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Abstract

Quantification of RNA transcripts with RNA-Seq is inaccurate due to positional fragment bias, which is
not represented appropriately by current statistical models of RNA-Seq data. This article introduces the Mix2

(rd. ”mixquare”) model, which uses a mixture of probability distributions to model the transcript specific
positional fragment bias. The parameters of the Mix2 model can be efficiently trained with the Expectation
Maximization (EM) algorithm resulting in simultaneous estimates of the transcript abundances and transcript
specific positional biases. Experiments are conducted on synthetic data and the Universal Human Reference
(UHR) and Brain (HBR) sample from the Microarray quality control (MAQC) data set. Comparing the
correlation between qPCR and FPKM values to state-of-the-art methods Cufflinks and PennSeq we obtain
an increase in R2 value from 0.44 to 0.6 and from 0.34 to 0.54. In the detection of differential expression
between UHR and HBR the true positive rate increases from 0.44 to 0.71 at a false positive rate of 0.1.
Finally, the Mix2 model is used to investigate biases present in the MAQC data. This reveals 5 dominant
biases which deviate from the common assumption of a uniform fragment distribution. The Mix2 software
is available at http://www.lexogen.com/fileadmin/uploads/bioinfo/mix2model.tgz.

1 Introduction

RNA-Seq has established itself as a popular alternative to microarrays for the quantification of RNA transcripts.
In contrast to microarrays, which measure the quantity of an RNA transcript by hybridization to a transcript
specific oligonucleotide, RNA-Seq generates cDNA for fragments of the RNA transcript, which are sequenced
by a next generation (NGS) sequencer. One advantage of RNA-Seq over microarrays is that it does not require
prior knowledge of the nucleotide sequence of the RNA transcript, which is needed to produce a transcript
specific hybridization probe, and that it can therefore detect and quantify novel RNA transcripts. In addition,
quantification by RNA-Seq covers a wider dynamic range since microarrays suffer from signal saturation resulting
in the truncation of abundance estimates for highly abundant transcripts [3].

Despite these advantages, obtaining accurate transcript quantification measurements from RNA-Seq has
proven difficult. One of the main reasons for the inaccuracy is the failure of the statistical models used in the
derivation of the measurements to properly represent biases inherent in RNA-Seq data. The statistical model of
Cufflinks [17], for instance, assumes that the cDNA fragments generated by RNA-Seq are uniformly distributed
along the transcripts. In reality, however, this assumption is rarely fulfilled and quantification measurements by
Cufflinks are therefore often inaccurate.

One type of bias affecting transcript quantification from RNA-Seq data is the result of a preference of the
fragmentation, i.e. the process that generates cDNA fragments from RNA transcripts, to produce fragments
at certain positions within the transcript, e.g. at the start and/or at the end of the transcript. Hence, this
type of bias is referred to as positional bias [14]. Positional bias can also be caused by a bias in the RNA
itself, for instance, due to RNA degradation which results in a shortening of the RNA. Another kind of bias
in RNA-Seq is introduced during ligation, amplification and NGS sequencing [2]. This bias is correlated to the
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RNA sequence of a transcript and is therefore termed sequence specific bias [14]. The present article focuses
on the first type of bias, i.e. the positional bias, and develops a model, the Mix2 model (rd. ”mixquare”),
which performs significantly better than Cufflinks [17] and PennSeq [4] both on synthetic data and the Universal
Human Reference (UHR) and brain (HBR) samples from the Microarray Quality Control (MAQC) experiment
[10].

The inclusion of bias models into the statistical models of RNA-Seq data has been investigated before. In
[8] a model is proposed to account for the variability in read counts depending on the sequence surrounding
the start of a fragment. The intention is similar to that of the fragment specific bias model in [14], which also
investigates the sequences surrounding the start of a fragment. Similar to Cufflinks [17], the generative models
in [6] and [5] describe the probability of observing a fragment for a given transcript. In addition to Cufflinks
[17], however, [6] and [5] introduce additional hidden variables and use a bias model, which is derived from the
global bias observed in the complete RNA-Seq data set. The method described in [21], on the other hand, is
a model for gene read counts, which models bias by exon specific weights, which are estimated both for the
complete data set and for individual genes. In [19] the authors focus on RNA-Seq data with 5’ bias which is the
result of RNA degradation and use an exponential model for the fragment distributions. The model proposed
in [9] is, again, a model for the read counts of a gene. Here the read counts are modelled by a quasi-multinomial
distribution with a parameter that can be adapted to account for over and under dispersion. The authors in [14]
propose a model both for sequence specific and positional bias. For the positional bias a non-parametric model is
used, which can theoretically be trained with the EM algorithm. However, due to the large number of variables,
this is feasible only for a simplified version of the model. In practice, biases models in [14] are estimated for
few transcript length classes, for which statistics are collected in a small number of bins. The model of [14] has
been implemented as an optional extension of Cufflinks [17] and will henceforth be referred to as Cufflinks with
bias correction. The model developed in PennSeq [4] is again non-parametric and the large number of variables
makes its training computationally prohibitive. For this reason, the bias model of PennSeq [4] is not included
in the parameter update but is approximated by the overall bias in a gene locus and by the transcript specific
reads.

