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Large-scale cancer genomics has made a huge impact onto cancer research. It has allowed the char-
acterization of tumor types in an unprecedented depth. More recent studies target the joint analysis
of multiple tumor types to gain insight into similarities and differences on a molecular level. Here
we present an analysis of Uterine Carcinosarcoma. The histological similarities to sarcomas and
carcinomas warrants an in-depth analysis to Uterine Endometrial Carcinoma as well as Sarcomas
and we have used data from The Cancer Genome Atlas to understand transcriptome similarities
and differences between these tumor types. We have performed a differential transcriptome analysis
of Uterine Carinosarcoma to Uterine samples from GTEx to find genes with tumor specific splicing
or expression patterns, which may not only be of interest for a deeper mechanistic understanding
of the development and progression of Uterine Carcinosarcoma, but may also be potential tumor
markers. Similarities and differences to Sarcomas and Endometrial Carcinomas present new oppor-
tunities for the development of new and targeted drug therapies. Finally we have also studied genetic
determinants of gene expression and splicing changes and identified germline variants that explain
expression and splicing differences between individuals. This analysis demonstrates the opportunities
of integrative comparative analysis between multiple tumor types.
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1. Introduction

Detailed molecular analysis of various tumor types has become feasible with the advent of large
scale projects like The Cancer Genome Atlas (TCGA)1 providing an unprecedented resource
of a variety of data modalities, allowing the investigation and comparison of multiple tumor
types. This offers huge opportunities to gain insight into various cancer types and subtypes
by comparing molecular similarities and differences. Recent efforts include the PanCancer
initiative of the TCGA consortium2 releasing numerous companion manuscripts providing new
insights into the molecular mechanisms underlying tumor development. Within those studies,
transcriptome analysis on the level of gene expression has become mostly standard. However,
changes of gene expression are only one type of derived transcriptome information influencing
transcriptome complexity. Another major aspect of transcriptome complexity arises from the
existence of multiple isoforms which are encoded by a single gene controlled by various RNA-
modifying processes. The process of generating such alternate isoforms (alternative splicing)
of a gene is highly controlled and involves the inclusion or exclusion of pre-specified parts
of a gene.3,4 To what extent alternative splicing affects tumor progression and development
is under investigation5,6 but it has already been shown that dysregulation and defects of the
splicing processes play a role in cancer progression.7–9 These discoveries open up new treatment
options since natural compounds as well as antisense oligonucleotides are in fact able to target
aberrant splicing.10,11

Here, we present the results of a comparative study of transcriptome changes between
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54 samples of uterine carcinosarcoma (UCS) with sarcoma (SARC), endometrial carcinoma
(UCEC) and GTEx data from uterine tissue samples. We analyze the similarities of uterine
carcinosarcoma to similar tumor types and tissue matching normal samples with respect to
gene expression changes as well as aberrant splicing patterns. Further, we try to find somatic
and germline mutations which determine changes in gene expression as well as splicing using
a linear mixed model. This integrative analysis allows us to elucidate the differences and
similarities between these tumor types.

2. Methods

This section only provides a brief description of methods that are crucial to the manuscript.
For detailed, reproducible descriptions see Supplemental Information.

2.1. Data Processing

We have retrieved 54 UCS RNA-seq samples from the Cancer Genomics Hub (CGHub) and
realigned them using STAR.12 In addition, we also retrieved RNA sequence data for 50 Sar-
coma and 50 Uterine Corpus Endometrial Carcinoma samples as well as 36 samples taken
from uterine tissue of non-cancer donors collected within the GTEx project. We processed all
samples in a uniform manner. Based on the GENCODE annotation (version 19), we generated
gene expression counts using a custom Python script and collected splice event quantifications
with SplAdder.13

We also retrieved matching tumor/normal whole exome sequencing data for the UCS
samples 70 and used the HaplotypeCaller14 as well as MuTect15 to identify germline and
somatic sequence variants, respectively.

2.2. Principal Components Analysis

The Principal Components Analysis is based on the log transformed and library sized nor-
malized expression quantification of all samples.

2.3. Tumor Specific Expression Analysis

UCS specific expression was assessed by first performing a gene quantification, then removing
all genes whose expression is below the 40th quantile. Normalization of the remaining gene
expression values was done using DESeq’s library size normalization method .16 After normal-
ization, DESeq was used to call differentially expressed genes to compare a single UCS sample
against all of the normal GTEx samples. All p-values were then FDR corrected using the
Bonferroni method. Once a comparison was done for each tumor sample, a binomial test was
used to test which genes were differentially expressed across the tumor samples. The binomial
test compared the amount of samples in which each gene was found to be differential against
a background acceptance rate for a random gene. After the differentially observed splicing
events were found, GOrilla was used to do a functional enrichment analysis.17 To compare
against UCEC and SARC samples, heatmaps were created to visually quantify patterns in
gene expression.
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2.4. Tumor Specific Splicing Analysis

