j | `j ] = Var[z1j ]Var[z2j ] + E[z1jz2j ]
2

=

(
N1h

2
1`j

M
+ 1

)(
N2h

2
2`j

M
+ 1

)
+

(√
N1N2ρg
M

`j +
ρNs√
N1N2

)2

(9)

The terms on the left follow from the fact that Var[zij ] = χ2
ij and E[χ2] = Nh2`j/M + 1. The term

on the right follows from Proposition 1. Note that if z1 = z2, this reduces to the expression for the
CVF of χ2 statistics from [21].

In cases where the normality assumption does not hold, LD Score regression will remain un-
biased, but may be inefficient, because the regression weights will be suboptimal. We also apply
a heuristic weighting scheme to avoid overcounting SNPs in high-LD regions, described in the
methods.

1.3 Liability Threshold Model

In the liability threshold (probit) model [61], binary traits are determined by an unobserved con-
tinuous liability ψ. The observed trait is y := 1[ψ > τ ], where τ is the liability threshold. If ψ is
normally distributed, then setting τ := Φ−1(1−K) (where Φ is the standard normal cdf) yields a
population prevalence of K.

For phenotypes generated according to the liability threshold model, we can estimate not only
the heritability and genetic covariance of the observed phenotype, but also the heritability and
genetic covariance of the unobserved liability.

3For instance, it is sufficient but not necessary to assume that β, γ, δ and ε are multivariate normal. More generally,
the z-scores will be approximately normal if β and γ are reasonably polygenic. If the distribution of effect sizes is
heavy-tailed, e.g., if there are few casual SNPs, then the CVF may be larger.
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In the next lemma, we derive population case and control allele frequencies in terms of the
heritability of liability when liability is generated following the model for quantitative traits from
section 1.1. Since we are only modeling additive effects and are willing to assume Hardy-Weinberg
equilibrium, we lose no generality and simplify notation considerably by stating the proofs in terms
of haploid genotypes.

We state this lemma in terms of marginal per-allele effect sizes, instead of the per-standardized-
genotype effect sizes considered in section 1.1. Here marginal means that these are the effect sizes
obtained by univariate regression of phenotype against genotype in the infinite data limit. Haploid
standardized genotypes are defined Xij := (Gij − pj)/

√
pj(1− pj), where Gij is the 0-1 coded

genotype. If βj is the marginal per-standardized-genotype effect and ζj is the marginal per-allele
effect, we have Xjβj = Gjζj . Thus, setting Gij = 1 yields ζj = βj

√
(1− pj)/pj .

Lemma 2. Suppose unobserved liabilities ψ,ϕ for traits y1, y2 with thresholds τ1, τ2 corresponding
to prevalences K1,K2 are generated according to the mode for quantitative traits from section 1.1,
i.e., ψi =

∑
j Xijβj + δ, ϕi =

∑
j Xijγj + ε, with

Var[(β, γ)] =
1

M

(
h21I ρgI
ρgI h22I

)
,

and

Var[(δ, ε)] =

(
(1− h21)I ρeI
ρeI (1− h22)I

)
.

Let ζj and ξj denote the marginal per-allele effect sizes of SNP j on ψ and ϕ. Let

pcas,kj := P[Gij = 1 | yik = 1]

pcon,kj := P[Gij = 1 | yik = 0]

denote the allele frequencies of SNP j in cases and controls for phenotype k, where yik denotes the
value of phenotype k for individual i and k = 1, 2. Then

E[pcas,1j − pcon,1j ] = 0,

E[pcas,2j − pcon,2j ] = 0,

Var[pcas,1j − pcon,1j ] =
pj(1− pj)φ(τ1)

2h21
MK2

1 (1−K1)2
`j ,

Var[pcas,2j − pcon,2j ] =
pj(1− pj)φ(τ2)

2h22
MK2

2 (1−K2)2
`j ,

Cov[pcas,1j − pcon,1j , pcas,2j − pcon,2j ] =
pj(1− pj)φ(τ1)φ(τ2)ρg

MK1(1−K1)K2(1−K2)
`j ,

where the expectation is taken over where φ is the standard normal density. These results apply
to population allele frequencies, not allele frequencies in a finite sample. We deal with ascertained
finite samples in the next section.

