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Abstract 

The distribution and abundance of immune cells, particularly T-cell subsets, play 

pivotal roles in cancer immunology and therapy. There are many T-cell subsets with 

specific function, however current methods are limited in estimating them, thus, a 

method for predicting comprehensive T-cell subsets is urgently needed in cancer 

immunology research. Here we introduce Immune Cell Abundance Identifier 

(ImmuCellAI), a novel gene set signature-based method, for precisely estimating the 

abundance of 24 immune cell types including 18 T-cell subsets, from gene expression 

data. Performance evaluation on both our sequencing data with flow cytometry results 

and public expression data indicated that ImmuCellAI can estimate immune cells with 

superior accuracy than other methods especially on many T-cell subsets. Application 

of ImmuCellAI to immunotherapy datasets revealed that the abundance of dendritic 

cells (DC), cytotoxic T, and gamma delta T cells was significantly higher both in 

comparisons of on-treatment vs. pre-treatment and responders vs. non-responders. 

Meanwhile, we built an ImmuCellAI result-based model for predicting the 

immunotherapy response with high accuracy (AUC 0.80~0.91). These results 

demonstrated the powerful and unique function of ImmuCellAI in tumor immune 

infiltration estimation and immunotherapy response prediction. The ImmuCellAI 

online server is freely available at http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/. 
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1. Introduction 

The immune system, comprising various proteins, immune cells, and tissues, is 

complex and important for host defense[1]. Immune cells, including innate immune 

cells [e.g., macrophages, neutrophils, natural killer (NK) cells, and dendritic cells 

(DC)] and adaptive immune cells (e.g., B and T cells), are important components of 

the immune system. Dysfunctions of immune cells such as abnormal distributions 

with respect to abundance and type as well as abnormal development and functions 

are always associated with diseases, including cancers[2,3]. Thus, investigating 

immune cell distribution in individuals could provide important insights into immune 

status, disease progression and prognosis, and therapy (particularly in cancer 

immunotherapy)[4]. 

Tumor-infiltrating immune cells are considered to be primary immune signatures 

and are strongly associated with the clinical outcomes of immunotherapies[5]. T cells 

play pivotal roles in cancer initiation, progression, and therapy (particularly 

immunotherapy)[6] and are composed of two major groups, each including numerous 

functional subpopulations (or subsets): CD4+ and CD8+ populations. The CD4+ T-cell 

subsets, such as T helper cells (e.g., Th1, Th2, Th17, and Tfh) and regulatory T cells 

(e.g., nTreg, iTreg, and Tr1), primarily display helper and/or regulatory activities on 

other immune cells[7]. The CD8+ T-cell subsets, cytotoxic T cells (Tc) and 

mucosal-associated invariant T cells (MAIT), function in killing target cells. 

Importantly, the abundance of T-cell subsets, particularly that of tumor-infiltrating T 

cells, could influence clinical curative effects and prognosis[8]. In addition, strategies 
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used for regulating the proportion of T-cell subsets have demonstrated profound 

efficacy in cancer immunotherapies. For example, increasing the ratio of Teff/Treg 

subsets could enhance the antitumor effects of anti-CTLA-4 therapy against 

melanoma[9]. Thus, investigating the landscape of immune cells, particularly T cells, 

can help us better understand the interplay between the immune system and diseases 

and provide important clues for improving the efficacy of immunotherapy in precision 

medicine[10]. 

High-throughput technologies, including microarrays and RNA sequencing 

(RNA-Seq), produce large-scale transcriptome data and provide opportunities for 

estimating the abundance of immune cells using gene expression profiles. Several 

methods, including xCell[11], CIBERSORT[12], EPIC[13], TIMER[14], and 

MCP-counter[15], have been developed for enumerating immune cells from bulk 

transcriptome data of tumor samples, whereas rare method has been designed for 

estimating the abundance of numerous T-cell subsets, such as iTreg, Tc, and exhausted 

T cells (Tex). As such, there is an urgent need to develop a method focusing on 

abundance prediction of T-cell subsets and other important immune cells in 

immuno-oncology and immunotherapy studies. 

