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Abstract

The widespread and rapid adoption of high-throughput sequencing technologies has afforded re-

searchers the opportunity to gain a deep understanding of genome level processes that underlie

evolutionary change, and perhaps more importantly, the links between genotype and phenotype. In

particular, researchers interested in functional biology and adaptation have used these technologies

to sequence mRNA transcriptomes of specific tissues, which in turn are often compared to other

tissues, or other individuals with different phenotypes. While these techniques are extremely power-

ful, careful attention to data quality is required. In particular, because high-throughput sequencing

is more error-prone than traditional Sanger sequencing, quality trimming of sequence reads should

be an important step in all data processing pipelines. While several software packages for qual-

ity trimming exist, no general guidelines for the specifics of trimming have been developed. Here,

using empirically derived sequence data, I provide general recommendations regarding the optimal

strength of trimming, specifically in mRNA-Seq studies. Although very aggressive quality trimming

is common, this study suggests that a more gentle trimming, specifically of those nucleotides whose

Phred score <2 or <5, is optimal for most studies across a wide variety of metrics.

Introduction1

The popularity of genome-enabled biology has increased dramatically over the last few years. While2

researchers involved in the study of model organisms have had the ability to leverage the power of3

genomics for nearly a decade, this power is only now available for the study of non-model organisms.4

For many, the primary goal of these newer works is to better understand the genomic underpinnings of5

adaptive (Linnen et al., 2013; Narum et al., 2013) or functional (Hsu et al., 2012; Muñoz-Mérida6

et al., 2013) traits. While extremely promising, the study of functional genomics in non-model7
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organisms typically requires the generation of a reference transcriptome to which comparisons are8

made. Although compared to genome assembly transcriptome assembly is less challenging (Bradnam9

et al., 2013; Earl et al., 2011), significant computational hurdles still exist. Amongst the most difficult10

of challenges in transcriptome assembly involves the reconstruction of isoforms (Pyrkosz et al., 2013),11

simultaneous assembly of transcripts where read coverage (=expression) varies by orders of magnitude,12

and overcoming biases related to random hexamer (Hansen et al., 2010) and GC content (Dohm13

et al., 2008).14

These processes are further complicated by the error-prone nature of high-throughput sequencing15

reads. With regards to Illumina sequencing, error is distributed non-randomly over the length of the16

read, with the rate of error increasing from 5’ to 3’ end (Liu et al., 2012). These errors are17

overwhelmingly substitution errors (Yang et al., 2013), with the global error rate being between 1%18

and 3%. Although de Bruijn graph assemblers do a remarkable job in distinguishing error from correct19

sequence, sequence error does results in assembly error (MacManes and Eisen, 2013). While this type20

of error is problematic for all studies, it may be particularly troublesome for SNP-based population21

genetic studies. In addition to the biological concerns, sequencing read error may results in problems22

of a more technical importance. Because most transcriptome assemblers use a de Bruijn graph23

representation of sequence connectedness, sequencing error can dramatically increase the size and24

complexity of the graph, and thus increase both RAM requirements and runtime.25

In addition to sequence error correction, which has been shown to improve accuracy of the de novo26

assembly (MacManes and Eisen, 2013), low quality (=high probability of error) nucleotides are27

commonly removed from the sequencing reads prior to assembly, using one of several available tools28

(Trimmomatic (Lohse et al., 2012), Fastx Toolkit29

(http://hannonlab.cshl.edu/fastx_toolkit/index.html), biopieces30

(http://www.biopieces.org/)). These tools typically use either a sliding window approach,31

discarding nucleotides falling below a given (user selected) average quality threshold, or trimming of32

low-quality nucleotides at one or both ends of the sequencing read. Though the absolute number will33

surely be decreased in the trimmed dataset, aggressive quality trimming may remove a substantial34

portion of the total read dataset, which in transcriptome studies may disproportionately effect lower35
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expression transcripts.36

Although the process of nucleotide quality trimming is commonplace, particularly in the37

assembly-based HTS analysis pipelines (e.g. SNP development (Helyar et al., 2012; Milano et al.,38