Proof. This proof is accomplished in two steps. First, we compute allele frequencies conditional
on the marginal effects on liability. To do this, we reverse the conditional probability using Bayes’
theorem, which reduces the problem to a series of [Taylor approximations to] Gaussian integrals.
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Second, we remove the conditioning on the marginal effects on liability in order to express the allele
frequencies in terms of h21, h

2
2, ρg and `j . Since liability is just a quantitative trait, we need only

apply the LD Score regression equation for quantitative traits.
By Bayes’ rule,

P[Gij = 1 | yi1 = 1, ζj ] =
P[yi1 = 1 |Gij = 1, ζj ]P[Gij = 1]

P[yi1 = 1]

=
pj
K1

P[yi1 = 1 |Gij = 1, ζj ]

=
pj
K1

P[ψi > τ1 |Gij = 1, ζj ]. (10)

The distribution of ψ given Gij and ζj is ψ | (Gij = 1, ζj) ∼ N(ζj , 1− ζ2j ) ≈ N(ζj , 1) (where the
approximation that the variance equals one holds when the marginal heritability explained by j is
small, which is the typical case in GWAS). Thus P[ψi > τ1 |Gij = 1] is simply a Gaussian integral.
We approximate this probability with a first-order Taylor expansion around τ1.

P[ψi > τ1 |Gij = 1, ζj ] = 1− Φ(τ1 − ζj)
≈ K1 + φ(τ1)ζj , (11)

Substituting Equation 11 into Equation 10,

P[Gij = 1 | yi1 = 1, ζj ] =
pj
K

(K1 + φ(τ1)ζj) . (12)

A similar argument shows that

P[Gij = 1 | yi1 = 0, ζj ] =
pj

1−K1
(1−K1 − φ(τ1)ζj) . (13)

Subtracting Equation 13 from Equation 12,

P[Gij = 1 | yi1 = 1, ζj ]− P[Gij = 1 | yi1 = 0, ζj ] = pj
φ(τ1)ζj

K1(1−K1)
. (14)

Similar results hold for trait 2, replacing ζ with ξ and subscript 1 with subscript 2.
We have written the probabilities in question in terms of constants and marginal effects on

liability. Since liability is simply a quantitative trait, the means, variances, and covariances of the
marginal effects on liability are described by the LD Score regression equation for quantitative
traits from Proposition 1. Precisely, E[ξj ] = E[ζj ] = 0, Var[ξj ] = (1 − pj)h

2
1`j/pjM , Var[ζj ] =

(1 − pj)h22`j/pjM and Cov[ζj , ξj ] = (1 − pj)ρg`j/pjM . If we combine these results with Equation
14, we find that

E[pcas,1j − pcon,1j ] = 0; (15)

Var[pcas,1j − pcon,1j ] = Var

[
pjφ(τ1)ζj
K1(1−K1)

]
=
pj(1− pj)φ(τ1)

2h21
MK2

1 (1−K1)2
`j (16)
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(similarly for trait two), and

Cov[pcas,1j − pcon,1j , pcas,2j − pcon,2j ] = Cov

[
pjφ(τ1)ζj
K1(1−K1)

,
pjφ(τ2)ξj
K2(1−K2)

]
=

pj(1− pj)φ(τ1)φ(τ2)ρg
MK1(1−K1)K2(1−K2)

`j . (17)

1.4 Ascertained Studies of Liability Threshold Traits

In the next proposition, we derive an LD Score regression equation for ascertained case/control
studies.

Let Pi denote the sample prevalence of yi in study i for i = 1, 2. We compute z-scores

zj :=

√
NP (1− P )(p̂cas − p̂con)√

p̂j(1− p̂j)
,

where p̂j denotes allele frequency in the entire sample4, p̂cas denotes sample case allele frequency
and p̂con denotes sample control allele frequency.

