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Abstract1

High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo2

assembly of whole genomes. Nevertheless, assembly of complex genomes remains challenging, mostly due to3

the presence of repeats, which cannot be reconstructed unambiguously with short read data alone. One class4

of repeats, called transposable elements (TEs), is particularly problematic due to high sequence identity, high5

copy number, and a capacity to induce complex genomic rearrangements. Despite their importance to genome6

function and evolution, most current de novo assembly approaches cannot resolve TEs. Here, we applied a7

novel Illumina technology called TruSeq synthetic long-reads, which are generated through highly parallel8

library preparation and local assembly of short read data and achieve lengths of 2-15 Kbp with an extremely9

low error rate (<0.05%). To test the utility of this technology, we sequenced and assembled the genome10

of the model organism Drosophila melanogaster (reference genome strain yw;cn,bw,sp) achieving an NG5011

contig size of 77.9 Kbp and covering 97.2% of the current reference genome (including heterochromatin).12

TruSeq synthetic long-read technology enables placement of individual TE copies in their proper genomic13

locations as well as accurate reconstruction of TE sequences. We entirely recover and accurately place14

80.4% of annotated transposable elements with perfect identity to the current reference genome. As TEs are15

complex and highly repetitive features that are ubiquitous in genomes across the tree of life, TruSeq synthetic16

long-read technology offers a powerful approach to drastically improve de novo assemblies of whole genomes.17
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Introduction18

Despite tremendous advances in DNA sequencing technology, computing power, and assembly approaches, de19

novo assembly of whole eukaryotic genomes using high-throughput sequencing data remains a challenge owing20

largely to the presence of repetitive DNA (Alkan et al., 2010; Treangen and Salzberg, 2012). In some species,21

repetitive DNA accounts for a large proportion of the total genome size, for example comprising more than half22

of the human genome (Lander et al., 2001; de Koning et al., 2011) and 80% of some plant genomes (Feschotte23

et al., 2002). Here, we focus on one class of dynamic repeats, called transposable elements (TEs). These24

elements, a common feature of almost all eukaryotic genomes sequenced to date, are particularly difficult to25

assemble accurately due to high sequence identity among multiple copies within a genome. In addition to26

spanning up to tens of kilobases, TEs from a single family can be present in thousands of copies. Consequently,27

TEs can dramatically affect genome size and structure, as well as genome function; transposition can induce28

complex genomic rearrangements that detrimentally affect the host, but can also provide the raw material29

for adaptive evolution (González et al., 2008; González and Petrov, 2009), for example, by creating new30

transcription factor binding sites (Rebollo et al., 2012) or otherwise affecting expression of nearby genes31

(González et al., 2009).32

Though TEs play a key role in genome evolution, many approaches to de novo assembly start by masking33

TEs and other repeats in order to simplify the assembly of non-repetitive DNA. The end result is a set of34

disjointed contigs (which may be oriented relative to one another by other means) along with a set of reads35

or small contigs that were deemed repetitive and could not be placed with respect to the rest of the assembly.36

For example, the Drosophila 12 Genomes Consortium (Clark et al., 2007) did not attempt to place individual37

TE sequences into the finished genomes. Instead, they attempted to estimate the abundance of TEs with38

resulting upper and lower-bounds differing by more than three fold.39

TEs, as with other classes of repeats, may also induce mis-assembly. For example, TEs that lie in tandem40

may be erroneously collapsed, and unique interspersed sequence may be left out or appear as isolated contigs.41

Several studies have assessed the impact of repeat elements on de novo genome assembly. For example, Alkan42

et al. (2010) showed that the human assemblies are on average 16.2% shorter than expected, mainly due to43

failure to assemble repeats, especially TEs and segmental duplications. A similar observation was made for44

the chicken genome, despite the fact that repeat density in this genome is low (Ye et al., 2011). Current45

approaches to deal with repeats such as TEs generally rely on depth of coverage and paired-end data (Alkan46

et al., 2010; Miller et al., 2010; Li et al., 2010). Depth of coverage is informative of copy-number, but47

unfortunately cannot guide accurate placement of repeats. Paired-end data can help resolve the orientation48
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and distance between assembled flanking sequences, but do not resolve the repeat sequence itself. Likewise,49

if read pairs do not completely span a repeat, anchored in unique sequence, it is impossible to assemble the50

data unambiguously. Long inserts, commonly referred to as mate-pair libraries, are therefore useful to bridge51

across long TEs, but are labor-intensive and expensive to construct.52

A superior way to resolve TEs is to generate reads that exceed TE length, obviating assembly and allowing53

TEs to be unambiguously placed based on unique flanking sequence. Several high-throughput long read (>154

Kbp) technologies have been developed, but most of these technologies have exceptionally high sequencing55

error rates (although error-correction strategies have been developed in some cases (Schatz et al., 2012)) and56

are low throughput. High error rates limit the specificity of long reads, meaning that assemblers cannot57

distinguish between sequencing errors and differences between slightly diverged copies of TEs. For instance,58

PacBio RS II (Pacific Biosciences) provides average read lengths of greater than 5 Kbp, but with a 15-18%59

error rate (Schatz et al., 2012). Meanwhile, other established sequencing technologies, such as Illumina,60

454 (Roche), and Ion Torrent (Life Technologies), offer lower error rates of 0.1-1%, but relatively shorter61

read lengths (Glenn, 2011). Illumina has recently introduced a novel technology called TruSeqTM synthetic62

long-reads <http://www.illumina.com/services/long-read-sequencing-service.ilmn>, which builds63

upon underlying Illumina short read data to generate highly accurate synthetic reads up to 15 Kbp in length.64

This technology promises to dramatically advance a wide range of genomic applications.65

Using a pipeline of standard existing tools, we showcase the ability of TruSeq synthetic long-reads to66

facilitate de novo assembly and resolve TE sequences in the genome of the fruit fly Drosophila melanogaster,67

a key model organism in both classical genetics and molecular biology. We further investigate how coverage68

of long reads affects assembly results, an important practical consideration for experimental design. While69

the D. melanogaster genome is moderately large (∼180 Mbp) and complex, it has already been assembled to70

unprecedented accuracy. Through a massive collaborative effort, the initial genome project (Adams et al.,71

2000) recovered nearly all of the 120 Mbp euchromatic sequence using a whole-genome shotgun approach that72

involved painstaking molecular cloning and the generation of a bacterial artificial chromosome physical map.73