In this study, we developed Immune Cell Abundance Identifier (ImmuCellAI), a 

method to robustly and precisely estimate the abundance of 24 immune cell types 

(including 18 T-cell subsets) from transcriptome data. ImmuCellAI was suitable for 

application to both microarray expression and RNA-Seq data from various resources 

(e.g., tumor, adjacent or normal tissue, and peripheral blood). Furthermore, we 
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applied ImmuCellAI to cancer immunotherapy and The Cancer Genome Atlas (TCGA) 

pan-cancer data to explore the influence of immune cells on the efficacy of 

immunotherapy and clinical progression of patients with cancer. 

2. Results 

2.1. Algorithmic overview of the ImmuCellAI method 

ImmuCellAI was designed to estimate the abundance of 18 T-cell subsets [CD4+, 

CD8+, CD4+ naïve, CD8+ naïve, central memory T (Tcm), effector memory T (Tem), 

Tr1, iTreg, nTreg, Th1, Th2, Th17, Tfh, Tc, MAIT, Tex, gamma delta T (γδ T), and 

natural killer T (NKT) cells] and six other important immune cells [B cells, 

macrophages, monocytes, neutrophils, DC, and NK cells] (Figure 1A). A brief 

illustration of the core algorithm of ImmuCellAI is represented in Figure 1B, and its 

detailed algorithm is described in the Online Methods section. Briefly, we curated a 

specific gene set as a gene signature for each immune cell type (table S1) from 

published reports and obtained its reference expression profile from the Gene 

Expression Omnibus (GEO) database (table S2). Then, we calculated the total 

expression deviation of the gene signature in the input expression dataset in 

comparison with the reference expression profiles of the 24 immune cell types. We 

assigned the deviation to the corresponding immune cell type based on the enrichment 

score of its gene signature, which was calculated using the single sample gene set 

enrichment analysis (ssGSEA) algorithm[16]. To correct the bias due to shared genes in 

the gene signatures of different immune cell types, a compensation matrix and least 

square regression were implemented to measure the weight of shared genes on these 

immune cells and to re-estimate their abundance (Figure 1B). ImmuCellAI was 

suitable for application to both RNA-Seq and microarray expression data from blood 

or tissue samples. To better utilize ImmuCellAI, we designed a user-friendly web 

server, which is freely available at http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/, 

for estimating the abundance of 24 immune cell types from gene expression profiles. 

2.2. Performance of ImmuCellAI in RNA-Seq and microarray datasets 
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To evaluate the performance of ImmuCellAI, we applied it to multiple RNA-Seq and 

microarray expression datasets, performed benchmark tests, and compared the results 

using five other methods (xCell[11], CIBERSORT[12], EPIC[13], MCP-counter[15], and 

TIMER[14]). The Pearson correlation between the abundance estimated by flow 

cytometry and in silico method was used to assess the performance of each method in 

estimating the abundance of individual immune cell type, whereas the correlation 

deviation for all cell types was calculated to systematically evaluate the overall 

prediction power of each method (details are discussed in the Online Methods 

section). 

First, we enumerated the amount of immune cell types using all six analytical 

methods, among which ImmuCellAI proved capable of predicting more T cell subsets 

than the other methods (Figure 2A). Then, we used six RNA-Seq datasets as 

benchmark resources for evaluating the performance of ImmuCellAI (Figure 2B and 

2C). Each dataset contained counting results of immune cells identified by flow 

cytometry of samples. Three of them were simulated and integrated from single-cell 

sequencing data of liver cancer (GSE98638)[18], lung cancer (GSE99254)[19], and 

melanoma (GSE72056)[20]. One dataset was taken from the lymph nodes of four 

patients with melanoma included in the EPIC[13] project. Furthermore, because of the 

limited number of T-cell subsets in currently available data, to evaluate the 

performance of ImmuCellAI in estimating the abundance of unique T-cell subsets, we 

generated two datasets using flow cytometry analysis for all 24 immune cell types and 

sequenced their RNA (BIGD id: CRA001839 and CRA001840). One of these datasets 

contained five samples from healthy donors and the other contained seven samples 

from patients with acute myelocytic leukemia. Based on the results, the abundance of 

most immune cells estimated by ImmuCellAI showed a higher positive correlation 

with the counting results of flow cytometry than that estimated by the other methods, 

particularly for T-cell subsets. These results suggested that ImmuCellAI robustly and 

accurately enumerates the 24 immune cell types in RNA-Seq datasets (Figure 2B and 

2C; Figure S1A, S1B and S2A). 
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Meanwhile, we used two microarray datasets (GSE65135[12] and GSE65133[12] 

from GEO), which are obtained from disaggregated lymph node biopsies from 

patients with follicular lymphoma and samples from peripheral blood with immune 

cell ratios determined by flow cytometry. The abundance of each cell type measured 

by ImmuCellAI showed overall high positive correlations with the flow cytometry 

results in both datasets (Figure 2D and Figure S2B). In addition, ImmuCellAI showed 

the least correlation deviation in both RNA-Seq and microarray datasets (Figure 2E). 