We emphasize one subtlety before stating the main proposition. The results in this section
allow for study k to select samples based on phenotype l only if k = l. If study 1 ascertains on
phenotype 2 – for example, if all cases i in study 1 have yi1 = yi2 = 1 — then p̂cas,1j will not
be an unbiased estimate of pcas,1j . Indeed, in this example, E[p̂cas,1j ] = P[Gij = 1 | y1 = y2 = 1],
which will not equal pcas,1j = P[Gij = 1 | y1 = 1] unless ρ = 1 or ρ = 0. This follows from the
fact that the conditionals and marginals of a bivariate normal are equal iff ρ = 0 or ρ = 1. We
do not derive formulae describing the bias, except to note that the most common scenario, the
“healthy controls” model — cases are sampled independently but all controls are controls for both
traits — is probably nothing to worry about, so long as cases for both traits are uncommon. In this
scenario, P[Gij = 1 | yi1 = 0] ≈ P[Gij = 1 | yi1 = yi2 = 0]. Conditioning on yi2 = 0 hardly changes
the distribution, because yi2 = 0 most of the time, anyway.

Proposition 2. Under the liability threshold model from lemma 1.3,

E[z1jz2j ] ≈
√
N1N2ρg,obs

M
`j +

√
N1N2P1(1− P1)P2(1− P2)

 ∑
a,b∈{cas,con}

Na,b(−1)1+1[a=b]

Na,1Nb,2

 (18)

where

ρg,obs := ρg

(
φ(τ1)φ(τ2)

√
P1(1− P1)P2(1− P2)

K1(1−K1)K2(1−K2)

)
denotes observed scale genetic covariance, Na,b denotes the number of individuals with phenotype a
in study 1 and b in study two for a, b ∈ {cas, con} (e.g., Ncas,con is the number of individuals who
are a case in study 1 but a control in study 2), Ni denotes total sample size in study i and Na,i for
a ∈ {cas, con} and i = 1, 2 denotes the number of individuals with phenotype a in study i.

4Conditional on the marginal effect of j, the expected value of p̂j is not equal to pj unless P = K or the marginal
effect of j is zero.
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Observe that ρg,obs/
√
h21,obsh

2
2,obs = ρg/

√
h21h

2
2 = rg. Put another way, the natural definition for

“observed scale genetic correlation” turns out to be the same as regular genetic correlation, because
the scale transformation factors in the numerator and denominator cancel. This is convenient: we
can compute genetic correlations for binary traits on a sensible scale without having to worry about
sample and population prevalences.

Proof. The full form of z1jz2j is

z1jz2j =

√
cN1N2(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)√

p̂1j(1− p̂1j)p̂2j(1− p̂2j)
,

where c := P1(1− P1)P2(1− P2). Our strategy for obtaining the expectation is

E[z1jz2j ] ≈
√
cN1N2

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)]
E[
√
p̂1j(1− p̂1j)p̂2j(1− p̂2j)]

(19)

≈
√
cN1N2

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)]√
E[p̂1j(1− p̂1j)p̂2j(1− p̂2j)]

(20)

=
√
cN1N2

E [E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j) | ζj , ξj ]]√
E [E[p̂1j(1− p̂1j)p̂2j(1− p̂2j) | ζj , ξj ]]

, (21)

where ζj and ξj denote the marginal per-allele effects of j. Approximation 19 hides O(1/N) error
from moving from the expectation of a ratio to a ratio of expectations. Approximation 20 hides
O(1/N) error from moving from the expectation of a square root to a square root of expectations,
and dear reader we admire your perseverance in making it this far. Equality 21 follows from applying
of the law of total expectation to the numerator and denominator.

First, we compute the numerator. By linearity of expectation,

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)] | ζj , ξj ] = E[p̂cas,1j p̂cas,2j | ζj , ξj ]− E[p̂cas,1j p̂con,2j | ζj , ξj ]
− E[p̂con,1j p̂cas,2j | ζj , ξj ] + E[p̂con,1j p̂con,2j | ζj , ξj ] (22)

After conditioning on the marginal effects ζj and ξj , the only source of variance in the sample allele
frequencies p̂cas,1, p̂con,1, p̂cas,2, p̂con,2 is sampling error. Write p̂cas,1j p̂cas,2j = (pcas,1j+η)(pcas,2j+ν),
where η and ν denote sampling error. If study 1 and study 2 share samples, ν and η will be correlated:

E[p̂cas,1j p̂cas,2j | ζj , ξj ] = pcas,1jpcas,2j + E[ην]

≈ pcas,1jpcas,2j +
Ncas,cas

√
pcas,1j(1− pcas,1j)pcas,2j(1− pcas,2j)

Ncas,1Ncas,2
(23)