2011), functional studies (Ansell et al., 2013; Bhardwaj et al., 2013), and more general studies of39

transcriptome characterization (MacManes and Lacey, 2012; Touming et al., 2013)), it’s optimal40

implementation has not been well defined. Though the rigor with which trimming is performed may be41

guided by the design of the experiment, a deeper understanding of the effects of trimming is desirable.42

As transcriptome-based studies of functional genomics continue to become more popular,43

understanding how quality trimming of mRNA-seq reads used in these types of experiments is urgently44

needed. Researchers currently working in these field appear to favor aggressive trimming (e.g. (Looso45

et al., 2013; Riesgo et al., 2012)), but this may not be optimal. Indeed, one can easily image46

aggressive trimming resulting in the removal of a large amout of high quality data (even nucleotides47

removed with the commonly used Phred=20 threshold are accurate 99% of the time), just as48

lackadaisical trimming (or no trimming) may result in nucleotide errors being incorporated into the49

assembled transcriptome.50

Here, I provide recommendations regarding the efficient trimming of high-throughput sequence reads,51

specifically for mRNASeq reads from the Illumina platform. To do this, I used publicly available52

datasets containing Illumina reads derived from Mus musculus. Subsets of these data (10 million, 2053

million, 50 million, 75 million, 100 million reads) were randomly chosen, trimmed to various levels of54

stringency, assembled then analyzed for assembly error and content. In addition to this, I develop a set55

of metrics that may be generally useful in evaluating the quality of transcriptome assemblies. These56

results aim to guide researchers through this critical aspect of the analysis of high-throughput sequence57

data. While the results of this paper may not be applicable to all studies, that so many researchers are58

interested in the genomics of adaptation and phenotypic diversity suggests its widespread utility.59

Materials and Methods60

Because I was interested in understanding the effects of sequence read quality trimming on the61

assembly of vertebrate transcriptome assembly, I elected to analyze a publicly available (SRR797058)62
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paired-end Illumina read dataset. This dataset is fully described in a previous publication (Han et al.,63

2013), and contains 232 million paired-end 100nt Illumina reads. To investigate how sequencing depth64

influences the choice of trimming level, reads data were randomly subsetted into 10 million, 20 million,65

50 million, 75 million, 100 million read datasets. To test the robustness of my findings, I evaluated66

both a second dataset (SRR385624, (Macfarlan et al., 2012)) as well as a technical replicate of the67

primary dataset, both at the 10M read dataset size.68

Read datasets were trimmed at varying quality thresholds using the software package Trimmomatic69

version 0.30 (Lohse et al., 2012), which was selected as it appears to be amongst the most popular of70

read trimming tools. Specifically, sequences were trimmed at both 5’ and 3’ ends using Phred =071

(adapter trimming only), ≤ 2, ≤ 5, ≤ 10, and ≤ 20. Other parameters (MINLEN=25,72

ILLUMINACLIP=barcodes.fa:2:40:15, SLIDINGWINDOW size=4) were held constant. Transcriptome73

assemblies were generated for each dataset using the default settings (except group pairs distance flag74

set to 999) of the program Trinity r2013-02-25 (Grabherr et al., 2011; Haas et al., 2013).75

Assemblies were evaluated using a variety of different metrics, many of them comparing assemblies to76

the complete collection of Mus cDNA’s, available at77

http://useast.ensembl.org/info/data/ftp/index.html.78

Quality trimming may have substantial effect on assembly quality, and as such, I sought to identify79

high quality transcriptome assemblies. Assemblies with few nucleotide errors relative to a known80

reference may indicate high quality. The program Blat v34 (Kent, 2002) was used to identify and81

count nucleotide mismatches between reconstructed transcripts and their corresponding reference. To82

eliminate spurious short matches between query and template inflating estimates of error, only unique83

transcripts that covered more than 90% of their reference sequence were used. Next, because kmers84

represent the fundamental unit of assembly, kmers (k=25) were counted for each dataset using the85

program Jellyfish v1.1.11 (Marçais and Kingsford, 2011). Another potential assessment of assembly86

quality may be related to the number of paired-end sequencing reads that concordantly map to the87

assembly. As the number of reads concordantly mapping increased, so does assembly quality. To88

characterize this, I mapped the full dataset (not subsampled) of adapter trimmed sequencing reads to89

each assembly using Bowtie2 v2.1.0 (Trapnell et al., 2010) using default settings, except for maximum90
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insert size (-X 999) and number of multiple mappings (-k 30).91