The performance evaluation results indicated that ImmuCellAI has the best 

performance in both microarray and RNA-Seq data with stable and high precision in 

terms of estimation of abundance of the 24 immune cell types. 

2.3. Case study of ImmuCellAI application for cancer immunotherapy response 

prediction 

To investigate the impact of immune cell abundance on cancer immunotherapy, we 

applied ImmuCellAI to an anti-PD1 dataset, GSE91061[21], which comprised 58 

melanoma samples from a clinical trial on anti-PD1 therapy. We analyzed the results 

using two comparisons: responders vs. non-responders and on-treatment vs. 

pre-treatment . The abundance of three immune cells including Tc, γδ T and DC cells 

significantly increased with anti-PD1 treatment (Figure 3A; Mann–Whitney U-test, p 

< 0.05). Besides, Tc, γδ T and DC cells also significantly infiltrated more in 

responders compared with non-responders at the on-treatment time point (Figure 3B; 

Mann–Whitney U-test, p < 0.05). The results suggested that ImmuCellAI can provide 

important insights on the dynamic immune cell infiltration during immunotherapy and 

offer valuable indicator for immunotherapy response during the treatment. 

Next, we applied the abundance of immune cells estimated by ImmuCellAI to 

predict the response to immune checkpoint blockade therapy. Five anti-PD1 or 

anti-CTLA4 therapy datasets (GSE91061[21], GSE78220[22], and GSE115821[23], 

ERP107734[24] and SRP011540[25]), involving a total of 176 patients, were analyzed, 

in which the former three datasets from GEO were used for training and testing in a 
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support vector machine model based on the abundance of immune cells, and the last 

two cohorts from dbGAP were used to further validation the model (detail in 

methods). A feature integrating the abundance of 22 immune cell types (B cell, CD4+ 

naïve, CD8+ naïve, Tcm, Tc, DC, γδ T, Tem, Tex, iTreg, macrophage, MAIT, 

monocyte, neutrophil, NK, NKT, nTreg, Tfh, Th1, Th17, Th2, and Tr1) had the best 

performance in predicting immunotherapy response in the test data [area under curve 

(AUC) = 0.91] and other two validation cohorts (AUC 0.84 and 0.80) (Figure 3C). 

Overall, the abundance of immune cells measured by ImmuCellAI was highly 

predictive of immune therapy sensitivity (Figure 3C), suggesting that ImmuCellAI 

can serve as an ideal method for immunotherapy studies. We implemented the model 

for immune therapy response prediction as a functional module on the ImmuCellAI 

server. 

2.4. Case study of ImmuCellAI application to TCGA pan-cancer data for 

predicting the infiltration of immune cells and patient survival 

Increasing evidence has demonstrated that immune cells are critical in cancer 

progression, and the infiltration of different T-cell subsets could dramatically 

influence the treatment strategy and prognosis[26]. In this study, to demonstrate the 

application of ImmuCellAI to cancer data, we analyzed 17 cancer types in TCGA with 

gene expression data of both the tumor and adjacent tissues to survey the infiltration 

of immune cells. Partial correlation analysis was implemented to reduce false 

correlation, which may be caused by other factors, such as age and gender (Figure S3). 

The results indicated that the abundance of many immune cell types was significantly 

different (FDR < 0.1) between the tumor and adjacent tissue samples in most cancers, 

particularly for Tc, NK, NKT, Th2, iTreg, nTreg, and DC (Figure 4A). The iTreg, 

nTreg, Tr1, and monocyte cells were markedly enriched in the nidus of most cancer 

types, which is consistent with their immunosuppressive properties (Figure 4A). In 

contrast, several antitumor cells, such as γδ T, MAIT, NK, NKT, and Th2 cells, 
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showed higher infiltration in adjacent tissues of most cancers, indicating that the 

tumor microenvironment may prohibit their access to the nidus. 