≈ pcas,1jpcas,2j
(

1 +
Ncas,cas

Ncas,1Ncas,2

)
, (24)

where approximation 23 is the (bivariate) central limit theorem, and approximation 24 comes from
ignoring the difference between

√
pcas,1j(1− pcas,1j)pcas,2j(1− pcas,2j) and pj(1 − pj). This step is

justified in the derivation of the denominator. Similar relationships hold for the other terms in
Equation 22.
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If we combine equations 24 and 17, we obtain

E[(p̂cas,1j − p̂con,1j)(p̂cas,2j − p̂con,2j)] ≈ pj(1− pj)

φ(τ1)φ(τ2)ρg
c′M

`j +
∑

a,b∈{cas,con}

Na,b(−1)1+1[a=b]

Na,1Nb,2

 ,

(25)

where c′ := K1(1−K1)K2(1−K2).
Next, we derive the expectation of the denominator. Conditional on ζj and ξj , p̂1j(1 − p̂1j) is

P1pcas,1j + (1 − P1)pcon,1j plus O(1/N) sampling variance. If studies 1 and 2 share samples, the
O(1/N) sampling variance in p̂1j(1 − p̂1j) and p̂2j(1 − p̂2j) will be correlated, but this still only
amounts to O(Ns/N1N2) error. If we remove the conditioning on ζj and ξj , then P1pcas,1j + (1 −
P1)pcon,1j is equal to pj(1 − pj) plus O(h21,obs`j/M) error from uncertainty in ζj . The covariance
between uncertainty in ζj and uncertainty in ξj is driven by ρg,obs, so the expectation of the
denominator is E

[√
p̂1j(1− p̂1j)p̂2j(1− p̂2j)

]
= pj(1− pj) (1 + O(Ns/N1N2) + O(ρg,obs`j/M)). We

make the approximation5 that

E
[√

p̂1j(1− p̂1j)p̂2j(1− p̂2j)
]
≈ pj(1− pj). (26)

We obtain the desired result by dividing
√
cN1N2 times Equation 25 by Equation 26.

Corollary 1. If study 1 is an ascertained study of a binary trait, and study 2 is a non-ascertained
quantitative study, then proposition 2 holds, except with genetic covariance on the half-observed
scale

ρg,obs := ρg

(
φ(τ1)

√
P1(1− P1)

K1(1−K1)

)
.

Corollary 2. For a single binary trait,

E[χ2
j ] =

Nh2obs
M

`j + 1, (27)

where h2obs = h2φ(τ)2P (1− P )/K2(1−K)2.

Proof. This follows from proposition 2 if we set study 1 equal to study 2 and note that the observed
scale genetic covariance between a trait and itself is observed scale heritability. To show that the
intercept is one, observe that if study 1 and study 2 are the same, then

√
cN1N2

 ∑
a,b∈{cas,con}

Na,b(−1)1+1[a=b]

Na,1Nb,2

 = NP (1− P )

(
1

Ncas
+

1

Ncon

)

=
NP (1− P )(Ncas +Ncon))

NcasNcon

=
N2P (1− P )

NcasNcon
. (28)

But NP = Ncas and N(1− P ) = Ncon, so Equation 28 simplifies to 1.

5For `j = 100 (roughly the median 1kG LD Score), M = 107 and ρg,obs = 1, we get ρg,obs`j/M = 10−5. A
worst-case value for Ns/N1N2 might be Ns = N1 = N2 = 103, in which case Ns/N1N2 = 10−3. Thus, ρg,obs`j/M and
Ns/N1N2 will generally be at least 3 orders of magnitude smaller than 1.
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1.5 Flavors of Heritability and Genetic Correlation

The heritability parameter estimated by ldsc is subtly different than the heritability parameter
h2g estimated by GCTA. If g denotes the set of all genotyped SNPs in some GWAS, define βGCTA :=
argmaxα∈R|g|Cor [y1, Xgα], where Xg is a random vector of standardized genotypes for SNPs in g.
Then the heritability parameter estimated by GCTA is defined

h2g :=
∑
j∈g

β2GCTA,j .

Let S denote the set of SNPs used to compute LD Scores (i.e., `j =
∑

k∈S r
2
jk), and let βS :=

argmaxα∈R|S|Cor [y1, XSα]. Generally βS,j 6= βGCTA,j unless all SNPs in S \ g are not in LD with
SNPs in g. Define

h2S :=
∑
j∈S

β2S,j .