Similar to some of the other methods mentioned above, the Mix2 model is a generative model of the probabil-
ity of a fragment in an RNA-Seq data set. In contrast to the positional bias model in Cufflinks [14] and PennSeq
[4], however, the Mix2 model is parametric, which considerably simplifies adaptation of the Mix2 parameters.
On the other hand, due to the representation of the transcript specific fragment bias by mixtures of probability
distributions, the Mix2 model is flexible enough to allow for multiple positional biases of arbitrary complexity.

2 Materials and methods

2.1 The Mix2 model: a mixture of mixtures

An essential part of next generation sequencing (NGS) is the library preparation. This process takes an RNA
sample and produces a library of short cDNA fragments, each corresponding to a section of an RNA transcript.
The cDNA fragments are sequenced by an NGS sequencer resulting in single or paired end reads which are
mapped to a reference genome. Hence, the probability p(r) of a fragment r can be interpreted as the probability of
its genomic coordinates. In a genomic locus the probability p(r) is the superposition of the fragment distributions
p(r|t = i) for the N transcripts in the locus, i.e.

p(r) =

N∑

i=1

αip(r|t = i) (1)

where αi is the relative abundance of transcript t = i, i.e. the probability that transcript t = i generates any
fragment, and p(r|t = i) is the probability that transcript t = i generates fragment r. An estimate for the
concentration of transcript t = i is obtained by normalizing the relative abundance αi, yielding the RPKM [12]
or FPKM values [17].

The Mix2 model uses a mixture model for p(r|t = i), i.e.

p(r|t = i) =

M∑

j=1

βijp(r|t = i, b = j) (2)

where M is the number of mixture components and the hidden variable b = j represents a ”building block” of
the fragment distribution p(r|t = i). In addition, for each i, the βij sum to one. Since p(r) is itself a mixture of
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the p(r|t = i) with weights αi, this implies that p(r) is a mixture of mixtures, which explains the name of the
Mix2 model.

In the following p(r|t = i) is factorized according to

p(r|t = i) = p(l(r)|t = i, s(r))
∑

j

βijp(s(r)|t = i, b = j) (3)

where s(r) and l(r) are the start and length of fragment r and p(s(r)|t = i, b = j) are Gaussians whose means
µij are placed equidistantly along the transcript. In transcript coordinates the means µij are given by

µij = j ·
l(t = i)

M
−

l(t = i)

(2M)
(4)

and the standard deviations are, independent of j, set to

σij =
l(t = i)

(2M)
(5)

where l(t = i) is the length of transcript t = i. The Gaussians are, furthermore, normalized such that their sum
over the possible fragment starts s = 1, . . . , l(t) equals one. An example for such a Mix2 model can be found
in Figure 1. Figure 1 (a) shows the mixture weights βij whereas Figure 1 (b) shows the weighted Gaussians,
βijp(s|t = i, b = j), and the sum of the weighted Gaussians, p(s|t = i). The distributions in Figure 1 (b) are
given in transcript coordinates for a transcript of 2000 bps length, while the longer dashed curve in Figure 1
(c) shows p(s|t = i) in genome coordinates. The locus in Figure 1 (c) contains two transcripts which share a
common junction. The shorter of the transcripts in Figure 1 (c) has the same set of βij as in Figure 1 (a) but
is only 1000 bps long. The relative abundances of the long and short transcript are 0.7 and 0.3, respectively,
which results in the overall distribution p(s) given by the solid curve in Figure 1 (c). In comparison, Cufflinks
[17] can, for this locus, only model fragment start distributions p(s|t = i) as visualized by the dashed curves in
Figure 1 (d) and is therefore inappropriate for 5’ biases as the one in Figure 1 (c).

2.2 Parameter tying

The mixture weights βij determine the shape of the fragment distribution of transcript t = i. Thus, if some
transcripts have a similar distribution then their βij can be tied between the transcripts. As will be shown in
the experiments in Section 3.2, this can lead to increased accuracy in the abundance estimates. Consider, for
instance, the fragment start distribution of the Cufflinks model in Figure 2(a). Here the distributions are very
similar for transcripts with 2000 bps and 3000 bps length and for transcripts with 700 bps and 1000 bps length.
In this situation therefore, for the Mix2 model, these four transcripts could be separated into two groups where
the transcripts within each group share the same mixture weights βij . In general this leads to the scenario,
where each transcript t = i has an associated group g = k and the distributions p(r|t = i) of transcripts within
this group share the same βij .

Multiple factors might influence the similarity of fragment start distributions. Here, only gene membership
and transcript length are investigated. The rationale for choosing these two properties is that even if fragments
are uniformly distributed along a transcript immediately after fragmentation, fragment size selection introduces
the transcript length dependent bias in Figure 2 (a). On the other hand, transcripts belonging to the same gene
can share a substantial part of their sequence and therefore potentially exhibit similar fragmentation properties.