Since that publication, the reference genome has been extensively annotated and improved using several74

resequencing, gap-filling, and mapping strategies, and currently represents a gold standard for the genomics75

community (Osoegawa et al., 2007; Celniker et al., 2002; Hoskins et al., 2007). By performing the assembly in76

this model system with a high quality reference genome, our study is the first to systematically quantify the77

substantial improvements to assembly enabled by synthetic long read technology. Because D. melanogaster78

harbors a large number (∼100) of families of active TEs, assembly of these repeats is particularly challenging79
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due to the presence of long TE copies with high sequence identity. This is distinct from other species, including80

humans, which have TE copies that are shorter are more diverged, and therefore easier to assemble. Our81

demonstration of accurate TE assembly in D. melanogaster should therefore translate favorably to many82

other systems.83
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Results84

TruSeq synthetic long-reads85

This study used Illumina TruSeq synthetic long-read technology generated with a novel highly-parallel86

next-generation library preparation method (Figure S1). The basic protocol was previously presented by87

Voskoboynik et al. (2013) (who referred to it as LR-seq) and was patented by Moleculo, which was later88

acquired by Illumina. The protocol (see Methods) involves initial mechanical fragmentation of gDNA into89

∼10 Kbp fragments. These fragments then undergo end-repair and ligation of amplification adapters, before90

being diluted onto 384-well plates so that each well contains DNA representing approximately 1-2% of the91

genome (∼200 molecules, in the case of Drosophila melanogaster). Polymerase chain reaction (PCR) is used92

to amplify molecules within wells, followed by highly parallel Nextera-based fragmentation and barcoding of93

individual wells. DNA from all wells is then pooled and sequenced on the Illumina HiSeq 2000 platform. Data94

from individual wells are demultiplexed in silico according to the barcode sequences. Long reads are then95

assembled from the short reads using a proprietary assembler that accounts for properties of the molecular96

biology steps used in the library preparation. By reducing genome representation by approximately 50- to97

100-fold, even abundant and identical repeats can be resolved so long as they are not represented multiple98

times within a single well.99

We applied TruSeq synthetic long-read technology to the fruit fly D. melanogaster, a model organism with100

a high quality reference genome, including extensive repeat annotation (Fiston-Lavier et al., 2007; Quesneville101

et al., 2003, 2005). The latest version of the reference genome assembly (Release 5; BDGP v3) contains a102

total of 168.7 Mbp of sequence, 120 Mbp of which is considered to lie in the euchromatin, which is less repeat103

dense than heterochromatic regions. This genome release also includes 10.0 Mbp of additional scaffolds (U)104

which could not be mapped to chromosomes, as well as 29.0 Mbp of additional small scaffolds that could105

not be joined to the rest of the assembly (Uextra). Approximately 50 adult individuals from the yw;cn,bw,sp106

strain of D. melanogaster were pooled for the isolation of high molecular weight DNA, which was used to107

generate TruSeq long-read libraries using the aforementioned protocol (Figure S1). The yw;cn,bw,sp strain108

is the same strain which was used to generate the D. melanogaster reference genome (Adams et al., 2000).109

A total of 523,583 synthetic long reads exceeding 1.5 Kbp (an arbitrary length cutoff) were generated with110

four libraries (one Illumina HiSeq lane per library), comprising a total of 2.52 Gbp. Reads averaged 4,813111

bp in length, but have a local maximum near 8.5 Kbp, slightly smaller than the ∼10 Kbp DNA fragments112

used as input for the protocol (Figure 1A).113
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We first searched for and eliminated possible contaminants by comparing the reads to the NCBI nucleotide114

database (http://www.ncbi.nlm.nih.gov/nuccore) using BLASTN (Altschul et al., 1997) (see Methods;115

Table S1). The degree of contamination in the TruSeq synthetic long-read libraries prepared by Illumina116

was extremely low. Of 523,583 total reads, only 0.104% (544 reads) had top hits to non-insect species,117

and only 0.105% (549 reads) had top hits to species outside of genus Drosophila. Of the 523,034 hits to118

Drosophila species, 99.950% (522,772 reads) had top hits to D. melanogaster, while only 0.0501% (262 reads)119

had top matches to other Drosophila species. The most abundant contaminant reads had top matches120

to known symbionts of D. melanogaster, including acetic acid bacteria from the genera Gluconacetobacter,121

Gluconobacter, and Acetobacter (Table S1). Because we could not exclude that the few sequences with no122

BLAST results may correspond to fly-derived sequences not previously assembled in the reference genome, we123

included all sequences except those with top matches to non-insect species (523,039 total; e-value threshold124

1e-09) in downstream analyses.125

In order to evaluate the accuracy of TruSeq synthetic long-reads, we mapped reads to the reference126

genome of D. melanogaster, identifying differences between the mapped reads and the reference sequence (see127

Methods). Of 523,039 input reads passing our contamination filter, 99.97% (522,901 reads) were successfully128

mapped to the reference genome, with 92.44% (483,514) mapping uniquely and 95.17% (497,751) having at129

least one alignment with a MAPQ score ≥20. TruSeq long-reads had very few mismatches to the reference at130

0.0418% per base (0.0325% for reads with MAPQ ≥20) as well as a very low insertion rate of 0.0163% per base131

(0.0112% for reads with MAPQ ≥20) and a deletion rate of 0.0277% per base (0.0209% for reads with MAPQ132

≥20). Error rates estimated with this mapping approach are conservative, as residual heterozygosity in the133

sequenced line mimics errors. We therefore used two approaches (see Methods) to calculate corrected error134

rates. The first approach uses the number of mismatches overlapping known SNPs to correct the error rate135

to 0.0192%. Along with this estimate, we also estimate that 2.99% of the sites segregating in the Drosophila136

Genetic Reference Panel (DGRP) (Mackay et al., 2012) remain polymorphic in the sequenced strain (i.e.137

constitute residual heterozygosity). The second approach assumes that all non-singleton mismatches represent138

true polymorphism, yielding an estimated long-read error rate of 0.0183%. Both estimates are nearly an order139

of magnitude lower than other high-throughput sequencing technologies (∼0.1% for Illumina, ∼1% for 454 and140

Ion Torrent (Glenn, 2011), 15-18% for PacBio (Schatz et al., 2012)). The reason that TruSeq synthetic long-141

read achieve such low error rates is that they are built as consensuses of multiple overlapping short Illumina142

reads. We further observed that all types of errors are more frequent at the beginning of reads, though the143

pattern is more pronounced for mismatches and deletions (Figures 1B, 1C, & 1D). Minor imprecision in the144
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trimming of adapter sequence is likely responsible for this distinct error profile. Based on the observation145

of low error rates, no pre-processing steps were necessary to perform in preparation for assembly (though146

overlap-based trimming and detection of chimeric and spurious reads are performed by default by the Celera147