UCS specific splicing was done by first using SplAdder13 to quantify alternative 3’ and alter-
native 5’ splice sites, intron retention, and exon skip events in the GTEx and UCS samples.
The rDiff18 toolbox was then used to compare a single UCS sample against all of the normal
samples. Once a comparison was done for each tumor sample, a binomial test was used to
determine which splicing events were significant across all of the samples. The binomial test
tested the amount of samples in which each splicing event was found to be differential against
a background acceptance rate for a random splicing event. After the differentially observed
splicing events were found, GOrilla was used to do a functional enrichment analysis.17

2.5. Expression and Splicing Quantitative Trait Analysis

Library size normalized expression quantification as well as splicing quantification measured
in percent spliced in (PSI), both standard measures, are transformed via an inverse normal
transform to ensure that deviations from the distributional assumption are not going to cause
excess detection of false discoveries. Ties are resolved by adding random noise and an additive
genetic model is used to encode variants. To account for population structure and other
confounding factors we applied a linear mixed model.19 We used PANAMA20 to infer possible
unknown confounders in addition to population structure.

3. Results

3.1. Molecular Transcriptome Signature of Uterine Carcinosarcoma
Matches Endometrial Carcinoma

There has been a long standing discussion on the similarities of uterine carcinosarcoma in
comparison to sarcoma and endometrial carcinoma, particularly since uterine carcinosarcoma
exhibits features of both tumor types.21–24 Previously, uterine carcinosarcoma was classified
as a uterine sarcoma due to histological features and aggressive behavior, but was recently
reclassified as an endometrial carcinoma.23 Similarities between uterine carcinoma and uter-
ine carcinosarcoma have been found in the level of p53 and p27 expression, lymph nodal
involvement in malignancies, and risk factors.21,24,25

In order to understand the transcriptomic relationship between these tumor types we have
analyzed the TCGA RNA-seq data. Figure 1 shows the samples projected on the first three
principal components summarizing the relationship of these samples based on gene expression
data. We observe that uterine carcinosarcoma samples seem to exhibit more similarity with
endometrial carcinoma than with sarcoma samples on the first two principal components.
This is consistent with the observation that uterine carcinosarcoma is more efficiently treated
with therapies targeting endometrial carcinoma.24 Thus we conclude that the molecular signa-
ture based on transcriptomic data supports the idea that Uterine Carcinosarcoma show more
similar patterns to Carcinomas than to Sarcomas.
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Fig. 1. Left: First two principal components across thress cancer types based on expression data. Right:
Hierachical clustering based on gene expression of about 1,700 genes.

3.2. Differential Gene Expression

There are a total of 2,308 differentially expressed genes between UCS and GTEx samples.
Through the use of GOrilla, we found that there are several functional categories that are
characteristic of most cancers such as regulation of cell cycle and cell division. More interest-
ingly, we also found a few categories that seem to pertain specifically to UCS. These categories
are: tissue morphogenesis (q < 3.7 × 10−7, where q-value has been corrected after Benjamini
and Hochberg26), mesenchyme development (q < 8.04 × 10−4), and epithelial development
(q < 1.49 × 10−5). We see in Figure 2, right panel, that when we cluster the expression of
epithelium related genes, UCS and UCEC cluster together. Furthermore, there are a set of 11
genes that seem to visually distinguish UCEC and UCS from GTEx and SARC which are:
GSTA1, PTHLH, NEUROG3, HYDIN, GSTA2, TBX1, GATA6, CNN3, DMBT1, ACADVL,
DHRS9. These genes were not found to be alternatively spliced, nor known cancer genes.
When we cluster the expression of sarcoma related genes, such as genes related to skeletal
morphogenesis, shown in Figure 2, left panel, we do not observe very strong clustering be-
tween any one cancer type. This further suggests that genes related to the epithelium and
thus carcinomas, act more similarly between UCS and UCEC, while sarcoma related genes
do not show a similar pattern between the cancer types. Similarly to the heatmap related to
the epithelium genes, we find 5 genes in the sarcoma genes that seem to visually distinguish
UCS from all other samples: PLEKHA1, ANKRD11, NKX3-2, PDGFRB, IDUA. These genes
are somewhat related to skeletal system morphogenesis, organ morphogenesis, and anatomical
structure morphogenesis.
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Fig. 2. Clustering of cancer types of mesenchymal (left) and epithelial (right) genes

3.3. Differential Splicing

We find a total of 99 differentially spliced events between UCS and GTEx samples. Table 1
shows how many events were found for each type of splicing event. Of the 99 splicing events, we
find 4 alternatively spliced genes that are associated with cancer: SRSF2, NACA, KMT2C, and
TRIM27. Using GOrilla on a list of all the genes with splicing events ordered by the number
of samples in which an event occured, we found several RNA-splicing related categories. The
splicing related categories are: poly(A) RNA binding (q < 1.21× 10−6, mRNA processing (q <

3.59×10−2, RNA splicing (q < 3.94×10−2), and regulation of mRNA stability (q < 8.31×10−3).
This indicates that global splicing changes occur in UCS.