Furthermore, we investigated the effects of the infiltration of immune cells on 

patient survival by controlling other factors (i.e., age, gender, and stage). In a nutshell, 

the infiltration of most immune cell types significantly affected the overall survival of 

patients in different cancers (Figure 4B). The infiltration of most immune cells had 

opposite effects on survival in LGG and UVM compared with that in other cancers 

(Figure 4B). Furthermore, skin cutaneous melanoma (SKCM) had the most immune 

cell types (12/24) significantly associated with patient survival (FDR <0.1; Figure 4B 

and Figure S4). The infiltration of T-cell subsets (e.g., γδ T cells, Th1, Th2, and iTreg) 

had positive effects on long-term survival in patients with SKCM, whereas patients 

with high infiltration of CD8+ naïve and neutrophils were associated with worse 

outcomes (Figure 4B and Figure S4). Although the infiltration of a single immune cell 

type in some cancer types was not related with patient survival, the infiltration of a 

combination of multiple immune cell types was significantly associated with survival 

(multivariate Cox regression, p < 0.05), such as Tc + Th17 in ACC, Tc + Tcm in ACC, 

Tc + Tem in MESO, γδ T + Tcm in CESC, MAIT + Th1 in DLBC, and NKT + Th1 in 

UCS (Figure 4C). In addition, the infiltration of immune cells was correlated with 

microsatellite instability (MSI) after partial correlation analysis was performed to 

reduce false correlation caused by other features, such as age and gender (Figure S5A 

and S5B). In colon adenocarcinoma  (COAD) and  stomach adenocarcinoma 

(STAD), patients with high-MSI cancer (MSI-H) showed a significantly higher 

infiltration of antitumor and tumor helper cells, such as Tc, γδ T, NK, and DC (Figure 

S6A), but a significantly lower infiltration of tumor suppressor cells (Tr1 and 

neutrophils) and CD8 naïve cells (Figure S6b). These factors may partially explain the 

better outcomes of patients with MSI-H colorectal cancer undergoing 

immunotherapy[27]. Furthermore, we observed that some immune cell types showed 

stage-related profiles in cancers. For example, the infiltration of Tex, Th1, iTreg, and 

CD8+ T cells gradually increased with the development of KIRC (Figure S7). 
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3. Discussions 

Increasing evidence suggests that immune cells play critical roles in carcinogenesis 

and progression, and a proper proportion of T-cell subsets could contribute to 

long-term clinical benefits of anticancer treatments[28]. Investigating the abundance of 

immune cell types could provide insights into a more comprehensive understanding of 

the immune status of patients and could thus benefit disease therapy[29]. In this study, 

we developed ImmuCellAI, a highly accurate method of estimating the abundance of 

immune cells, particularly T-cell subsets, from transcriptome data. The case study 

application results on immunotherapy and pan-cancer data suggest that ImmuCellAI 

is a very useful tool in cancer immunology. 

ImmuCellAI uses a global enrichment algorithm to enumerate immune cells based 

on transcriptome data and shows a robust and accurate performance. Although there 

are several other methods available for immune cell identification, most of them, with 

the exception of xCell, can only roughly identify very few T cell subsets. The unique 

function of ImmuCellAI is that it can accurately estimate the abundance of different 

T-cell subsets, which is particularly important in cancer therapy. For those immune 

cells that could be identified by other methods, our comparison results showed that 

ImmuCellAI had the highest consistency with flow cytometry results for most cells 

(Figure 2B, 2C, 2D and 2E). Because there are very limited T-cell subsets with both 

flow cytometry data and RNA-Seq data, we produced two datasets using flow 

cytometry analysis for all 24 immune cell types and sequenced their RNA. The results 

confirmed that ImmuCellAI has the best performance in terms of accurately 

identifying these T-cell subsets, which is an advantage of this method. 

Tumor-infiltrating T cells could serve as a prognostic factor and predictor of 

therapeutic efficacy[30]. In our result, the abundance of Tc, γδ T and DC cells were 

significantly increased in both comparisons of on-treatment vs. pre-treatment and 

responders vs. non-responders (Figure 3A and 3B). DC cells are antigen-presenting 

cells (APC) that are essential for the activation of immune responses, which have the 

potential to turn immunologically “cold” tumors into “hot” tumors[31]. Tc cells play 
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key roles in the tumor cell killing process[32], and γδ T cells also function in the 