Assembler that we used in this study).148

We then quantified the average depth of coverage of the mapped long-reads for each reference chromosome149

arm. We found consistent and uniform coverage of ∼21× of the euchromatin of each of the major autosomes150

(2L,2R,3L,3R; Figure 2). Coverage of the heterochromatic portions of autosomes was generally lower (∼11-151

14×), and also varied marginally both within and between chromosomes. This is explained by the fact that152

heterochromatin has high repeat content relative to euchromatin, making it more difficult to assemble into153

long reads. Consequently, the fourth chromosome showed relatively lower average read depth (15.8× compare154

to 21×), likely due to enrichment of heterochromatic islands on this chromosome (Haynes et al., 2006). Read155

depth on the sex chromosomes is also expected to be lower: 75% relative to the autosomes for the X and 25%156

relative to the autosomes for the Y, assuming equal numbers of males and females in the pool. Observed read157

depth was lower still at 12.6× for the X chromosome (12.6×) as well as the Y chromosome (2.7×), which is158

entirely heterochromatic. Read depth for the mitochondrial genome was also relatively low (5.6×) in contrast159

to high mtDNA representation in short read genomic libraries, which we suspect to be a consequence of the160

fragmentation and size selection steps of the library preparation protocol.161

Assessment of assembly content and accuracy162

Li and Waterman (2003) showed that in addition to flow cytometry and other molecular biology approaches,163

genome size can be roughly estimated from raw sequence data by counting the occurrences of distinct k-164

mers (i.e., unique k-length subsequences of reads) prior to assembly. We used the k-mer counting software165

KmerGenie (Chikhi and Medvedev, 2014) to produce a k-mer abundance histogram, which depicts the num-166

ber of occurrences of each unique k-mer within the TruSeq synthetic long-read dataset (Figure S2). The167

characteristic spike at low coverage represents a combination of errors and residual polymorphism while the168

high coverage tail represents genomic repeats. The observed abundance peak at approximately 21× provides169

an independent, reference-free estimate of the average depth of coverage. The relatively small peak at low170

coverage provides reference-free evidence that the error rate of TruSeq synthetic long-reads is extremely low.171

By modeling errors, polymorphism, and repeats, the program also estimates an optimal value of k for the172

assembly (155, here). Based on 155-mer abundance, the program estimated a total assembly length of 120.4173

Mbp, in line with the 120 Mbp length of the euchromatic reference, but substantially lower than the 180 Mbp174
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estimate based on flow cytometry. This discrepancy is likely due to lower coverage of the heterochromatin175

(as reported above) as well as a decision of the KmerGenie program to ignore highly repetitive k-mers in the176

genome size estimate (Chikhi and Medvedev, 2014).177

To perform de novo assembly, we used the Celera Assembler, an overlap-layout-consensus assembler178

developed and used to generate the first genome sequence of a multicellular organism, D. melanogaster179

(Adams et al., 2000), as well as one of the first diploid human genome sequences (Levy et al., 2007). Our180

assembly contains 5,066 contigs of lengths ranging from 1,831 bp to 925.7 Kbp. The N50 contig length, the181

length of the contig for which half of the total assembly length is contained in contigs of that size or larger,182

is 109.2 Kbp, while the NG50 contig length (analogous to N50, but normalized to the expected genome size183

of 180 Mbp) is 77.9 Kbp (Table 1). Note that because the TruSeq synthetic long-read data are effectively184

single end reads, only contig rather than scaffold metrics are reported. The total length of the assembly (i.e.185

the sum of all contig lengths) is 153.3 Mbp, with a GC content of 42.18% (compared to 41.74% GC content186

in the reference genome).187

The Assemblathon 2 competition (Bradnam et al., 2013) introduced four simple statistics to assess the188

quality of a de novo assembly given a trusted reference genome sequence, which they term: coverage, validity,189

multiplicity, and parsimony. The coverage of our assembly, the proportion of the reference sequence (excluding190

U and Uextra) reconstructed in some form, was 0.9741. Validity, the proportion of the assembly that could191

be validated through alignment to the reference, was 0.8586. Upon inclusion of unmapped scaffolds U and192

Uextra, this metric increased to 0.9932, demonstrating that there is very little novel sequence in our assembly.193

Our assembly did show slight redundancy, with a multiplicity of 1.0419, calculated as the total length of all194

alignments divided by the total length of the reference sequence to which there is at least one alignment.195

Multiplicity may have been increased by the decision to set the assembler error rate parameter very low196

(based on high read accuracy). A low error rate means greater specificity to distinguish closely related197

repeats, but can also induce redundancy in the assembly in the face of even low rates of polymorphism198

and sequence error. Finally, the parsimony of our assembly (the multiplicity divided by the validity) was199

1.2134. This metric effectively quantifies the average number of assembled bases that must be inspected in200

order to identify a reference-validated base. Each of these results compared favorably to the results from201

Assemblathon 2, albeit for a much smaller and simpler genome compared to the vertebrate species used in202

that competition. Likewise, because of the availability of the entire reference genome to which to compare203

(versus a small number of verified fosmid regions in the case of Assemblathon 2), we achieved much higher204

rates of validity, which in turn affects parsimony as well.205
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In order to assess the presence or absence as well as the accuracy of the assembly of various genomic206

features, we developed a pipeline that reads in coordinates of generic annotations and compares the reference207

and assembly for these sequences (see Methods). As a first step in the pipeline, we used NUCmer (Delcher208

et al., 2002; Kurtz et al., 2004) to align assembled contigs to the reference genome, extracting the longest209

increasing subset of alignments with respect to the reference (weighted by length × sequence identity).210

We then tested whether both boundaries of a given genomic feature were present within the same aligned211

contig. For features that met this criterion, we performed local alignment of the reference sequence to the212

corresponding contig using BLASTN (Altschul et al., 1997), evaluating the results to calculate the proportion213

of the sequence aligned as well as the percent identity of the alignment. The presence of duplicated and214

repetitive sequences in introns complicates gene assembly and annotation, potentially causing genes to be215

fragmented. Nevertheless, we determined that 15,534 of 16,656 (93.2%) FlyBase-annotated genes have start216

and stop boundaries contained in a single aligned contig within our assembly. A total of 14,206 genes (85.3%)217

have their entire sequence reconstructed with perfect identity to the reference sequence, while 15,252 genes218

have the entire length aligned with >99% sequence identity. For the remaining 1,122 genes whose boundaries219

were not contained in a single contig, we found that 878 were partially reconstructed as part of one or more220

contigs.221

To gain more insight about the alignment on a per-chromosome basis, we further investigated the NUCmer222

alignment of the 5,066 assembled contigs to the reference genome. Upon requiring high stringency alignment223