Aside from these metrics, measures of assembly content were also assayed. Here, open reading frames92

(ORFs) were identified using the default settings of the program TransDecoder r2013111093

(http://transdecoder.sourceforge.net/), and were subsequently translated into amino acid94

sequences, both using default settings. The larger the number of complete open reading frames95

(containing both start and stop codons) the better the assembly. Next, unique transcripts were96

identified using the blastP program within the Blast+ package version 2.2.28 (Camacho et al.,97

2009). Blastp hits were retained only if the sequence similarity was >80% over at least 100 amino98

acids, and evalue <10−10. As the number of transcripts matching a given reference increases, so may99

assembly quality. Lastly, because the effects of trimming may vary with expression, I estimated100

expression (e.g. FPKM) for each assembled contig using default settings of the the program eXpress101

v1.5.0 (Roberts and Pachter, 2013) and the BAM file produced by Bowtie2 as described above. Code102

for performing the subsetting, trimming, assembly, peptide and ORF prediction and blast analyses can103

be found in the following Github folder104

https://github.com/macmanes/trimming_paper/tree/recreate_ms_analyses/scripts.105

Results106

Quality trimming of sequence reads had a relatively large on the total number of errors contained in107

the final assembly (Figure 1), which was reduced by between 9 and 26% when comparing the108

assemblies of untrimmed versus Phred=20 trimmed sequence reads. Most of the improvement in109

accuracy is gained when trimming at the level of Phred=5 or greater, with modest improvements110

potentially garnered with more aggressive trimming at certain coverage levels (Table 1).111

Figure 1112
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Figure 1. The number of nucleotide errors contained in the final transcriptome assembly,113

normalized to assembly size, is related to the strength of quality trimming (Trimming of nucleotides114

whose error scores are: Phred >20, 10, 5, 2, or no trimming, though most benefits are observed115

at a modest level of trimming. This patterns is largely unchanged with varying depth of sequencing116

coverage (10 million to 100 million sequencing reads). Trimming at Phred = 5 may be optimal,117

given the potential untoward effects of more stringent quality trimming. 10M, 20M, 50M, 75M,118

100M refer to the subsamples size. 10M replicate is the technical replicate, 10M alt. dataset is the119

secondary dataset. Note that to enhance clarity, the Y-axis does not start at zero.120

In de Bruijn graph-based assemblers, the kmer is the fundamental unit of assembly. Even in121

transcriptome datasets, unique kmers are likely to be formed as a results of sequencing error, and122

therefore may be removed during the trimming process. Figure 1A shows the pattern of unique kmer123

loss across the various trimming levels and read datasets. What is apparent, is that trimming at124

Phred=5 removes a large fraction of unique kmers, with either less- or more-aggressive trimming125

resulting in smaller effects. In contrast to the removal of unique kmers, those kmers whose frequency126

is >1 are more likely to be real, and therefore should be retained. Figure 1B shows that while127
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Phred=5 removes unique kmers, it may also reduce the number of non-unique kmers, which many128

hard the assembly process.129

Figure 2130
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Figure 2A. The number of unique kmers removed with various trimming levels across all datasets.131

Trimming at Phred=5 results in a substantial loss of likely erroneous kmers, while the effect of132

more and less aggressive trimming is more diminished. 2B depicts the relationship between133

trimming and non-unique kmers, whose pattern is similar to that of unique kmers.134

In addition to looking at nucleotide error and kmer distributions, assembly quality may be measured by135

the the proportion of sequencing reads that map concordantly to a given transcriptome assembly136

(Hunt et al., 2013). As such, the analysis of assembly quality includes study of the mapping rates.137

Here, I found small but important effects of trimming. Specifically, assembling with aggressively138

quality trimmed reads decreased the proportion of reads that map concordantly to a given contig139

(Figure 3). Though the patterns are not visually striking, mapping to an assembly of aggressively140

trimmed reads results in several hundred thousand fewer reads mapped compared to mapping against141
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the assembly of less aggressively trimmed reads.142