antigen recognition and tumor killing process[33]. To extend these results, an 

immunotherapy model was proposed, taking the immune cell abundance of 

pre-treatment samples into account. The model achieved a high accuracy for 

immunotherapy response prediction with an average AUC of 0.85 (Figure 3C), 

suggesting that it is a promising tool in immunotherapy studies; this model was 

implemented for immunotherapy response prediction on the ImmuCellAI server. This 

is the second user-friendly web server for immunotherapy response prediction, except 

for the TIDE[34]. Comparing with the reported accuracy of TIDE, our ImmuCellAI has 

a little bit higher accuracy. In addition, to date, most studies have focused on the 

infiltration of CD8+ T cells as a predictive biomarker for response to immune 

checkpoint blockade therapy[35]. Our study indicated that integrating many immune 

cells, particularly different T-cell subsets, could serve as a biomarker for better 

therapy response prediction (Figure 3C). Thus, the systematic evaluation of immune 

cell abundance could be an effective approach for predicting immune checkpoint 

blockade therapy response and improving the effects of cancer immunotherapy[36]. 

Some of the results of the infiltration of immune cells in TCGA cancer data were 

consistent with those of previous reports, for example, the infiltration of Tc cells is 

more often observed in kidney cancer but less so in colorectal cancer[37]. These results 

indicate the powerful and unique function of ImmuCellAI on cancer immunology and 

immunotherapy research. 

Although ImmuCellAI had the best performance in comparison with other methods, 

it still has several limitations that need to be addressed. First, ImmuCellAI could only 

estimate the relative abundance of immune cells based on the deviation of gene 

signatures. It could not provide the absolute amount of each immune cell type. 

Moreover, ImmuCellAI did not consider the spatiotemporal localization of immune 

cells and the abundance of cancer cells. Furthermore, ImmuCellAI lacked the 

sensitivity to identify cell types with low abundance (e.g., NK cells in samples from 

EPIC). In addition, the sample size used in the immunotherapy case study was 
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relatively small, and the performance of our model needs to be tested in larger cohorts. 

Other immune cell subsets, besides the T cells used in our method, also need to be 

tested in future studies. 

In summary, this study presented an accurate and reliable tool ImmuCellAI to 

dissect T-cell properties and explore the infiltration of immune cells in cancer. The 

best advantage of ImmuCellAI is its ability to accurately estimate the abundance of 18 

T-cell subsets, which is its unique function. The results of ImmuCellAI provided 

valuable prognostic predictors and comprehensive resources to elucidate 

cancer–immune interactions, which could facilitate applications of cancer 

immunotherapy and precision medicine. 

4. Materials and Methods 

4.1. The main algorithm of Immune Cell Abundance Identifier (ImmuCellAI) 

The main algorithm of ImmuCellAI, presented in Figure 1B, includes three main 

steps: (1) reference expression matrix (RT) and marker gene preparation, (2) 

enrichment score calculation, and (3) compensation matrix correction. 

4.1.1. Reference expression matrix and marker gene preparation 

The datasets of the expression profiles of 24 immune cell types (Figure 1A) were 

downloaded from the National Center for Biotechnology Information Gene 

Expression Omnibus (GEO) database. In total, 415 datasets from 26 studies were 

manually curated to build RT of the immune cell types (table S2). Gene expression 

data was obtained from CEL files according to the frozen robust multiarray analysis 

protocol with batch effect correction[38]. Each line of the matrix denotes the 

expression of a gene in the 24 immune cell types. The median value was used if there 

were multiple samples of a cell type. 

Furthermore, we developed a gene signature for each cell type by integrating the 

marker genes obtained from the literature and other analytical methods, such as 

CIBERSORT and xCell; thus, a total of 2547 genes were collected (denoted as Ga, 

table S1). Next, a robust marker gene set per immune cell type was selected using in 
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silico simulated data taking advantage of the TCGA data, which was based on the 

work of Li et al.[14] For each cancer type in the TCGA data, the expression of Ga in 

the samples (log2 transferred) and immune cell reference profiles were used to 

simulate the immune cell infiltrated tumor samples with known fractions. To control 

the mixing ratios of immune cell components for maintaining the correlative structure 

of real data, we first calculated the gene–gene covariance matrix Σa for all genes in 

Ga using tumor expression data. Then, we randomly sampled 24 numbers (f1–f24) 

from Uniform (0,1) and calculated μa (length n), which is the average of gene 

expression in the reference profiles of the 24 immune cell types weighted by f1–f24. 