Let S′ denote the set of SNPs in S with MAF above 5%. Define

h25-50% :=
∑
j∈S′

β2S,j . (29)

The default setting in ldsc is to report h25-50%, estimated as the slope from LD Score regression
times M5-50%, the number of SNPs with MAF above 5%.

The reason for this is the following: suppose that h2 per SNP is not constant as a function of
MAF. Then the slope of LD Score regression will represent some sort of weighted average of the
values of h2 per SNP, with more weight given to classes of SNPs that are well-represented among
the regression SNPs. In a typical GWAS setting, the regression SNPs are mostly common SNPs,
so multiplying the slope from LD Score regression by M (which includes rare SNPs) amounts to
extrapolating that h2 per SNP among common variants is the same as h2 per SNP among rare
variants. This extrapolation is particularly risky, because there are many more rare SNPs than
common SNPs.

It is probably reasonable to treat h2 per SNP as a constant function of MAF for SNPs with
MAF above 5%, but we have very little information about h2 per SNP for SNPs with MAF below
5%. Therefore we report h25-50% instead of h2S to avoid excessive extrapolation error. This lower
bound can be pushed lower with larger sample sizes and better rare variant coverage, either from
sequencing or imputation.

There are two main distinctions between h25-50% and h2g. First, h2g does not include the effects of
common SNPs that are not tagged by the set of genotyped SNPs g. Second, the effects of causal
4% SNPs are not counted towards h25-50%. In practice, neither of these distinctions makes a large
difference, since most GWAS arrays focus on common variation and manage to assay or tag almost
all common variants, which is why we do not emphasize this distinction in the main text.

The relationship between the genetic covariance parameter estimated by LD Score regression
and the genetic covariance parameter estimated by GCTA is similar to the relationship between
h25-50% and h2g. Choice of M is not important for genetic correlation, because the factors of M in
the numerator and denominator cancel.
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Supplementary Tables

Simulations with one Binary Trait and one Quantitative Trait

Prevalence ĥ2 ĥ2liab r̂g
0.01 0.72 (0.1) 0.59 (0.04) 0.51 (0.4)
0.05 0.72 (0.12) 0.59 (0.07) 0.45 (0.17)
0.2 0.72 (0.11) 0.6 (0.08) 0.46 (0.14)
0.5 0.73 (0.11) 0.59 (0.08) 0.42 (0.17)

Table S1: Simulations with one binary trait and one quantitative trait. The prevalence column describes
the population prevalence of the binary trait. We ran 100 simulations for each prevalence. The ĥ2 column
shows the mean heritabi pity estimate for the quantitative trait. The ĥ2liab column shows the mean liability-
scale heritability estimate for the binary trait. The r̂g column shows the mean genetic correlation estimate.
Standard deviations across 100 simulations in parentheses. The true parameter values were rg = 0.46,
h2 = 0.7 for the quantitative trait and h2liab = 0.6 for the binary trait. For all simulations, the quantitative
trait sample size was 1000, the binary trait sample size was 1000 cases and 1000 controls, and there were
500 overlapping samples. There were 1000 effective independent SNPs. The environmental covariance was
0.2. We simulated case/control ascertainment using simulated LD block genotypes and a rejection sampling
model of ascertainment. This is the same strategy used to simulate case/control ascertainment in [21].
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Simulations with MAF- and LD-Dependent Genetic Architecture

LD Score h2(5-50%) ρg(5-50%) rg(5-50%)

Truth 0.83 0.42 0.5
HM3 0.53 (0.08) 0.28 (0.07) 0.52 (0.1)
PSG 0.36 (0.08) 0.18 (0.06) 0.5 (0.13)
30 Bins 0.81 (0.12) 0.41 (0.08) 0.51 (0.09)
60 Bins 0.81 (0.12) 0.41 (0.09) 0.51 (0.09)