Figure 3143
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Figure 3. The proportion of concordantly mapping reads was reduced by trimming. The pattern is144

particularly salient with trimming at Phred=20 which was always associated with the successful145

mapping of hundreds of thousands of fewer reads. 10M, 20M, 50M, 75M, 100M refer to the146

subsamples size. 10M replicate is the technical replicate, 10M alt. dataset is the secondary dataset.147

Note that to enhance clarity, the Y-axis does not start at zero.148

Analysis of assembly content painted a similar picture, with trimming having a relatively small, though149

tangible effect. The number of BLAST+ matches decreased vith stringent trimming (Figure 4), with150

trimming at Phred=20 associated with particularly poor performance.151

Figure 4152
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Figure 4. The number of unique Blast matches contained in the final transcriptome assembly is153

related to the strength of quality trimming for any of the studied sequencing depths. A gentle154

trimming strategy typically yielded the most number of unique matches, while trimming at155

Phred=20 was always associated with much poorer assembly content. 10M, 20M, 50M, 75M,156

100M refer to the subsamples size. 10M replicate is the technical replicate, 10M alt. dataset is the157

secondary dataset. Note that to enhance clarity, the Y-axis does not start at zero.158

When counting complete open reading frames, low and moderate coverage datasets (10M, 20M, 50M)159

were all worsened by aggressive trimming (Figure 5). Trimming at Phred=20 was the most poorly160

performing level at all read depths.161

Figure 5162
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Figure 5. The number of complete exons contained in the final transcriptome assembly is not163

strongly related to the strength of quality trimming for any of the studies sequencing depths,164

though trimming at Phred=20 was always associated with fewer identified exons. 10M, 20M,165

50M, 75M, 100M refer to the subsamples size. 10M replicate is the technical replicate, 10M alt.166

dataset is the secondary dataset.167

Of note, all assembly files will be deposited in Dryad upon acceptance for publication. Until then, they168

can be accessed via https://www.dropbox.com/sh/oiem0v5jgr5c5ir/TYQdGcpYwP169

Discussion170

Although the process of nucleotide quality trimming is commonplace in HTS analysis pipelines,171

particularly those involving assembly, its optimal implementation has not been well defined. Though172

the rigor with which trimming is performed seems to vary, there seems to be a bias towards stringent173

trimming (Ansell et al., 2013; Barrett and Davis, 2012; Straub et al., 2013; Tao et al., 2013). This174

study provides strong evidence that stringent quality trimming of nucleotides whose quality scores are175

≤ 20 results in a poorer transcriptome assembly across the majority metrics. Instead, researchers176

interested in assembling transcriptomes de novo should elect for a much more gentle quality trimming,177
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or no trimming at all. Table 1 summarizes my finding across all experiments, where the numbers178

represent the trimming level that resulted in the most favorable result. What is apparent, is that for179

typically-sized datasets, trimming at Phred=2 or Phred=5 optimizes assembly quality. The180

exception to this rule appears to be in studies where the identification of SNP markers from high (or181

very low) coverage datasets is the primary goal.182

Table 1183

Dataset Size Error Map Orf Blast

10M 20 0 2 2

10M rep. 20 2 2 2

10M alt 20 2 0 0

20M 5 5 2 2

50M 5 10 5 2

75M 20 10 5 0

100M 20 0 2 2

184

Table 1. The Phred trimming levels that resulted in optimal assemblies across the 4 metrics185

tested in the different size datasets. Error= the number of nucleotide errors in the assembly.186

Map= the number of concordantly mapped reads. ORF= the number of ORFs identified.187

BLAST= the number of unique BLAST hits. 10M rep. is the technical replicate, 10M alt. is the188

secondary dataset.189

The results of this study were surprising. In fact, much of my own work assembling transcriptomes190

included a vigorous trimming step. That trimming had generally small effects, and even negative191

effects when trimming at Phred=20 was unexpected. To understand if trimming changes the192

distribution of quality scores along the read, we generated plots with the program SolexaQA (Cox193

et al., 2010). Indeed, the program modifies the distribution of Phred scores in the predicted fashion194

yet downstream effects are minimal. This should be interpreted as speaking to the performance of the195

the bubble popping algorithms included in Trinity and other de Bruijn graph assemblers.196