Next, we sampled a vector of length n from the multivariate normal distribution with 

mean μa and covariance Σa. For each cancer type, we simulated the same number of 

samples as its sample size in the TCGA data. 

Then, for all collected marker genes in Ga, we calculated the average correlation 

between gene expression in simulated samples with cell fractions using Pearson 

correlation for all cancers, and genes with an average correlation of r ≥ 0.6 were 

selected (denoted as G1). Next, for each marker gene per immune cell, the standard 

correlation deviation among the cell with other cells was calculated, and genes with a 

standard deviation of >1.5 were selected (denoted as G2). The deviation between 

CD4+ T and CD4+ T-cell subsets (such as CD4+ naïve and Th1) as well as that 

between CD8+ T and CD8+ T-cell subsets was not calculated. Finally, a robust marker 

gene set per immune cell type was obtained by intersecting G1 with G2 (denoted as 

Gf), which included 344 marker genes of the 24 immune cell types (table S1). In 

addition, we constructed a sparse matrix (ST) for these marker genes in which “1” 

means that the gene is a marker gene in the corresponding cell type. 

4.1.2. Enrichment score calculation 

For a user-uploaded expression dataset, ImmuCellAI first calculates the expression 

deviation of all marker genes compared with RT. Here two different approaches were 

implemented to deal with the microarray and RNA-Seq datasets. 

D = ���, ��, ��, … … , ���, n = 344 
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where vector D denotes the relative deviation of marker genes and STi is the vector in 

ST for marker genes of cell type i. 
�� is the reference marker gene expression in 

cell type i, whereas S indicates the gene expression in the user-provided dataset. 

The single sample gene set enrichment analysis (ssGSEA) algorithm in the GSVA 

package[39]was used to estimate the abundance of immune cell types. The ssGSEA 

enrichment score for deviation vector D of the gene signature of each immune cell 

type (named ES) was used to indicate the relative abundance of immune cell types in 

the user-provided dataset. A higher enrichment score indicates a higher abundance of 

the immune cell type in the mixture sample than that of other cell types. 

4.1.3. Compensation matrix correction 

Some immune cell types may share a part of common marker genes, which will cause 

bias in the estimation of abundance of these immune cell types. Thus, ImmuCellAI 

used a compensation matrix and least square regression method based on the work of 

Aran et al.[11] to fix this issue. After the estimation of abundance of the detected 

immune cell types in a dataset, we reassigned the weights of common marker genes 

for these immune cell types with the following steps: (1) A N * N contribution matrix 

was produced by calculating the mutual contributions of marker genes in RT using 

ssGSEA. (2) Each column of the contribution matrix was divided by a diagonal value 

and weighted by the proportion of non-diagonal elements, and a compensation matrix 

was obtained (named C). (3) To reduce redundancy and overestimation of 

compensation between detected immune cell types, ImmuCellAI discarded the 

compensational calibration between the parental immune cell type and its subsets (e.g., 

CD4+ T and Th1 cells), and limited the total compensation level at 0.5 for the 
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non-diagonal cell types. (4) The least square method was used to calibrate the 

enrichment score based on the compensation matrix C. 

||C �  I !  ES||, with I ≥ 0, 

where the parameter ES is the ssGSEA enrichment score of detected immune cell 

types and C is the compensation matrix. Finally, after calibration, we deemed the 

abundance of 24 immune cell types (named I) to be high confidence. 

4.2. Benchmark dataset preparation 

4.2.1. Our datasets for the 24 immune cell types 

Heparinized blood samples from seven patients with leukemia and five healthy adult 

volunteers were collected from Wuhan Central Hospital, China. Fresh blood samples 

were treated with Pharm Lyse (BD Biosciences, San Jose, CA, USA) to remove 

erythrocytes. Cells from each sample were used in parallel experiments of flow 

cytometry and RNA extraction. This study was approved by the ethics committee of 

Tongji Medical College, Huazhong University of Science and Technology, and 

followed the Declaration of Helsinki principles. The proportions of the 24 immune 

cell types used in our study were examined by flow cytometry using the combined 

markers listed in table S3 and antibodies listed in table S4. All antibodies were 

purchased from BD Biosciences, except those used against TCR-Vβ2 and TCR-Va7.2 

(Miltenyi Biotec, Bergisch Gladbach, Germany). 