Table S2: Simulations with MAF- and LD-dependent genetic architecture. Effect sizes were drawn from
normal distributions such that the variance of per-allele effect sizes was uncorrelated with MAF, and variants
with LD Score below 100 were fourfold enriched for heritability. Sample size was 2062 with complete overlap
between studies; causal SNPs were about 600,000 best-guess imputed 1kG SNPs on chr 2, and the SNPs
retained for the LD Score regression were the subset of about 100,000 of these SNPs that were included
in HM3. True parameter values are shown in the top line of the table. Estimates are averages across 100
simulations. Standard deviations (in parentheses) are standard deviations across 100 simulations. LD Scores
were estimated using in-sample LD and a 1cM window. HM3 means LD Score with sum taken over SNPs
in HM3. PSG (per-standardized-genotype) means LD Score with the sum taken over all SNPs in 1kG as
in [21]. 30 bins means per-allele LD Score binned on a MAF by LD Score grid with MAF breaks at 0.05,
0.1, 0.2, 0.3 and 0.4 and LD Score breaks at 35, 75, 150 and 400. 60 bins means per-allele LD Score binned
on a MAF by LD Score grid with MAF breaks at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45 and LD
Score breaks at 30, 60, 120, 200 and 300, These simulations demonstrate that naive (HM3, PSG) LD Score
regression gives correct genetic correlation estimates even when heritability and genetic covariance estimates
are biased, so long as genetic correlation does not depend on LD.
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Sample Sizes and References

Trait Reference Sample Size

Schizophrenia PGC Schizophrenia Working Group, Nature, 2014 [62] 70,100
Bipolar disorder PGC Bipolar Working Group, Nat Genet, 2011 [63] 16,731
Major depression PGC MDD Working Group, Mol Psych, 2013 [64] 18,759
Anorexia Nervosa Boraska, et al., Mol Psych, 2014 [65] 17,767
Autism Spectrum Disorder PGC Cross-Disorder Group, Lancet, 2013 [24] 10,263
Ever/Never Smoked TAG Consortium, 2010 Nat Genet, [66] 74,035
Alzheimer’s Lambert, et al., Nat Genet, 2013 [67] 54,162
College Rietveld, et al., Science, 2013 [39] 101,069
Height Lango Allen, et al., Nature 2010 [68] 133,858
Obesity Class 1 Berndt, et al., Nat Genet, 2013 [69] 98,000
Extreme Waist-Hip Ratio Berndt, et al., Nat Genet, 2013 [69] 10,000
Coronary Artery Disease Schunkert, et al., Nat Genet, 2011 [70] 86,995
Triglycerides Teslovich, et al., Nature, 2010 [71] 96,598
LDL Cholesterol Teslovich, et al., Nature, 2010 [71] 95,454
HDL Cholesterol Teslovich, et al., Nature, 2010 [71] 99,900
Type-2 Diabetes Morris, et al., Nat Genet, 2012 [26] 69,033
Fasting Glucose Manning, et al., Nat Genet, 2012 [72] 46,186
Childhood Obesity EGG Consortium, Nat Genet, 2012 [29] 13,848
Birth Length van der Valk, et al., HMG, 2014 [73] 22,263
Birth Weight Horikoshi, et al., Nat Genet, 2013 [27] 26,836
Infant Head Circumference Taal, et al., Nat Genet, 2012 [30] 10,767
Age at Menarche Perry, et al., Nature, 2014 [25] 132,989
Crohn’s Disease Jostins, et al., Nature, 2012 [74] 20,883
Ulcerative Colitis Jostins, et al., Nature, 2012 [74] 27,432
Rheumatoid Arthritis Stahl, et al., Nat Genet, 2010 [75] 25,708

Table S3: Sample sizes and references for traits analyzed in the main text.
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Genetic Correlation between Educational Attainment Phenotypes

Phenotype 1 Phenotype 2 rg se

College (Yes/No) Years of Education 1.00 0.014

Table S4: Genetic correlation between the two educational attainment phenotypes from Rietveld, et al. [39].
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Supplementary Figures