Based on these two criteria, in the experiments in Section 3.1 transcripts within genes are manually separated
into several groups. For larger number of genes, however, this is impractical. Therefore in Section 3.2 a clustering
scheme was employed which automatically separates the transcripts within a gene into different groups. In this
scheme, transcripts were initially placed into groups according to their length where the 7 transcript length
boundaries were equidistantly distributed on the log scale between 300 and 5000. Subsequently, groups were
merged until each group had at least 20 valid reads and there was at most one group containing a single
transcript. Groups were merged according to their distance, which was calculated as follows

|mean(g = k1)−mean(g = k2)|

100−min(mean(k1),mean(k2))
(6)

where mean(g = k) is the average length of transcripts in group g = k. The two closest groups were merged
first. This type of tying is referred to as group tying. If all transcripts within a gene are placed into a single
group this is referred to as global tying. Hence, Figure 1 (c) shows an example for a Mix2 model with global
tying, because all the transcripts in this locus share the same set of weights βij .
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Figure 1: Fragment start distributions modelled by Mix2 model and Cufflinks. (a) Set of eight βij . (b) Dashed
curves: βijp(r|t = i, b = j). The p(r|t = i, b = j) are Gaussians equidistantly distributed along a 2000 bps
transcript. Solid curve: p(r|t = i). All in transcript coordinates. (c), (d) Fragment distributions in locus with
two transcripts, 1000 bps and 2000 bps long, sharing one junction. Long and short transcripts start 5000 bps
and 5500 bps from beginning of locus contig. Junction starts at 6000 bps, extends to 6499 bps. Dashed curves:
p(r|t = i) for Mix2 model (c), Cufflinks (d), long and short transcript. Solid curve: p(r) for Mix2 model (c),
Cufflinks (d). All in genome coordinates.
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2.3 Parameter estimation

The relative abundances αi in the Mix2 model can be update with the EM algorithm in the usual manner, as
implemented, for instance, in Cufflinks [17]. This update formula is given in Section 1.1 of the supplement. For
the transcripts in group g = k the βij = βkj can be updated with the EM algorithm as follows

β
(n+1)
kj =

∑
r p

(n) (g = k, b = j|r)∑
r p

(n) (g = k|r)
(7)

where
p(n)(g = k|r) =

∑

i∈k

p(n)(t = i|r) (8)

is the sum over the transcripts t = i in group g = k and a similar equation holds for p(n)(g = k, b = j|r). Here

β
(n+1)
kj and p(n)(·) are the mixture components and posterior probabilities after the n+ 1-th and after the n-th

iteration, respectively. Iterations are repeated until changes in the model parameters fall below a predefined
threshold. An example of the convergence of the Mix2 model parameters can be found in Section 1.2 of the
supplement. From (7) the EM update formulas for a Mix2 model without parameter tying and with global
tying are readily deduced. This derivation together with the derivation of (7) can be found in Section 1.1 of the
supplement.

The previous discussion assumes that a fragment r maps uniquely to the reference. If, on the other hand,
fragment r has multiple hits H(r) on the reference, then the following holds

p(t = i, b = j|r) =
∑

h∈H(r)

p(t = i, b = j|h)p(h|r) (9)

and the update formula for βkj , equation (7), becomes

β
(n+1)
kj =

∑
r∈R

∑
h∈H(r) p

(n)(g = k, b = j|h)p(h|r)
∑

r∈R

∑
h∈H(r) p

(n)(g = k|h)p(h|r)
(10)

Typically, p(h|r) is set to 1/#H(r) [12] but can, in principle, be estimated from the data. However, in the exper-
iments on the MAQC data in Section 3.2 no distinction is made between single- and multi-mapping fragments
and each hit of a multi-mapping fragment is treated as an individual fragment. Even under this simplifying
assumption does the Mix2 model yield significantly better results than the compared methods.

3 Results

The experiments in this section compare the Mix2 model to Cufflinks 2.2.0 with bias correction [14], without bias
correction [17] and to PennSeq [4]. Cufflinks and PennSeq were chosen in these experiments because Cufflinks
is one of the most widely used methods for the estimation of transcript abundances, while PennSeq has recently
been shown to outperform a large number of publicly available abundance estimation methods, including the
bias models proposed in [9], [19], [13] and [11].

In the following, the means of the probability distributions p(s|t = i, b = j) where placed equidistantly along
the transcript as in (4) and the standard deviations were set as in (5). The mixture weights and abundances
were initialized uniformly, i.e. βij = 1/M and αi = 1/N , where M is the number of mixtures in the p(r|t = i)
and N is the number of transcripts in the gene.