The majority of the results presented here stem from the analysis of a single Illumina dataset and197
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specific properties of that dataset may have biased the results. Though the dataset was selected for its198

’typical’ Illumina error profile, other datasets may produce different results. To evaluate this possibility,199

a second dataset was evaluated at the 10M subsampling level. Interestingly, although the assemblies200

based on this dataset contained more error (e.g. Figure 1), aggressive trimming did not improve quality201

for any of the assessed metrics, though like other datasets, the absolute number of errors were reduced.202

In addition to the specific dataset, the subsampling procedure may have resulted in undetected biases.203

To address these concerns, a technical replicate of the original dataset was produced at the 10M204

subsampling level. This level was selected as a smaller sample of the total dataset is more likely to205

contain an unrepresentative sample than larger samples. The results, depicted in all figures as the solid206

purple line, are concordant. Therefore, sampling bias is unlikely do drive the patterns reported on here.207

What is missing in trimmed datasets? — The question of differences in recovery of specific208

contigs is a difficult question to answer. Indeed, these relationships are complex, and could involve a209

stochastic process, or be related to differences in expression (low expression transcripts lost in trimmed210

datasets) or length (longer contigs lost in trimmed datasets). To investigate this, I attempted to211

understand how contigs recovered in the 10 million reads untrimmed dataset, but not in the212

Phred=20 trimmed dataset were different. Using the information on FPKM and length generated by213

the program eXpress, it was clear that the transcripts unique to the untrimmed dataset were more214

lowly expressed (mean FPKM=3.2) when compared to the entire untrimmed dataset (mean215

FPKM=11.1; W = 18591566, p-value = 7.184e-13, non-parametric Wilcoxon test).216

Indeed, I believe that the untoward effects of trimming are linked to a reduction in coverage. For the217

datasets tested here, trimming at Phred=20 resulted in the loss of nearly 25% of the dataset,218

regardless of the size of the initial dataset. This relationship does suggest, however, that the219

magnitude of the negative effects of trimming should be reduced in larger datasets, and in fact may be220

completely erased with ultra-deep sequencing. Indeed, when looking the the differences in the221

magnitude of negative effects in the datasets presented here, it is apparent that trimming at222

Phred=20 is ’less bad’ in the 100M read dataset than it is in the 10M read dataset (Figure 6).223

Figure 6224
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Figure 6. The normalized difference in the number of complete exons contained in the225

transcriptome assembly between trimming levels for the five different read datasets. Positive226

numbers indicate increased exons recovered, while negative values indicate decreased recovery. At227

the most aggressive trimming levels, the negative effects are greatest for the smaller datasets, while228

more mitigated for larger datasets. This supports the hypothesis that the relationship between229

assembly quality and trimming may be driven by differences in coverage. P0 - P2 indicates230

differences between Phred=0 and Phred 2 trimming, P2 - P5 are differences between Phred=2 and231

Phred=5 trimming, etc.232

Turning my attention to length, when comparing uniquely recovered transcripts to the entire233

untrimmed dataset of 10 million reads, it appears to be the shorter contigs (mean length 857nt versus234

954nt; W = 26790212, p-value <2.2e-16) that are differentially recovered in the untrimmed dataset235

relative to the Phred=20 trimmed dataset.236

Effects of coverage on transcriptome assembly — Though the experiment was not237

designed to evaluate the effects of sequencing depth on assembly, the data speak well to this issue.238

Contrary to other studies, suggesting that 30 million paired end reads were sufficient to cover239

eukaryote transcriptomes (Francis et al., 2013), the results of the current study suggest that assembly240
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content was more complete as sequencing depth increased; a pattern that holds at all trimming levels.241

Though the suggested 30 million read depth was not included in this study, all metrics, including the242

number of assembly errors, as well as the number of exons, and BLAST hits were improved as read243

depth increased. While generating more sequence data is expensive, given the assembled244

transcriptome reference often forms the core of future studies, this investment may be warranted.245