The total RNA extracted from the cells of all 12 samples was used for RNA 

sequencing (RNA-Seq) (PE150) via the Illumina HiSeqTM4000 platform by Haplox 

(Jiangxi, China). RNA-Seq reads were mapped to Ensembl v81 (GRCH38) and 

processed using the HISAT2-StringTie-ballgown pipeline. We used fragments per 

kilobase per million mapped reads to calculate gene expression levels. 

4.2.2. Other public datasets 

The microarray datasets and corresponding flow cytometry results were obtained from 

GEO (accession nos. GSE65135 and GSE65133), which include 14 disaggregated 

lymph node biopsies from patients with follicular lymphoma and 20 peripheral blood 

samples from individuals vaccinated for influenza, respectively. 
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The RNA-Seq dataset from EPIC contains both RNA-Seq data and their 

corresponding flow cytometry results of five immune cell types (B, CD4+ T, CD8+ T, 

NK, and cancer cells) from four patients with melanoma[13]. Because of the scarcity of 

bulk RNA-Seq datasets containing both gene expression profiles and flow cytometry 

counts for different immune cell types, particularly for T-cell subsets, we simulated 

two bulk RNA-Seq datasets by integrating the expression profiles of seven cell types 

(CD4+ naïve, CD8+ naïve, MAIT, Tcm, Tex, Treg, Th) from single-cell RNA 

sequencing data. The transcripts per million (TPM) normalized expression of liver 

and lung cancers from two Nature papers were collected from GEO (GSE98638[18] 

and GSE99254[19]). Based on the work of Max et al.[40], single-cell expression was 

normalized as follows: for each single-cell dataset, the TPM values were transformed 

to 

exp �  ,��� �exp  �  1� 

To ensure cross-sample comparability, the expression of all single-cell samples from 

the same dataset were normalized to the average expression of 3686 housekeeping 

genes[41] as follows: 

"-.�
	  �  "-.�  �   /01111

/0�

, 

 

where ���
�
 represents the gene expression profile of sample i, /0�  denotes the 

average gene expression of all housekeeping genes in sample i, and /01111 is the 

average expression of all housekeeping genes in all samples. 

A single-cell sequencing dataset from 19 patients with melanoma was collected 

from GEO (accession GSE72056), which is the normalized expression matrix as 

described above by Tirosh et al.[20] and contains the single-cell RNA-Seq of B cells, T 

cells, macrophages, NK cells, and three other nonimmune cell types. Because CD8+ 

and CD4+ T cells can be easily distinguished by CD4, CD8A, and CD8B expression, 

we divided T cells into CD8+ T cells, CD4+ T cells, and others. Then, the bulk 

expression of each sample was identified by aggregating normalized expression from 

all cell barcodes for each patient sample. The cell ratio per cell type in a sample was 
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calculated by the cell number of a specific cell type divided by the total number of 

cells (table S5-S7). 

4.3. Performance assessment of ImmuCellAI 

The performance of ImmuCellAI was evaluated using both microarray and RNA-Seq 

datasets and compared with that of five other methods (CIBERSORT, EPIC, 

MCP-counter, TIMER, and xCell). For a given immune cell type, the accuracy and 

sensitivity of each method were measured using the Pearson correlation between the 

results of in silico method and flow cytometry counting in samples (named ��). In 

addition, we introduced the correlation deviation to measure the global performance 

of each method, which took the sample size and overall accuracy into consideration. 

correlation deviation �   ��

�
∑  �1 � �����

� � �
， 

where n is the amount of immune cell types detected in samples and �� is the Pearson 

correlation of immune cell type i. 

4.4. Case study of immune therapy and prediction model building 

Five immune checkpoint therapy datasets, including those from anti-PD1- or 

anti-CTLA4-treated patients with melanoma or gastric cancer, were collected from the 

GEO database (GSE91061[21], GSE78220[22], and GSE115821[23]) and dbGAP 

(ERP107734[24] and SRP011540[25]). The abundance of infiltrating immune cells was 

calculated by ImmuCellAI and used to build the response prediction model. 

The immunotherapy response prediction model was built using support vector 

machine with the radial basis function kernel. The training features were the 

abundance of immune cell types. The sequential backward feature selection algorithm 

was used to minimize the feature number and improve the performance. At first, three 

GEO datasets composed of 91 pre-treatment samples (response: complete response 

and partial response, n = 27, non-response: stable disease and progressive disease, n = 

64) were used to train and test the model. The undersampling method was used to fit 

the unbalanced sample size between responders and non-responders with 38 samples 

in the training and validation cohort (19 responders and 19 non-responders, 5 fold 
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cross validation) and 53 samples in the test cohort (8 responders and 45 

non-responders). Then, the other two cohorts from dbGAP (ERP107734: 12 

responders and 33 non-responders; SRP011540: 7 responders and 33 non-responders) 

were used to further validate the model. The area under curve (AUC) was used to 

measure the model performance. 