(>99% sequence identity and >1 Kbp aligned), there were 1,973 alignments of our contigs to the euchromatic224

portions of chromosomes X, 2, 3, and 4, covering a total of 117.8 Mbp (97.9%) of the euchromatin (Table225

2). For the heterochromatic sequence (XHet, 2Het, 3Het, and YHet), there were 523 alignments at this226

same threshold, covering 8.2 Mbp (88.1%) of the reference. Of the 2,820 remaining contigs that were not227

represented by these alignments, 1,082 aligned with the same stringency to portions of the unmapped scaffolds228

(U and Uextra).229

Because repeats are a common cause of assembly failure, we hypothesized that gaps in the alignment230

of our assembly to the reference genome would overlap known repeats. We therefore analyzed the content231

of the 3,758 gaps in the high-stringency NUCmer global alignment, which represent failures of sequencing,232

library preparation, or assembly. We applied RepeatMasker (Smit, Hubley, & Green. RepeatMasker Open-233

3.0. 1996-2010. <http://www.repeatmasker.org>) to the reference sequences corresponding to alignment234

gaps, revealing that 42.71% of gap sequence are comprised of TEs, 17.38% of satellites, 2.66% of simple235

repeats, and 0.09% of other low complexity sequence. These proportions of gap sequences composed of TEs236
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and satellites exceed the overall genome proportions of 20.35% and 4.00%, while the proportions composed237

of simple repeats and low complexity sequences are comparable to the overall genome proportions of 2.50%238

and 0.30%. Because a large proportion of the gap sequence was comprised of TEs, we investigated which TE239

families were most responsible for these assembly failures. A total of 587 of the 3,758 gaps overlapped the240

coordinates of annotated TEs, with young TE families being the most highly represented. For example, LTR241

elements from the roo family were the most common, with 129 copies (of only 136 copies in the genome)242

overlapping gap coordinates. TEs from this family are long (canonical length of 9,092 bp) and recently243

diverged (mean of 0.0086 substitutions per base), and are therefore difficult to assemble. In-depth analysis of244

TruSeq synthetic long-reads alignments to the locations of roo elements revealed that coverage was generally245

lower within the boundaries of TE insertion sites, likely due to failure to assemble long-reads from underlying246

short read data (e.g., Figure S4). Conversely, elements of the high-copy number (2,235 copies) INE-1 family247

were underrepresented among gaps in the alignment, with only 54 copies overlapping gaps. INE-1 elements248

tend to be short (611 bp canonical length) and represent older transposition with greater divergence among249

copies.250

Manual curation of the alignment also revealed that assembly is particularly poor in regions of tandem251

arrangement of TE copies from the same family, a result that is expected because repeats will be present within252

individual wells during library preparation (Figure S5A). In contrast, assembly can be successful in regions253

with high-repeat density, provided that the TEs are from different families (Figure S5B). Together, these254

observations about the assembly of particular TE families motivated formal investigation of the characteristics255

of particular TE copies and TE families that affect their assembly, as we describe in the following section.256

Assessment of TE assembly257

Repeats can induce three common classes of mis-assembly. First, tandem repeats may be erroneously col-258

lapsed into a single copy. While the accuracy of TruSeq synthetic long-reads are advantageous in this case,259

such elements may still complicate assembly because they are likely to be present within a single molecule260

(and therefore a single well) during library preparation. Second, large repeats may fail to be assembled261

because reads do not span the repeat anchored in unique sequence, a situation where TruSeq long-reads are262

clearly beneficial. Finally, highly identical repeat copies introduce ambiguity into the assembly graph, which263

can result in repeats being placed in the wrong location in the assembly. As TEs are diverse in their organi-264

zation, length, copy number, and divergence, we decided to assess the accuracy of TE assembly with respect265

to each of these factors. We therefore compared reference TE sequences to the corresponding sequences in266
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our assembly. Because a naive mapping approach could result in multiple reference TE copies mapping to267

the same location in the assembly, our approach was specifically designed to restrict the search space within268

the assembly based on the NUCmer global alignment (see Methods).269

Of the 5,425 TE copies annotated in the D. melanogaster reference genome, 4,588 (84.6%) had both270

boundaries contained in a single contig of our assembly aligned to the reference genome, with 4,362 (80.4%)271

perfectly reconstructed based on length and sequence identity.272

In order to test which properties of TE copies affected faithful reconstruction, we fit a generalized linear273

mixed model (GLMM) with a binary response variable indicating whether or not each TE copy was perfectly274

assembled. For the fixed effects, we first included TE length, as we expect assembly to be less likely in275

cases where individual reads do not span the length of the entire TE copy. We also included TE divergence276

estimates (FlyTE database. Fiston-Lavier, pers. comm.), as low divergence (corresponding to high sequence277

identity) can cause TEs to be misplaced or mis-assembled. Average coverage of the chromosome on which278

the TE copy is located was also included, as higher coverage generally improves assembly results. Finally,279

we included a random effect of TE family, which accounts for various family-specific factors not represented280

by the fixed effects, such as sequence complexity. We found that length (b = −5.588× 10−4, Z = −20.294,281

P < 2× 10−16), divergence (b = 4.073, Z = 6.864, P = 6.69× 10−12), and coverage (b = 5.474× 10−2,282

Z = 3.493, P = 0.000478) were significant predictors of accurate TE assembly (Figure 3; Table S3). Longer283

and less divergent TE copies, as well as those falling on chromosomes with lower depth of coverage, resulted284

in a lower probability of accurate assembly (Figure 3).285

However, we also hypothesized that copy number (TE copies per family), could be important, as high286

copy number represents more opportunities for false joins which can break the assembly or generate chimeric287

contigs. Because copy number is a property of TE families (the random effect), it could not be incorporated288

using the GLMM framework. To test this effect, we fit a generalized linear model with the proportion of TE289

copies accurately assembled per TE family as the response variable. In this model, we included mean length,290

mean divergence, and mean copy number as predictors. This model indeed revealed that copy number is a291

significant predictor of TE assembly (b = −0.04302, Z = −2.275, P = 0.0229), with fewer TEs accurately292

assembled for high copy number families.293

In spite of the limitations revealed by this analysis, we observed several remarkable cases where accurate294

assembly was achieved, distinguishing the sequences of TEs from a single family with few substitutions among295

the set. For example, the 10 of the 11 elements in the Juan family have less than 0.1% divergence with respect296

to the canonical sequence, yet all 11 copies were assembled with 100% accuracy in separate contigs.297
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Impact of the coverage on assembly results298