Genetic Correlations among Anthropometric Traits

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

−0.17

−0.03

0.11

0.24

0.38

0.51

0.65

0.78

0.92

1.06BM
I

Extr
em

e 
BM

I

Obe
sit

y C
las

s 1

Obe
sit

y C
las

s 2

Obe
sit

y C
las

s 3

Ove
rw

eig
ht

Chil
dh

oo
d 

Obe
sit

y

Extr
em

e 
he

igh
t

Heig
ht

In
fan

t H
ea

d 
Circ

um
fer

en
ce

Birt
h 

Le
ng

th

Birt
h 

W
eig

ht

Extr
em

e 
W

HR

BMI

Extreme BMI

Obesity Class 1

Obesity Class 2

Obesity Class 3

Overweight

Childhood Obesity

Extreme height

Height

Infant Head Circumference

Birth Length

Birth Weight

Extreme WHR

Figure S1: Genetic correlations among anthropometric traits from studies by the GIANT and EGG consor-
tia. The structure of the figure is the same as Figure 2 in the main text: blue corresponds to positive genetic
correlations; red corresponds to negative genetic correlation. Larger squares correspond to more significant
p-values. Genetic correlations that are different from zero at 1% FDR are shown as full-sized squares. Genetic
correlations that are significantly different from zero at significance level 0.05 after Bonferroni correction are
given an asterisk.
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Genetic Correlations among Smoking Traits
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Figure S2: Genetic correlations among smoking traits from the Tobacco and Genetics (TAG) consortium.
The structure of the figure is the same as Figure 2 in the main text: blue corresponds to positive genetic
correlations; red corresponds to negative genetic correlation. Larger squares correspond to more significant
p-values. Genetic correlations that are different from zero at 1% FDR are shown as full-sized squares. Genetic
correlations that are significantly different from zero at significance level 0.05 after Bonferroni correction are
given an asterisk.

37

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2015. ; https://doi.org/10.1101/014498doi: bioRxiv preprint 

https://doi.org/10.1101/014498


Genetic Correlations among Insulin-Related Traits

*

*

*

*

*

*

*

*

*

*

*

*

*

*

−0.36

−0.21

−0.06

0.09

0.24

0.4

0.55

0.7

0.85

1HbA
1C

ln(
HOM

A−B
)

ln(
HOM

A−I
R)

Fa
sti

ng
 G

luc
os

e

T2D Obe
sit

y

HbA1C

ln(HOMA−B)

ln(HOMA−IR)

Fasting Glucose

T2D

Obesity

Figure S3: Genetic correlations among insulin-related traits from studies by the MAGIC consortium. The
structure of the figure is the same as Figure 2 in the main text: blue corresponds to positive genetic correla-
tions; red corresponds to negative genetic correlation. Larger squares correspond to more significant p-values.
Genetic correlations that are different from zero at 1% FDR are shown as full-sized squares. Genetic correla-
tions that are significantly different from zero at significance level 0.05 after Bonferroni correction are given
an asterisk.
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Metabolic Genetic Correlations from Vattikuti, et al. and LD Score
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Figure S4: This figure compares estimates of genetic correlations among metabolic traits from table 3 of
Vattikuti et al. [17] to estimates from LD Score regression. The LD Score regression estimates used much
larger sample sizes. Error bars are standard errors.
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Schizophrenia — TG Conditional QQ Plot with and without the MHC

Figure S5: At left, we reproduced the conditional QQ plot comparing schizophrenia (SCZ) and triglycerides
(TG) from Andreassen et al. [54] using the same data (PGC1 schizophrenia [76] and TG from Teslovich, et
al. [71]). Conditional QQ plots show the distribution of p-values for SCZ conditional on the − log10(p) for
TG exceeding different thresholds. The thresholds are indicated by color, as described in the legends. Dark
blue corresponds to no threshold, green corresponds to − log10(p) > 1, red corresponds to − log10(p) > 2 and
light blue corresponds to − log10(p) > 3. The major histocompatibility complex (MHC, chr6, 25-35 MB) is a
genomic region containing SNPs with exceptionally long-range LD and the strongest GWAS association for
schizophrenia [62], as well as an association to TG [71]. If we remove the MHC, the signal of enrichment in
the conditional QQ plot is substantially attenuated (middle); in particular, the red line falls below the green
and blue lines (which correspond to less stringent thresholds for TG). If in addition we remove SNPs with
very high LD Scores (` > 200, roughly the top 15% of SNPs), the signal of enrichment is further attenuated.
The most likely explanation for the attenuation is that conditional QQ plots will report pleiotropy if causal
SNPs are in LD (even if the causal SNPs for trait 1 are different from the casual SNPs for trait 2), which is
more likely to occur in regions with long-range LD.
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Collaborators