Table 1. Summary of alternative splicing events found to be dif-
ferential between tumor and normal samples.

Event Name Number of Significant Events Found

Intron Retention 54
Exon Skip 10
Alternate 3’ 18
Alternate 5’ 17

3.4. Tumor-Specific Splicing

We found a small set of introns that showed strong expression support in a large fraction
of UCS tumor samples and could not be observed in any of the normal GTEx samples. To
exclude the possibility that this observation is confounded by genes lacking expression in
normal samples and thus explaining the absent introns, we restricted the analysis to genes
that showed a higher mean expression in normals than in tumor samples. Note, that a gene can
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be highly expressed in normal samples but still none of the transcript isoforms contains the
intron observed in the tumor samples. Figure 3 shows a ranked list of tumor specific introns
that cannot be found in the GENCODE annotation (version 19). Although several genes have
been associated to cancer before, e.g. SEC31A as part of gene fusions in lymphomas or SEC14L
as progression marker for prostate cancer, none show a strong functional connection to UCS.
An enrichment analysis of GO terms connected to the non-annotated tumor specific introns
resulted in no significantly enriched categories. However, when including tumor specific introns
that can be found in the annotation, we find a weak functional enrichment of cell-adhesion.
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Fig. 3. List of genes containing introns that are only observed in tumor but not in normal samples. Blue
colorscale indicates fraction of tumor samples that show sufficient evidence of expression the tumor specific
intron. UCS T are the tumor samples and UCS N are the normal samples taken from the GTEx project.

3.5. Genetic Determinants of Transcriptome Changes in Uterine
Carcinosarcoma

While the previous sections described transcriptomic changes between tumor and normal data
as well as a comparative analysis across multiple tumor types, this section explores potential
genetic determinants of germline and somatic mutations in UCS. Due to the limited sample
sizes available, we have restricted ourselves to study the effect of cis-associations only, in order
to avoid excess false positive rates and control for the otherwise increased multiple hypothesis
testing. Table 2 summarizes the amount of somatic as well as germline variants which are
associated with expression and splicing changes. Considering the small sample size which
significantly impacts the statistical power of this analysis, and the lack of whole genome data,
we find a considerable amount of determinants of gene expression. We were unable to identify
any somatic variants which are associated with either splicing changes or expression changes.
Nevertheless, many of the germline alterations affecting splicing are associated with regulatory
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proteins (e.g., TCEA2,CHD3, EEF1D, RPL28, ZBTB8A). No enrichment of somatic variants
could be found in these alternate splicing events. However, some alternate sequences have a
length which is not divisble by three and thus point towards potential frameshift events.

Table 2. This table shows the number of cis-QTLs
found across the various transcriptome changes, after
multiple testing correction.

Transcriptome Change # QTLs # Genes

Exon Skip 8 3
Alternate 3’ 2 6
Alternate 5’ 6 2
Expression 126 30

4. Discussion

In conclusion, we have done an extensive analysis of transcriptomic features on three tumor
types. Our analysis improves our understanding of the relationship between UCS, UCEC and
SARC on a molecular level and complements current knowledge which so far has been mostly
based on histological analysis.23 Expression patterns confirm the similarities between UCS
and UCEC and consistent with that observation we find that a clustering of samples based on
epithelium related genes supports the similarity between UCS and UCEC, while mesanchyme
related genes do not support any clustering between tumor types. Unfortunately the sample
sizes are limited and thus an in-depth analysis of tumor subtypes was not possible and we
were unable to study the characteristics in homologous and heterologous subtypes in UCS. An
in-depth analysis of histological features and staging, in addition to transcriptomic changes
could provide prognostic value that could be of interest to the community.

We identify differentially expressed genes and differentially spliced genes and provide a
comparitive analysis to UCEC, SARC and GTEx normal samples. Interestingly we observe
that alternatively spliced genes are enriched for splicing factors. We are confident that a better
understanding of UCS in the light of UCEC and SARC, will lead to new insights and potential
new drug targets. Nevertheless, larger sample sizes and tissue matched normal samples would
contribute towards further insight. Here we have made use of transcriptomic data from GTEx,
in order to do this differential analysis. Not only does the heterogeneity of the tumor sample
pose challenges in this analysis, but also the differences between the data generation of the
TCGA project and the GTEx project are potentially confounding our results. Not only has
data been processed in different ways, but also TCGA data is extracted from live tissue, while
GTEx data has been extracted post mortem. It is promising that despite confounding factors
in our data, the trasciptomic variation we find reflect the similarities and differences between
UCS, UCEC and SARC found previously using only histological, structural, and focused gene
comparisons.
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S. Beà, M. Pinyol, A. Mart́ınez-Trillos, M. López-Guerra, D. Colomer, A. Navarro, T. Baumann,
M. Aymerich, M. Rozman, J. Delgado, E. Giné, J. M. Hernández, M. González-Dı́az, D. a.
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