Due to high read quality, de novo assembly with TruSeq synthetic long-reads requires lower depth of coverage299

compared to assembly with short reads. However, the relationship between coverage and assembly quality300

is complex, as we expect a plateau in assembly quality at the point where the assembly is no longer limited301

by data quantity. To evaluate the impact of depth of coverage on the quality of the resulting assembly, we302

randomly down-sampled the full 21× dataset to 15×, 10×, 5×, and 2.5×. We then performed separate de novo303

assemblies for each of these down-sampled datasets, evaluating and comparing assemblies using the same size304

and correctness metrics previously reported for the full-coverage assembly. We observed an expected nonlinear305

pattern for several important assembly metrics, which begin to plateau as depth of coverage increases. NG50306

contig length increases rapidly with coverage up to approximately 10×, increasing only marginally at higher307

coverage (Figure 4A). We do not expect the monotonic increase to continue indefinitely, as very high coverage308

can overwhelm OLC assemblers such as Celera (see documentation, which recommends no more that 25×).309

Gene content also increases only marginally as coverage increases above approximately 10×, but TE content310

does not saturate as rapidly (Figure 4B). Our results likewise suggest that even very low coverage assemblies311

(2.5×) using TruSeq synthetic long-reads can accurately recover more than half of all annotated genes as well312

as nearly 40% of annotated TEs.313
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Discussion314

Rapid technological advances and plummeting costs of DNA sequencing technologies have allowed biologists315

to explore the genomes of species across the tree of life. However, translating the massive amounts of sequence316

data into a high quality reference genome ripe for biological insight represents a substantial technical hurdle.317

Repeat elements, which are diverse in their structure and copy number, are the main reason for this technical318

bottleneck. While not every repeat causes assembly failure, Phillippy et al. (2008) appropriately noted that319

nearly every assembly failure is caused by repeats. Consequently, many assemblers attempt to mask repeat320

elements prior to assembly, thereby removing them from the final genome sequence. While this approach321

may improve assembly contiguity and accuracy, diverse classes of repeats represent an important feature322

of species’ genomes across the tree of life, fundamentally affecting genome size structure as well as genome323

function (González and Petrov, 2009; Feschotte et al., 2002; Kidwell and Lisch, 2001; Cordaux and Batzer,324

2009; Nekrutenko and Li, 2001).325

Despite their importance to genome content and function, few tools (e.g. T-lex2 (Fiston-Lavier et al.,326

2011), RetroSeq (Keane et al., 2013), Tea (Lee et al., 2012)) are currently available for discovery and anno-327

tation of TE sequences in high-throughput sequencing data. Because these tools depend on the quality of328

the assembly to which they are applied, annotation is generally limited to short and divergent TE families,329

biasing our current view of TE organization. Accurate assembly and annotation of TEs and other repeats330

will dramatically enrich our understanding of the complex interactions between TEs and host genomes as331

well as genome evolution in general.332

One of the simplest ways to accurately resolve repeat sequences is to acquire reads longer than the length of333

the repeats themselves. Here, we presented a novel sequencing approach (TruSeq) that allows the generation334

of highly accurate synthetic reads up to 15 Kbp in length. We showcased the utility of this approach for335

assembling highly repetitive, complex TEs with high accuracy, a feat that was not possible with short read336

data alone. As a first step in our analysis, we analyzed the content of the long-read data, evaluating long-337

read accuracy as well as uniformity of coverage of the D. melanogaster reference genome. We found that the338

reads were highly accurate, with error rates lower than other current long-read sequencing technologies. We339

also observed relatively uniform coverage across both the euchromatic and heterochromatic portions of the340

autosomes, with somewhat reduced coverage of the heterochromatin, which can be explained by both the341

fact that heterochromatin is more difficult to sequence as well as the fact that it is generally more repetitive342

and therefore more difficult to assemble into long reads from underlying short read data. Low coverage of343

the unmapped scaffolds U and Uextra may have a similar explanation, but the non-zero coverage of these344
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chromosomes within our dataset suggests that at least a portion represents true fly-derived sequences. Low345

coverage of the mitochondrial genome is likely a consequence of the size selection step used in the library346

preparation protocol.347

Our assembly achieved an NG50 contig length of 77.9 Kbp, covering 97.41% of the existing reference348

genome, and assembling 85.3% of annotated genes with perfect sequence identity. Using both standard349

assembly metrics (number of contigs, contig length, etc.) and new metrics introduced by Assemblathon 2350

(Bradnam et al., 2013), we demonstrated that our assembly compares favorably to other de novo assemblies of351

other large and complex genomes. Nevertheless, we expect that future methodological advances will unlock352

the full utility of TruSeq synthetic long-read technology. We used a simple pipeline of existing tools to353

investigate the advantages of TruSeq long-read technology, but new algorithms and assembly software will354

be tailored specifically for this platform in the near future (J. Simpson, pers. comm.).355

In addition to general improvements for de novo assembly, our study demonstrates that TruSeq synthetic356

long-reads enable accurate assembly of complex, highly repetitive TE sequences. Our assembly contains357

80.4% of annotated TEs perfectly identical in sequence to the current reference genome. Despite the high358

quality of the current reference, errors undoubtedly exist in the current TE annotations, and it is likely that359

there is some divergence between the sequenced strain and the reference strain from which it was derived,360

making the estimate of the quality of TE assembly conservative. Likewise, we used a generalized linear361

modeling approach to demonstrate that TE length is the main feature limiting the assembly of individual362

TE copies, a limitation that could be partially overcome by future improvements to the library preparation363

technology to achieve even longer synthetic reads. Finally, by performing this assessment in D. melanogaster,364

a species with particularly active, abundant, and identical TEs, our results suggest that TruSeq technology365

will empower studies of TE dynamics for many non-model species in the near future.366

The TruSeq synthetic long-read approach represents a “generation 2.5” sequencing technology that builds367

upon second-generation Illumina short read data. This new approach promises to dramatically advance a368

wide range of genomic applications. Meanwhile, several third-generation sequencing platforms have been369

developed to sequence long molecules directly. One such technology, Oxford Nanopore sequencing (Oxford,370

UK) (Clarke et al., 2009), possesses several advantages over existing platforms, including the generation of371

reads exceeding 5 Kbp at a speed 1 bp per nanosecond. Pacific Biosciences’ (Menlo Park, CA, USA) single-372

molecule real-time (SMRT) sequencing likewise uses direct observation of enzymatic reactions to produce373

base calls in real time with reads averaging ∼1,300 bp in length, and fast sample preparation and sequencing374