Collaborators from the Psychiatric Genomics Consortium were, in alphabetical order: Devin Ab-
sher, Rolf Adolfsson, Ingrid Agartz, Esben Agerbo, Huda Akil, Margot Albus, Madeline Alexander,
Farooq Amin, Ole A Andreassen, Adebayo Anjorin, Richard Anney, Dan Arking, Philip Asherson,
Maria H Azevedo, Silviu A Bacanu, Lena Backlund, Judith A Badner, Tobias Banaschewski, Jack
D Barchas, Michael R Barnes, Thomas B Barrett, Nicholas Bass, Michael Bauer, Monica Bayes,
Martin Begemann, Frank Bellivier, Judit Bene, Sarah E Bergen, Thomas Bettecken, Elizabeth
Bevilacqua, Joseph Biederman, Tim B Bigdeli, Elisabeth B Binder, Donald W Black, Douglas HR
Blackwood, Cinnamon S Bloss, Michael Boehnke, Dorret I Boomsma, Anders D Borglum, Elvira
Bramon, Gerome Breen, Rene Breuer, Richard Bruggeman, Nancy G Buccola, Randy L Buck-
ner, Jan K Buitelaar, Brendan Bulik-Sullivan, William E Bunner, Margit Burmeister, Joseph D
Buxbaum, William F Byerley, Sian Caesar, Wiepke Cahn, Guiqing Cai, Murray J Cairns, Do-
minique Campion, Rita M Cantor, Vaughan J Carr, Noa Carrera, Miquel Casas, Stanley V Catts,
Aravinda Chakravarti, Kimberley D Chambert, Raymond CK Chan, Eric YH Chen, Ronald YL
Chen, Wei Cheng, Eric FC Cheung, Siow Ann Chong, Khalid Choudhury, Sven Cichon, David St
Clair, C Robert Cloninger, David Cohen, Nadine Cohen, David A Collier, Edwin Cook, Hilary
Coon, Bru Cormand, Paul Cormican, Aiden Corvin, William H Coryell, Nicholas Craddock, David
W Craig, Ian W Craig, Benedicto Crespo-Facorro, James J Crowley, David Curtis, Darina Cza-
mara, Mark J Daly, Ariel Darvasi, Susmita Datta, Michael Davidson, Kenneth L Davis, Richard
Day, Franziska Degenhardt, Lynn E DeLisi, Ditte Demontis, Bernie Devlin, Dimitris Dikeos, Tim-
othy Dinan, Srdjan Djurovic, Enrico Domenici, Gary Donohoe, Alysa E Doyle, Elodie Drapeau,
Jubao Duan, Frank Dudbridge, Naser Durmishi, Howard J Edenberg, Hannelore Ehrenreich, Peter
Eichhammer, Amanda Elkin, Johan Eriksson, Valentina Escott-Price, Tonu Esko, Laurent Essioux,
Bruno Etain, Ayman H Fanous, Stephen V Faraone, Kai-How Farh, Anne E Farmer, Martilias
S Farrell, Jurgen Del Favero, Manuel A Ferreira, I Nicol Ferrier, Matthew Flickinger, Tatiana
Foroud, Josef Frank, Barbara Franke, Lude Franke, Christine Fraser, Robert Freedman, Nelson B
Freimer, Marion Friedl, Joseph I Friedman, Louise Frisen, Menachem Fromer, Pablo V Gejman,
Giulio Genovese, Lyudmila Georgieva, Elliot S Gershon, Eco J De Geus, Ina Giegling, Michael Gill,
Paola Giusti-Rodriguez, Stephanie Godard, Jacqueline I Goldstein, Vera Golimbet, Srihari Gopal,
Scott D Gordon, Katherine Gordon-Smith, Jacob Gratten, Elaine K Green, Tiffany A Greenwood,
Gerard Van Grootheest, Magdalena Gross, Detelina Grozeva, Weihua Guan, Hugh Gurling, Omar
Gustafsson, Lieuwe de Haan, Hakon Hakonarson, Steven P Hamilton, Christian Hammer, Mar-
ian L Hamshere, Mark Hansen, Thomas F Hansen, Vahram Haroutunian, Annette M Hartmann,
Martin Hautzinger, Andrew C Heath, Anjali K Henders, Frans A Henskens, Stefan Herms, Ian
B Hickie, Maria Hipolito, Joel N Hirschhorn, Susanne Hoefels, Per Hoffmann, Andrea Hofman,
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