3.1 Experiments on artificial data

One of the main intentions of the experiments in this section was to find the optimal number of mixtures for the
Mix2 model depending on the data and the type of model. For this purpose, the 4 transcript length dependent
fragment biases in Figure 2 were studied on 7 test genes from GRCh37 Ensembl annotation v75. The genes
were selected to represent abundance estimation problems of varying complexity and contain between 4 and
15 transcripts as well as the main variants of differential splicing. Names and properties of these genes are
summarized in Table 1 in the supplement. For each of the 7 genes, 200 sets of abundances (α1, . . . , αN ) were
sampled uniformly, according to the Dirichlet distribution. Subsequently, for each of the 200 sets of abundances
500, 1000, 5000 and 10000 fragments were sampled from the superposition (1), where the p(r|t = i) belong to
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one of the 4 bias models in Figure 2. These biases are referred to as Cufflinks bias (a), 5’ bias (b), 3’ bias (c) and
5’+3’ bias (d), where the Cufflinks bias is the fragment start distribution of the Cufflinks model for a fragment
length distribution with mean 200 bps and standard deviation 80 bps. The biases in Figure 2 are derived
by stretching an initial distribution to the length of the transcript. Subsequently the stretched distribution is
multiplied by the Cufflinks bias of the transcript length and renormalized. This explains why the 5’ tails of the
biases in Figure 2 become increasingly heavy for shorter transcripts. In the supplement, Section 2 contains a
brief discussion of how the Cufflinks bias is derived from the Cufflinks model and Figures 1, 2, 3 and 4 show
examples for the coverage resulting from sampling the biases in Figure 2. Finally, the fragment lengths l(r) were
sampled from a Gaussian with mean 200 bps and standard deviation 80 bps and the resulting fragments were
then converted into 50bps paired-end reads and written to a SAM file [7]. Thus, 800 data sets were generated
per gene and sample size or equivalently 1400 data sets per bias model and sample size resulting in a total of
22400 data sets. On each of these data sets the Mix2 model was run without tying as well as with group and
global tying, where the number of mixtures ranged from 2 to 6 and included 8, 10 and 20. Hence a total of
537600 experiments were performed with the Mix2 model on the artificial data. Thus, while the number of genes
in these experiments might seem small the combinatorial explosion of the possible parameter combinations leads
to a computational task of sizable proportions.

The difference between true and estimated relative abundances is measured with the L1 distance in this
section, which is the sum of the absolute differences between true and estimated abundances and can therefore
be interpreted as the accumulated error over the complete gene. The L1 distance of two probability distributions
lies between 0 and 2.

The fragment length distribution was assumed to be given for Cufflinks and the Mix2 model and was therefore
set to a Gaussian with mean 200 bps and standard deviation 80 bps. It would have been possible to estimate
the fragment length distribution from the test data but the difference between true and estimated distribution
is minor.

For the Mix2 model with group tying the transcripts of a gene were placed into one of two different groups
separating long from short transcripts. The groups were chosen ad hoc by visual inspection of the gene annotation
independently of the fragment bias. This ad hoc approach is replaced by the clustering procedure from Section
2.2 in the experiments in Section 3.2.

First, the experiments in this section addressed the question whether knowledge about the data is necessary
in order to choose an appropriate number of mixtures M for the Mix2 model. In particular, we wanted to
know whether it is necessary to obtain information about the bias, gene or sample size prior to optimization or
whether the number of mixtures can be optimized independent of these data properties. We restricted ourselves
to optimization on the gene level as brute-force optimization on the transcript level would have significantly
increased the number of experiments. Figure 3(a) shows the dependence of the L1 distance averaged over all
combinations of bias, gene and sample size on the level of optimization. Thus, the three left-most bars in Figure
3(a) show the average L1 distance when choosing an optimal number of mixtures for each combination of bias,
gene and sample size. The three right-most bars, on the other hand, show the average L1 distance after a single
optimal number of mixtures has been chosen for all combinations of bias, gene and sample size. Figure 3(a)
therefore implies that there is little difference between the average L1 distance obtained for different optimization
levels and that the number of mixtures can therefore be optimized without referring to gene, sample size or bias.
In the studied range the sample size, in particular, appears to play a minor role in the optimization as the
average L1 distances of the optimization at gene/sample size level and gene level is almost identical. This can
also be seen from Figure 3(b) which shows the dependence of the L1 distance on the sample size and the number
of mixtures. It can, furthermore, be seen that the minimal average L1 distance for a Mix2 model without tying
is obtained for 3 mixtures, while for a Mix2 model with group and global tying the minimum is obtained with
a number of mixtures between 4 and 10. These optimal numbers of mixtures are independent of the sample
size. Figure 3(b) shows furthermore that the effect of tying increases with the sample size. While the difference
between the average L1 distances of a Mix2 model with global and group tying is relatively moderate for sample
sizes of 500 and 1000 it becomes more pronounced for samples sizes of 5000 and 10000.