(1-2 days each) (Roberts et al., 2013). Perhaps most importantly, neither Nanopore nor SMRT sequencing375
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requires PCR amplification, which reduces biases and errors that place an upper limit on the sequencing376

quality of most other platforms. By directly sequencing long molecules, these third-generation technologies377

will likely outperform TruSeq synthetic long-reads in certain capacities, such as the accurate reconstruction378

of highly-identical tandem repeats which could be collapsed within TruSeq long-reads.379

Most current approaches to de novo assembly ignore repetitive elements such as TEs, focusing only on380

the reconstruction of non-repetitive sequences. Such approaches bias perspectives of evolution of complex381

genomes, which can be comprised of more than 50% repetitive DNA. In addition to accurately recovering382

more than 97% of the current high quality reference genome, our assembly using TruSeq synthetic long-reads383

accurately placed and perfectly reconstructed the sequence of 85.3% of genes and 80.4% of TEs, a result which384

is unprecedented in the field of de novo genome assembly. These improvements to de novo assembly, facilitated385

by TruSeq synthetic long-reads and other long-read technologies, will empower comparative analyses that386

will enlighten the understanding of the dynamics of repeat elements and genome evolution in general.387
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Methods388

Reference genome and annotations389

The latest release of the D. melanogaster genome sequence at the time of the preparation of this manuscript390

(Release 5.53) and corresponding TE annotations were downloaded from FlyBase (http://www.fruitfly.391

org/). All TE features come from data stored in the FlyTE database (Fiston-Lavier, pers. comm.), and392

were detected using the program BLASTER (Quesneville et al., 2003, 2005).393

Library preparation394

High molecular weight DNA was separately isolated from pooled samples of the y;cn,bw,sp strain of Drosophila395

melanogaster using a standard ethanol precipitation-based protocol. Approximately 50-100 adult individuals,396

both males and females, were pooled for the extraction to achieve sufficient gDNA quantity for preparation397

of multiple TruSeq synthetic long-read libraries.398

Four synthetic long read libraries were prepared by Illumina using a proprietary TruSeq synthetic long-399

read protocol, previously known as Moleculo or LR-seq (Voskoboynik et al., 2013). To produce each library,400

extracted gDNA is sheared into approximately 10 Kbp fragments, ligated to amplification adapters, and then401

diluted to the point that each well on a 384-well plate contains approximately 200 molecules, representing402

approximately 1.5% of the entire genome. These pools of DNA are then amplified by long range PCR.403

Barcoded libraries are prepared within each well using Nextera-based fragmentation and PCR-mediated404

barcode and sequencing adapter addition. The libraries undergo additional PCR amplification if necessary,405

followed by paired-end sequencing on the Illumina HiSeq 2000 platform. Assembly is parallelized into many406

local assemblies, which means that the likelihood of individual assemblies containing multiple members of407

gene families (that are difficult to distinguish from one another and from polymorphism within individual408

genes) is greatly reduced. These local assemblies are performed using a proprietary short read assembler that409

accounts for particular molecular biology aspects of the library preparation.410

Assessment of long read quality411

To estimate the degree of contamination of the D. melanogaster libraries prepared by Illumina, we used412

BLASTN (Altschul et al., 1997) to search the 523,583 total reads against the D. melanogaster reference413

sequences (including heterochromatic scaffolds and unmapped scaffolds U and Uextra) with a stringent cut-414

off of e-value < 1e-12. We also used BLASTN to compare the reads against reference sequences from the415
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NCBI nucleotide database (http://www.ncbi.nlm.nih.gov/nuccore). The TruSeq synthetic long-reads416

were mapped to a repeat-masked version of the D. melanogaster reference genome as single-end reads using417

BWA-MEM (Li and Durbin, 2009). Depth of coverage was estimated by applying the GATK DepthOfCov-418

erage tool to the resulting alignment.419

To estimate error rates, we again mapped the data the the euchromatic arms of the D. melanogaster420

reference genome using BWA-MEM (Li and Durbin, 2009), then parsed the resulting BAM file to calculate421

position-dependent mismatch, insertion, and deletion profiles. Because a portion of this effect would result422

from accurate sequencing of genomes harboring residual heterozygosity, we used data from the Drosophila423

Genetic Reference Panel (DGRP) (Mackay et al., 2012) to estimate both the rate of residual heterozy-424

gosity as well as a corrected error rate of the TruSeq synthetic long-reads. We applied the jvarkit util-425

ity (<https://github.com/lindenb/jvarkit/wiki/Biostar59647>) to identify positions in the reference426

genome where mismatches occurred. We then used the relationship that the total number sites with mis-427

matches to the euchromatic reference chromosome arms (M) = 487,455 = Lm + pLθ, where L is the428

120,381,546 bp length of the reference sequence to which we aligned, m is the per base error rate, p is429

the proportion of heterozygous sites still segregating in the inbred line, and θ is the average proportion of430

pairwise differences between D. melanogaster genome sequences, estimated as 0.141 from DGRP. Meanwhile,431

the number of mismatches that overlap with SNP sites in DGRP (MSNP ) = 28, 657 = LmθD + pLθ, where432

θD is the proportion of sites that are known SNPs within DGRP (0.0404). Note that this formulation makes433

the simplifying assumption that all segregating SNPs would have been previously observed in DGRP, which434

makes the correction conservative. Solving for the unknown variables:435

436

m =
M −MSNP

L(1− θD)
p =

MSNP −MθD
Lθ(1− θD)

437

438

To convert m to the TruSeq synthetic long-read error rate, we simply divide by the average depth of cov-439

erage of the euchromatic sequence (20.58×), estimating a corrected error rate of 0.0192% per base. This440

estimate is still conservative in that it does not account for mismatches observed multiple times at a sin-441

gle site, which should overwhelmingly represent residual polymorphism. We therefore additionally applied442

a second approach where we assumed that all 12,064 sites with more than one mismatch represented true443

polymorphism, calculating the error rate as above with only singleton mismatches. As expected, this method444

yielded a slightly lower error rate of 0.0183%.445
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Genome assembly446

Most recent approaches to de novo genome assembly are based on the de Bruijn graph paradigm, which offers447

a substantial computational advantage over overlap-layout-consensus (OLC) approaches when applied to large448

datasets. Nevertheless, for datasets with moderate sequencing depth (such as TruSeq long-read libraries),449