Should quality trimming be replaced by unique kmer filtering? — For transcriptome246

studies that revolve around assembly, quality control of sequence data has been thought to be an247

crucial step. Though the removal of erroneous nucleotides is the goal, how best to accomplish this is248

less clear. As described above, quality trimming has been a common method, but in its commonplace249

usage, may be detrimental to assembly. What if, instead of relying on quality scores, we instead rely250

on the distribution of kmers to guide our quality control endeavors? In transcriptomes of typical251

complexity, sequenced to even moderate coverage, it is reasonable to expect that all but the most252

exceptionally rare mRNA molecules are sequenced at a depth >1. Following this, all kmer whose253

frequency is <1 are putative errors, and should be removed before assembly. This idea and its254

implementation are fodder for future research.255

In summary, the process of nucleotide quality trimming is commonplace in many HTS analysis256

pipelines, but its optimal implementation has not been well defined. A very aggressive strategy, where257

sequence reads are trimmed when Phred scores fall below 20 is common. My analyses suggest that258

for studies whose primary goal is transcript discovery, that a more gentle trimming strategy (e.g.259

Phred=2 or Phred=5) that removes only the lowest quality bases is optimal. In particular, it260

appears as if the shorter and more lowly expressed transcripts are particularly vulnerable to loss in261

studies involving more harsh trimming. The one potential exception to this general recommendation262

may be in studies of population genomics, where deep sequencing is leveraged to identify SNPs. Here,263

a more stringent trimming strategy may be warranted.264
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J.M., Pedrola, L., Sicardo, M.D., Hernández, M.L., De la Rosa, R., Belaj, A., Gil-Borja, M., Luque,374

F., Mart́ınez-Rivas, J.M., Pisano, D.G., Trelles, O., Valpuesta, V., Beuzón, C.R., 2013. De novo375

assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Research 20,376

93–108.377

Narum, S.R., Campbell, N.R., Meyer, K.A., Miller, M.R., Hardy, R.W., 2013. Thermal adaptation and378

acclimation of ectotherms from differing aquatic climates. Molecular Ecology 22, 3090–3097.379

Pyrkosz, A.B., Cheng, H., Brown, C.T., 2013. RNA-Seq Mapping Errors When Using Incomplete380

Reference Transcriptomes of Vertebrates. arXiv.org arXiv:1303.2411v1.381

Riesgo, A., Perez-Porro, A.R., Carmona, S., Leys, S.P., Giribet, G., 2012. Optimization of preservation382

and storage time of sponge tissues to obtain quality mRNA for next-generation sequencing.383

Molecular ecology resources 12, 312–322.384

this version posted December 23, 2013. ; https://doi.org/10.1101/000422doi: bioRxiv preprint 

http://arxiv.org/abs/1303.2411v1
https://doi.org/10.1101/000422


Roberts, A., Pachter, L., 2013. Streaming fragment assignment for real-time analysis of sequencing385

experiments. Nature Methods 10, 71–73.386

Straub, S.C.K., Cronn, R.C., Edwards, C., Fishbein, M., Liston, A., 2013. Horizontal transfer of DNA387

from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds388

(Apocynaceae). Genome Biology and Evolution 5, 1872–1885.389

Tao, T., Zhao, L., Lv, Y., Chen, J., Hu, Y., Zhang, T., Zhou, B., 2013. Transcriptome Sequencing390

and Differential Gene Expression Analysis of Delayed Gland Morphogenesis in Gossypium australe391

during Seed Germination. PLOS ONE 8, e75323.392

Touming, L., Touming, L., Siyuan, Z., Siyuan, Z., Qingming, T., Qingming, T., Ping, C., Ping, C.,393

Yongting, Y., Yongting, Y., Shouwei, T., Shouwei, T., 2013. De novo assembly and characterization394

of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie395

(Boehmeria nivea L. Gaud). BMC Genomics 14, 125.396

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L.,397

Wold, B.J., Pachter, L., 2010. Transcript assembly and quantification by RNA-Seq reveals398

unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28,399

511–515.400

Yang, X., Chockalingam, S.P., Aluru, S., 2013. A survey of error-correction methods for401

next-generation sequencing. Briefings In Bioinformatics 14, 56–66.402

this version posted December 23, 2013. ; https://doi.org/10.1101/000422doi: bioRxiv preprint 

https://doi.org/10.1101/000422