Figures 3(c) and (d) present a comparison between Cufflinks, PennSeq and the Mix2 model, where the latter
uses 4 mixtures for global and group tying and 3 mixtures without any tying. Figure 3(c) shows that there
is a certain variability between the accuracy obtained for the different genes. Interestingly, the gene with the
highest number of transcripts, which is USF2 with 15 transcripts, is not the most difficult gene. Instead HAUS5
and TESK2 with 10 and 7 transcripts yield higher L1 distances for all methods. With the exception of KLK5,
PennSeq appears to perform worse than Cufflinks on the artificial data. In comparison to Cufflinks and PennSeq,
the Mix2 model with and without tying performs considerably better. This higher accuracy of the Mix2 model
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Figure 2: Transcript length dependent fragment start distributions in artificial data. X-axis is position within
transcript in percent. Distributions are derived from an initial distribution, stretched to transcript length.
Subsequent multiplication with fragment start distribution of Cufflinks (a) and renormalization. (a) Distributions
for uniform initial distribution. Corresponds to Cufflinks model for Gaussian fragment length distribution with
mean 200 and standard deviation 80. Bias in (a) is referred to as Cufflinks bias. Distributions derived from
initial distribution with 5’ bias (b), 3’ bias (c) and 5’+3’ bias (d).
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Figure 3: Average L1 distance on artificial data between true and estimated abundances for Cufflinks, PennSeq
and Mix2 model. (a) Dependence of L1 distance on level of optimization of mixture number. Each group of
3 blocks gives the average L1 distance for Mix2 model without tying, with global and with group tying. (b)
Dependence of L1 distance on number of mixtures and sample size. First four bars for each mixture number are
Mix2 model without tying, four bars in the middle and on the right Mix2 model with global and group tying.
Bars within each group correspond to 500, 1000, 5000 and 10000 fragments. L1 distance for Cufflinks, PennSeq
and Mix2 model on 7 test genes (c) and 4 biases (d). First and second 4 bars are Cufflinks and PennSeq.

is also demonstrated in Figure 3(d) which shows the dependence of the average L1 distance on the type of bias.
The Mix2 model is more accurate than Cufflinks for all bias types apart from the Cufflinks bias. The latter,
however, has to be expected as data with Cufflinks bias fit the model in Cufflinks perfectly. For all bias types
except the 5’ bias, group tying can be seen to yield an improvement over global tying. This is due to the fact
that the 5’ bias depends very little on the transcript length, as can be seen in Figure 2 (b), and introducing an
additional group of unnecessary parameters into the Mix2 model therefore leads to slight overfitting. PennSeq
performs better than Cufflinks on data with 3’ bias but as in Figure 3(c) performs worse than Cufflinks in the
majority of the cases.

3.2 Experiments on the Microarray Quality Control (MAQC) data

This section compares the accuracy of the Mix2 model, Cufflinks and PennSeq on two publicly available real
RNA-Seq data sets generated from the Universal Human Reference (UHR) RNA and brain (HBR) RNA of the
Microarray Quality Control (MAQC) data [10]. These RNA samples were sequenced on an Illumina GenomeAn-
alyzer resulting in 7 lanes per sample of 35 bps single-end reads [1]. The RNA-Seq data of the MAQC data set
were downloaded from the NCBI read archive under accession number SRA010153, while the associated qPCR
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values were downloaded from the Gene Expression Omnibus under accession number GSE5350. The reads of
all 14 lanes were aligned to GRCh37/hg19 with tophat2 [16]. Rather than the RefSeq annotation, Ensembl
version 75 was used in the experiments, since the Ensembl annotation contains in many cases more transcripts
per gene than RefSeq and therefore yields a more challenging and also larger test set. Since the MAQC data set
records the association between qPCR probes and RefSeq annotations it was necessary to select only those qPCR
probes whose associated RefSeq annotations have a unique Ensembl equivalent. In addition, genes containing
a single transcript were removed from the test set as it is not necessary to estimate relative abundances in this
case. This resulted in a test set containing 798 transcripts, more than twice the 331 transcripts of the test set
in [4]. On average 8.6 transcripts were contained in each gene of the test set. Since the RNA-Seq data from
MAQC are single-end the fragment length l(r) is unknown and was therefore summed out of (3). This effectively
sets the first term of the right-hand side of (3) to 1. As the fragment start the down-stream end of each read
was selected. For the Mix2 model, the FPKM concentration of transcript t = i was derived from the relative
abundance estimate αi as follows

FPKM(t = i) = 109
αi ·NFL

l(t = i) ·NFT
(11)

where NFL and NFT are, respectively, the number of fragments in the locus and the total number of fragments
in the experiment. Equation (11) is, strictly speaking, the RPKM [12] and not the FPKM [17] value, as the
latter uses a normalized rather than the true transcript length. However, no distinction will be made between
the two in the following.