OLC approaches can be computationally tractable and tend to be less affected by both repeats and sequencing450

errors than de Bruijn graph-based algorithms. Likewise, many modern Bruijn graph-based assemblers simply451

do not permit reads exceeding arbitrary length cutoffs. We therefore elected to use the Celera Assembler,452

an OLC assembler developed and used to generate the first genome sequence of a multicellular organism,453

Drosophila melanogaster (Adams et al., 2000), as well as one of the first diploid human genome sequences454

(Levy et al., 2007).455

After testing the assembler using a range of parameters, we decided upon three modifications to the456

default assembly parameters to take advantage of unique aspects of the data (B. Walenz, pers. comm.): 1)457

we used the bogart unitigger, rather than the default utg algorithm, 2) we decreased the unitig graph error458

rate to 0.3% and unitig merge error rate to 0.45% based on the low observed error rate upon mapping data459

to the reference as well as the low level of residual heterozygosity in this inbred line, and 3) we increased460

the specificity of overlap seeds by increasing the k-mer size to 31 and doubling the overlap threshold. In the461

face of very high read quality, these modifications to increase assembler specificity should not substantially462

reduce sensitivity to detect true overlaps.463

For the down-sampled assemblies with lower coverage, we based the expected coverage on the average464

mapped depth of coverage of 21× for the full dataset. We randomly sampled reads from a concatenated465

FASTQ of all four libraries until the total length of the resulting dataset was equal to the desired coverage.466

Assessment of assembly quality467

We aligned the contigs produced by the Celera Assembler to the reference genome sequence using the NUCmer468

pipeline (version 3.23) (Delcher et al., 2002; Kurtz et al., 2004). From this alignment, we used the delta-filter469

tool to extract the longest increasing subset of alignments to the reference (i.e. the longest consistent set of470

alignments with respect to the reference sequence). We then used to coordinates of these alignments to both471

measure overall assembly quality and investigate assembly of particular genomic features, including genes,472

TEs, and segmental duplications.473

Using this alignment, we identified the locations of reference-annotated gene and TE sequences in our474

assembly and used local alignment with BLASTN (Altschul et al., 1997) to determine sequence identity and475
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length ratio (assembled length/reference length) for each sequence.476

To calculate Assemblathon 2 statistics, we used the COMPASS tool (Bradnam et al., 2013), modifying477

it to use the same NUCmer alignment rather than performing a new alignment with LASTZ (Harris, 2007).478

COMPASS and the modifications can be found at https://github.com/rmccoy7541/compass.479

The GLMM and GLM used to test the characteristics of TEs that affected accurate assembly were built480

using the lme4 package (Bates et al., 2013) within the R statistical computing environment (R Core Team,481

2013). In the GLMM, the response variable was represented by a binary indicator denoting whether or not482

the entire length of the TE was accurately assembled. This model assumed a binomial error distribution483

with a logit link function. TE copy length, divergence (number of substitutions per base compared to the484

canonical sequence of the TE family), and average coverage of the corresponding chromosome were included485

as fixed effects, while TE family was included as a random effect. For the GLM, we aggregated assembly486

results by family, with the proportion of copies in the family accurately assembled included as the response487

variable. This allowed us to include copy number as a fixed effect, along with the average length, average488

divergence, and average depth of coverage of the corresponding chromosomes for each TE family. In both489

models, all predictor variables were standardized to zero mean and unit variance prior to fitting, in order to490

compare the magnitude of the effects.491

All figures with the exception of those in the supplement were generated using the ggplot2 package492

(Wickham, 2009).493
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Data access494

Raw data, the genome assembly, and code used for the data analysis can be found at XXX. Scripts written495

for the assessment of presence or absence of genomic features in the de novo assembly can be found at496

https://github.com/rmccoy7541/assess-assembly.497
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Figure legends513

Figure 1: Characteristics of TruSeq synthetic long-reads. A: Read length distribution. B, C, & D: Position-514

dependent profiles of B: mismatches, C: insertions, and D: deletions compared to the reference genome. Error515

rates presented in these figures represent all differences with the reference genome, and can be due to errors516
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in the reads, mapping errors, errors in the reference genome, or accurate sequencing of residual polymorphism.517

518

Figure 2: Depth of coverage per chromosome arm. The suffix “Het” indicates the heterochromatic portion519

of the corresponding chromosome. M iso1 is the mitochondrial genome of the yw;cn,bw,sp strain. U and520

Uextra are additional scaffolds in the reference assembly that could not be mapped to chromosomes.521

522

Figure 3: Probability of accurate (100% length and sequence identity) assembly with respect to significant523

predictor variables: TE length (b = −5.588× 10−4, Z = −20.294, P < 2× 10−16), divergence (b = 4.073,524

Z = 6.864, P = 6.69× 10−12), and average depth of coverage of the chromosome on which the TE is found525

(b = 5.474× 10−2, Z = 3.493, P = 0.000478). The upper sets of points represent TEs which were perfectly526

assembled, while the lower set of points represents TEs which are absent from the assembly or were mis-527

assembled with respect to the reference. Lines represent predicted values from the GLMM fit to these data.528

Colors indicate different TE families (126 total).529

530

Figure 4: Assembly metrics as a function of depth of coverage of TruSeq synthetic long-reads. A: NG(X)531

contig length for full and down-sampled coverage data sets. This metric represents the size of the contig532

for which X% of the genome length (180 Mbp) lies in contigs of that size or longer. B: The proportion533

of genes and transposable elements accurately assembled (100% length and sequence identity) for full and534

down-sampled coverage data sets.535

536

Figure S1: Diagram of the TruSeq synthetic long-read library preparation protocol.537

538

Figure S2: K-mer coverage histogram generated by KmerGenie (Chikhi and Medvedev, 2014), depicting the539

number of occurrences of each unique k-mer within the TruSeq synthetic long-read dataset. Low coverage540

k-mers represent long-read errors and polymorphism (or errors in the reference genome) while high coverage541

k-mers (x-axis truncated at 60×) represent genomic repeats.542

543

Figure S3: Dot plots depicting NUCmer (Delcher et al., 2002) global alignment between assembled contigs544

and the reference genome. Segments off of the diagonal represent various classes of mis-assembly (insertions,545

deletions, or translocations with respect to the reference sequence). Blue segments represent forward align-546

ments, while red segments indicate an inversion with respect to the rest of the contig alignment. Dot plots547
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were generated using the mummerplot feature of MUMmer (Kurtz et al., 2004).548