3.2.1 Correlation between FPKM and qPCR values

First, we investigated the correlation between the qPCR values of the MAQC data set and the FPKM values
obtained by the Mix2 model, PennSeq and Cufflinks. For lane SRR037445 of UHR and lane SRR035678 of HBR
this correlation is visualized in Figure 4(a) and Figure 4(b), respectively. The ellipses at the bottom highlight
the FPKM values which lie below 10−3. Transcripts with such FPKM values were considered not detected and
their FPKM values were set to 10−3. The average qPCR values of the undetected transcripts are also contained
in the graphs. This value should ideally be small since it is more acceptable not to detect transcripts with low
rather than high abundance. Figures 4 (a) and (b) show that for Cufflinks the number of points inside the
ellipses equals 111 and 127 and thus 14% to 16% of the complete test set are not detected. Similarly, the average
qPCR value of between -1.86 and -1.7 is relatively high in comparison to the average for the complete test set,
which is -1.02 and -0.99 for the UHR and HBR lane, respectively. In comparison, the number of undetected
transcripts is considerably smaller for PennSeq and the Mix2 model equaling 17 and 24 or 2% and 3% of the
complete test set. In addition, the average qPCR value for the Mix2 model is noticeably smaller than for the
other methods at -2.55 and -2.83. Figure 4(c) shows that the average R2 value is considerably higher for the
Mix2 model than Cufflinks and PennSeq for both UHR and HBR. In particular, for HBR the R2 value for the
Mix2 model without tying equals 0.54 whereas the R2 value for Cufflinks with bias correction and PennSeq is
0.34 and 0.32, respectively. For UHR the R2 value for the Mix2 model without tying equals 0.60 in comparison
to 0.44 for PennSeq and 0.4 for Cufflinks with bias correction, respectively. Figure 4 shows furthermore that
group tying gives a small improvement over global tying. However, the Mix2 model without any tying performs
noticeably better. This indicates that the tying of transcripts which is purely based on gene association and
transcript length is too simple for the MAQC data. Figure 4(d) shows also a moderate increase in Spearman
correlation by the Mix2 model which is more prominent for UHR. For HBR, on the other hand, the difference
between 0.69 for Cufflinks with bias correction and 0.71 for the Mix2 model is minute. Regarding the accuracy
of differential expression calls, the large number of undetected transcripts is an important factor and the R2

value is thus a more meaningful measure than the Spearman correlation for the evaluation of correlation.

3.2.2 Correlation between qPCR and FPKM fold change and the detection of differential ex-

pression

Fold changes of concentration measures between different samples are used in the analysis of differential expres-
sion both for microarrays [18] and RNA-Seq [17]. Therefore, a high correlation between the qPCR and FPKM
fold changes is important to ensure accurate differential expression calls. Figure 5(a) shows the correlation be-
tween the fold change of the qPCR value on the x-axis and the FPKM value on the y-axis. The fold changes of
the FPKM values were calculated between lane SRR037445 of UHR and SRR035678 of HBR. As in the previous
section, Figure 5(a) shows for Cufflinks the presence of a large number of transcripts whose FPKM fold change
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Figure 4: Correlation between qPCR and FPKM values on MAQC data for Cufflinks, PennSeq and Mix2 model.
Correlation on lane SRR037445 of UHR (a), on lane SRR035678 of HBR (b). Axes are log10. FPKM values
below 10−3 were truncated to 10−3 and are highlighted by red ellipses. Number of truncated FPKM values and
average of their log10(qPCR) values at start of arrows. Average of R2 value (c) and Spearman correlation ρ (d)
over all 7 lanes of UHR and HBR.
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lies considerably above or below the majority of FPKM fold changes. This is visualized by the long straight
lines at FPKM fold changes of 10−4 and 10+3. For PennSeq and the Mix2 model, on the other hand, this
number is considerably smaller. The R2 values and Spearman correlations in Figure 5(a) show that the Mix2

model without tying and 3 blocks achieves the best correlation. This is further confirmed by Figure 5(b) which
shows the R2 value and Spearman correlation averaged over all 49 combinations of the 7 lanes in UHR and
HBR. Figure 5(b) shows that the average R2 value for the Mix2 model is substantially higher at 0.77 than for
PennSeq at 0.62 and Cufflinks with bias correction at 0.47. Also the Spearman correlation of the Mix2 model at
0.90 is considerably higher than for PennSeq, 0.81, or Cufflinks, 0.76. In order to determine the influence of the
correlation of FPKM and qPCR fold changes on the detection of differential expression, a simple classification
experiment was performed, similar to an experiment in [1]. Transcripts whose qPCR fold change was above 2
were defined as differentially up-regulated while transcripts whose qPCR fold change was below 0.5 were defined
as differentially down-regulated. The remaining transcripts were defined as not differentially expressed. Subse-
quently all transcripts were classified according to their FPKM fold change. If the FPKM fold change was above
a certain threshold the transcript was classified as up-regulated, whereas it was classified as down-regulated if
its FPKM fold change was below the inverse of the threshold. The threshold varied between 1.1 and 106 and
for each threshold the true and false positive rate, with respect to the qPCR based definitions, were recorded.
Here, it was counted as an error if an up-regulated transcript was classified as down-regulated and vice versa.
For lane SRR037445 of UHR and SRR035678 of HBR this experiment resulted in the ROC curve in Figure 5(c).
This shows clearly that the FPKM values calculated with the Mix2 model yield a much better characteristic
than the FPKM values calculated with the other methods. Figure 5(d) shows the true positive rate for false
positive rates of 0.1, 0.15 and 0.2 averaged over all the 49 combinations of the 7 lanes in UHR and HBR. For
a false positive rate of 10%, for instance, the true positive rate for the Mix2 model without tying equals 0.71
which is considerably higher than the 0.44 for PennSeq and the 0.24 for Cufflinks. While this difference becomes
increasingly smaller for false positive rates of 0.15 and 0.2 it is still prominent with a true positive rate of 0.82
for the Mix2 model without tying, 0.68 for PennSeq and 0.65 for Cufflinks for a false positive rate of 0.2.

3.2.3 Types of bias in the MAQC data

The Mix2 model simultaneously estimates relative abundances and transcript specific fragment distributions and
can therefore be used to detect biases present in RNA-Seq data. Figures 6(a) to (f) visualize 6 bias types for
a subset of transcripts in one lane of UHR, which were obtained by clustering the fragment start distributions
learned by the Mix2 model. For this purpose the fragment start distributions of the 798 genes of the MAQC
test set from lane SRR037445 of UHR were selected, which were assigned a read count by the Mix2 model of
at least 100. The minimum read count was set at 100 in order to avoid fragment start distributions which
might be inaccurate due to a small amount of data. The 858 fragment start distributions, which satisfied these
requirements were then length normalized and hierarchically clustered with UPGMA [15] using the L1 distance
metric. The resulting tree was traversed from top to bottom and nodes were retained which had at least 5% or
43 of the 858 fragment start distributions. If a node was reduced in size at the next level of the tree without
changing the overall shape of the distributions, the top node was chosen. This process resulted in the 6 clusters
of fragment start distributions shown on the left side of Figures 6(a) to (f). Figure 6(g), on the other hand,
shows the fragment start distribution for the complete unclustered data. The median in Figure 6(g) gives the
false impression that the fragment start distributions can be modelled by a uniform distribution. Instead, the
distributions separate into a class with 5’ bias, Figures 6(a) to (c), a class with 3’ bias, Figures 6(d) and (e),
and a uniform class, Figure 6(f). The classes with 5’ or 3’ bias contain 46.50% of the complete fragment start
distributions, while the uniform class contains only 26.92%. Overall, 73.43% of the distributions are contained
in one of the classes in Figures 6(a) to (f). The remaining 26.57% of the distributions belong to classes each
containing less than 5% of the distributions. Thus, biased fragment distributions represent the majority of the
data. There exists, furthermore, no single bias type but multiple biases are observed in the data.

4 Discussion

This article introduced the Mix2 model which uses a mixture of probability distributions to model the transcript
specific fragment distributions in RNA-Seq data. Due to the flexibility of mixture models, the Mix2 model can
adapt to multiple positional fragment biases of arbitrary complexity. The parameters of the Mix2 model are
efficiently trained with the EM algorithm yielding simultaneous estimates for the fragment distributions and the
relative abundances. In addition, parameters of the Mix2 model can be tied between transcripts with similar
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Figure 5: Correlation between qPCR and FPKM fold changes between UHR and HBR for Cufflinks, PennSeq
and the Mix2 model and ROC curve for classification experiment. (a) Correlation between qPCR and FPKM
fold changes between UHR lane SRR037445 and HBR lane SRR035678. (b) Average R2 value and Spearman
correlation over all 49 combinations of the 7 lanes in UHR and HBR. (c) ROC curve of classification experiment
based on FPKM values of UHR lane SRR037445 and HBR lane SRR035678. (d) Average true positive rate over
classification experiments for all 49 combinations of lanes in UHR and HBR for false positive rates 0.1, 0.15 and
0.2.
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Figure 6: Types of biases detected in lane SRR037445 of UHR and their transcript length distributions. (a)
to (f) 6 most prominent biases which account for 73.43% of transcripts. Bias on the left, transcript length
distribution on the right. (g) Bias and transcript length distribution of complete, unclustered set of transcripts.
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fragment distribution leading to improved estimates of the relative abundances.
Experiments were conducted on artificial data covering 7 genes of different complexity, 4 types of fragment