549

Figure S4: IGV screenshot (Robinson et al., 2011; Thorvaldsdóttir et al., 2013) of a representative case where550

assembly fails due to a deficiency of long-read data derived from a long transposable element sequence. The551

upper-most track (blue) represents the NUCmer alignment of assembled contigs to the reference genome.552

The middle track represents the BWA alignment of the underlying TruSeq synthetic long-reads. For each553

of these tracks, blue and red shading indicate the orientation of the alignment (i.e. whether the sequence is554

reverse complemented). The bottom track (green) indicates the boundaries of transposable elements.555

556

Figure S5: IGV screenshots (Robinson et al., 2011; Thorvaldsdóttir et al., 2013) of representative cases where557

assembly succeeds or fails based on characteristics of TEs in the genomic region. See the legend of Figure S4558

for descriptions of each of the alignment tracks. A: A case where assembly fails in the presence of tandem559

repeats of elements from the Dm88 family. B: A case where assembly succeeds in a repeat-dense region of560

chromosome arm 2R.561

562

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2014. ; https://doi.org/10.1101/001834doi: bioRxiv preprint 

https://doi.org/10.1101/001834


Figures563

Figure 1

0

25000

50000

75000

0 5 10
Moleculo read length (Kbp)

N
um

be
r o

f r
ea

ds

0.0000

0.0005

0.0010

0.0015

0.00 0.25 0.50 0.75 1.00
Relative position in read

In
se

rti
on

 ra
te

0.0000

0.0005

0.0010

0.0015

0.00 0.25 0.50 0.75 1.00
Relative position in read

M
is

m
at

ch
 ra

te

0.0000

0.0005

0.0010

0.0015

0.00 0.25 0.50 0.75 1.00
Relative position in read

D
el

et
io

n 
ra

te

A. B.

C. D.

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2014. ; https://doi.org/10.1101/001834doi: bioRxiv preprint 

https://doi.org/10.1101/001834


Figure 2
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Figure 4

0e+00

2e+05

4e+05

6e+05

0 25 50 75 100
NG(X)%

N
G

(X
) c

on
tig

 le
ng

th

21x

15x

10x

5x

2.5x

0.4

0.5

0.6

0.7

0.8

2.5x 5x 10x 15x 21x
Depth of coverage

P
ro

p.
 a

cc
ur

at
el

y 
as

se
m

bl
ed

A. B.

genes
TEs

●

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2014. ; https://doi.org/10.1101/001834doi: bioRxiv preprint 

https://doi.org/10.1101/001834


Figure S1
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Figure S2

0

2

4

6

8

0 20 40 60
155−mer coverage

lo
g 1

0(
N

um
be

r o
f 1

55
−m

er
s)

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 21, 2014. ; https://doi.org/10.1101/001834doi: bioRxiv preprint 

https://doi.org/10.1101/001834


Figure S3
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Figure S4
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Figure S5
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Tables564

Table 1: Size and correctness metrics for de novo assembly. The N50 length metric measures the length of
the contig for which 50% of the total assembly length is contained in contigs of that size or larger, while
the L50 metric is the rank order of that contig if all contigs are ordered from longest to shortest. NG50
and LG50 are similar, but based on the expected genome size of 180 Mbp rather than the assembly length.
Coverage, validity, multiplicity, and parsimony are metrics introduced in the Assemblathon 2 competition
(Bradnam et al., 2013) and are also described in the main text (calculated using COMPASS <https:
//github.com/jfass/compass>).

Metric Value

Number of contigs 5066
Total size of contigs 153282184
Longest contig 925686
Shortest contig 1831
Number of contigs > 1 Kbp 5066
Number of contigs > 10 Kbp 2377
Number of contigs > 100 Kbp 382
Mean contig size 30257
Median contig size 9388
N50 contig length 109246
L50 contig count 338
NG50 contig length 77878
LG50 contig count 481
Contig GC content 42.18%

Coverage 0.9741 (0.8540)
Validity 0.8586 (0.9932)
Multiplicity 1.0419 (1.0565)
Parsimony 1.2134 (1.0637)

*Values in parentheses represent Assemblathon 2 metrics calculated upon inclusion of reference sequences
U and Uextra (unmapped scaffolds and additional contigs).
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Table 2: Alignment statistics for Celera Assembler contigs aligned to the reference genome with high strin-
gency (>99% sequence identity and >1 Kbp aligned). Note that the number of gaps can be substantially
fewer than the number of aligned contigs because alignments may partially overlap or be perfectly adjacent
with respect to the reference. The number of gaps can also exceed the number of aligned contigs due to
multiple partial alignments of contigs to the reference sequence.

Reference Aligned contigs Alignment gaps Length aligned (bp) Percent aligned

X 633 493 21461492 95.71
2L 322 178 22565901 98.06
2R 299 144 20790246 98.31
3L 357 201 24158719 98.43
3R 307 162 27603229 98.92
4 55 42 1262176 93.37

XHet 8 8 148085 72.55
2LHet 25 15 253375 68.69
2RHet 166 81 2508722 76.28
3LHet 166 83 2238074 87.58
3RHet 132 70 2121303 84.26
YHet 26 28 127328 36.69

M 0 0 0 0
U 893 1215 4411149 43.90
Uextra 661 1038 1436060 4.95
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Table S1: Top BLAST hits to the NCBI nucleotide database for all TruSeq synthetic long-reads. Only
species/strains with ≥5 hits are reported here.

No. long reads Species/strain of top BLAST hit

522772 Drosophila melanogaster
93 Gluconacetobacter diazotrophicus PAl 5
79 Drosophila mauritiana
64 Enterobacteria phage HK629
59 Gluconacetobacter xylinus NBRC 3288
42 Acetobacter pasteurianus 386B
37 Gluconobacter oxydans 621H
35 Gluconobacter oxydans H24
26 Drosophila simulans
18 Cloning vector pSport1
15 synthetic construct
13 Acetobacter pasteurianus IFO 3283-01
11 Drosophila pseudoobscura
9 Acetobacter pasteurianus IFO 3283-12
5 Drosophila sechellia
5 Acetobacter aceti
5 Granulibacter bethesdensis CGDNIH1
5 Rhodomicrobium vannielii ATCC 17100

Table S2: Results of fitting a generalized linear mixed model with a binary response variable indicating
whether individual TE copies are accurately assembled.

Random effect Variance Std. Dev.

Family (Intercept) 1.432 1.197

Fixed effect Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.81722 0.13879 13.094 < 2e-16
Length -1.50683 0.07425 -20.294 < 2e-16
Divergence 0.68216 0.09938 6.864 6.69e-12
Coverage 0.17921 0.05131 3.493 0.000478
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