bias and sample sizes of 500, 1000, 5000 and 10000 fragments. One of the main purposes of these experiments
was to optimize the number of mixtures of the Mix2 model. These experiments showed that optimization can
be performed independent of gene, bias and sample size. A strong dependency on the fragment bias would be
problematic as this requires the determination of the bias prior to application of the Mix2 model and limits
therefore its usefulness as a tool for bias modelling. The optimal number of mixtures for the Mix2 model was
found to be 3 for a model without tying and any number between 4 and 10 for a Mix2 model with tying.
These numbers are fairly small given the biases in Figure 2. In particular, it seems rather implausible that
a Mix2 model with only 3 mixtures should be able to accurately model the 5’+3’ bias in Figure 2(d). This
suggests that the potential of the mixtures in the Mix2 model has yet to be fully exploited, which might lead to
further improvements in the accuracy of the relative abundance estimates. Mix2 models with global or group
tying appear to be less sensitive to the correct choice of the number of mixtures, whereas Mix2 models without
tying show a steady decrease in performance for numbers of mixtures beyond the optimum. This might in
part be due to the fact that the number of parameters in a Mix2 model without tying increases more rapidly
with increasing number of mixtures and that it is therefore more prone to overfitting than a Mix2 model with
parameter tying for a comparable number of mixtures. On the artificial data the Mix2 model outperformed both
Cufflinks [17] and PennSeq [4] with the exception of data sampled from the Cufflinks bias, for which Cufflinks
has the perfect model. This shows that there is still room for improvement for the Mix2 model, particularly for
larger sample sizes as can be seen from Figure 3(d). The accuracy of PennSeq in the experiments on artificial
data was in most cases considerably worse than that of the Mix2 model and Cufflinks. This might be due to
the uniform sampling with the Dirichlet distribution which results in mainly non-zero abundances. Hence, the
overall fragment start distribution of the artificial data in a gene locus can differ strongly from the distribution for
individual transcripts. PennSeq, on the other hand, approximates the transcript specific fragment distribution
by the part of the overall distribution, which overlaps the transcript, and by the transcript specific reads.

Experiments were also performed on RNA-Seq data generated from the Universal Human Reference (UHR)
RNA and brain (HBR) RNA from the Microarray Quality Control (MAQC) data set [10]. These experiments
showed considerably better correlation between the qPCR and FPKM values for the Mix2 model than for
Cufflinks and PennSeq. Furthermore, the correlation between the qPCR and FPKM fold changes between UHR
and HBR are noticeably higher for the Mix2 model than for the other methods. As shown in a classification
experiment, this leads to substantially higher accuracy in the detection of differential expression. In comparison
to the experiments on artificial data, on the MAQC data PennSeq performed better than Cufflinks in many cases.
This might hint at the fact that, contrary to the sampling for the artificial data, only few abundances in a gene are
non-zero and the overall fragment distribution overlapping a transcript is therefore a reasonable approximation
for the transcript specific fragment distribution. Overall, the correlation between qPCR and FPKM values found
in our experiments agrees reasonably well with the results in [4]. Although in comparison to [4], Cufflinks appears
to perform slightly better and PennSeq slightly worse. This discrepancy might be the result of improvements in
Cufflinks and the higher complexity of our test set. In contrast to the experiments on artificial data, experiments
on the MAQC data showed a degradation in the performance of the Mix2 model when tying parameters. This
cannot be attributed to a suboptimal choice of parameters in the transcript clustering procedure, which was
discussed in Section 2.2. In fact, preliminary experiments showed that changes of the parameters had very little
effect on the accuracy of the results. We therefore refrained from optimizing the parameters of the clustering
procedure also in light of the large number of experiments needed to cover all parameter combinations in a brute-
force approach. Rather than a suboptimal parameter choice, the reason for the degradation in performance seems
to be the fact that the similarity of positional fragment bias does not exclusively depend on the gene membership
of a transcript and the transcript length. This fact was also highlighted by the experiments in Section 3.2.3.
Thus, rather than optimizing the transcript clustering parameters, searching for an extended set of criteria for
transcript similarity seems more promising. Further work will be needed to obtain similar improvements through
parameter tying on the MAQC data as observed on the artificial data.

Finally, the Mix2 model was used to determine the dominant biases in lane SRR037445 of UHR. This
was achieved by clustering the transcript specific fragment distributions estimated by the Mix2 model. We
obtained 6 clusters, containing 73.43% of the distributions, of which 5 clusters, containing 46.50%, exhibited
non-uniform distributions. The cluster with uniform distributions contained only 26.92%. Some of these clusters
exhibit distinct biases. The presence of a 3’ bias as in Figure 6(e), for instance, is a common feature of library
preparations with cDNA fragmentation [20] and the position of the tail-off in the distribution might therefore
be related to the distribution of the fragment lengths. The 5’ bias in Figures 6(a) to (c), on the other hand,
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is potentially the result of RNA degradation. Contrary to Figure 2 there is no obvious relationship between
bias and transcript length, although correlations between the two do exist. For instance, transcripts whose
fragment start distributions are 3’ biased or uniform as in Figures 6(e) and (f) tend to be longer than the
average transcript, whereas transcripts with fragment start distributions in Figures 6(a) and (d) are noticeably
shorter. While this is just a first and very cursory glance at the data a more detailed analysis will hopefully
reveal relations between biases and RNA sequences of transcripts, which will eventually lead to a better tying
strategy for the Mix2 model on real RNA-Seq data.

In summary, the Mix2 model can be used as an explorative tool to investigate the positional biases present
in RNA-Seq data and thereby study the influence of library preparation, sequencing and data processing on
the accuracy of transcript concentration estimates. In addition, and more importantly, our results show that
in comparison to current state-of-the-art methods the Mix2 model yields substantially improved transcript
concentration estimates for RNA-Seq data and, as a result, leads to higher accuracy in the detection of differential
expression.
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