The gene expression profiles of TCGA samples and the clinical information were 

downloaded from Broad GDAC Firehose (https://gdac.broadinstitute.org/). 

4.5. Statistical analysis 

Basic statistical analyses, such as Wilcoxon rank sum test and Pearson correlation, 

were performed using R language. The correlations between clinical indicators and 

the abundance of immune cell types were evaluated using partial correlation analysis 

in the R package “ppcor.” Multivariate Cox regression, log-rank test, and 

Kaplan–Meier in R package “survival” were used to assess the relationships between 

the abundance of immune cell types and survival time. The p values for each test were 

calibrated using FDR, and the FDR threshold was 0.1 in case studies. All results 

supported the current study and were deposited into the ImmuCellAI website 

(http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/). 

 

Acknowledgments 

We express our gratitude to all study participants.  

Funding: We acknowledge funding from the National Natural Science Foundation of 

China (Grant Nos. 31822030, 31801113, and 31771458), National Key Research and 

Development Program of China (Grant No. 2017YFA0700403), China Postdoctoral 

Science Foundation (Grant Nos. 2018M632830, 2017M622455 and 2019T120664), 

the Fundamental Research Funds for the Central Universities (2018KFYRCPY002), 

and the program for HUST Academic Frontier Youth Team.  

Authors’ contributions: YRM and QZ: Performed formal analysis, conceptualized, 

conceived method, and wrote the original draft and edited the manuscript; QL: 

Collected samples and performed the experiments; ML and GYX: Performed formal 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872184doi: bioRxiv preprint 

https://doi.org/10.1101/872184


analysis; HXW: Provided sample and experiment assistance; AYG: Conceptualized, 

wrote-reviewed and edited the manuscript, and funded and supervised the study. 

Competing interests: The authors declare that they have no competing interests.  

Data and materials availability: The sequence data sets reported in this paper have 

been deposited in the National Genomics Data Center with accession no. CRA001839 

and CRA001840. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872184doi: bioRxiv preprint 

https://doi.org/10.1101/872184


References 

[1] D. D. Chaplin, J Allergy Clin Immunol 2010, 125, S3. 
[2] P. Brodin, M. M. Davis, Nat Rev Immunol 2017, 17, 21. 
[3] G. P. Dunn, C. M. Koebel, R. D. Schreiber, Nat. Rev. Immunol. 2006, 6, 836. 
[4] T. F. Gajewski, H. Schreiber, Y.-X. Fu, Nat Immunol 2013, 14, 1014. 
[5] P. H. Pandya, M. E. Murray, K. E. Pollok, J. L. Renbarger, J Immunol Res 2016, 

2016, DOI 10.1155/2016/4273943. 
[6] J. N. Kochenderfer, M. E. Dudley, S. H. Kassim, R. P. T. Somerville, R. O. 

Carpenter, M. Stetler-Stevenson, J. C. Yang, G. Q. Phan, M. S. Hughes, R. M. 
Sherry, M. Raffeld, S. Feldman, L. Lu, Y. F. Li, L. T. Ngo, A. Goy, T. Feldman, 
D. E. Spaner, M. L. Wang, C. C. Chen, S. M. Kranick, A. Nath, D.-A. N. Nathan, 
K. E. Morton, M. A. Toomey, S. A. Rosenberg, Journal of Clinical Oncology 
2015, 33, 540. 

[7] R. V. Luckheeram, R. Zhou, A. D. Verma, B. Xia, Clinical and Developmental 
Immunology 2012, 2012, 1. 

[8] A. O. Kamphorst, R. N. Pillai, S. Yang, T. H. Nasti, R. S. Akondy, A. Wieland, 
G. L. Sica, K. Yu, L. Koenig, N. T. Patel, M. Behera, H. Wu, M. McCausland, Z. 
Chen, C. Zhang, F. R. Khuri, T. K. Owonikoko, R. Ahmed, S. S. Ramalingam, 
PNAS 2017, 114, 4993. 

[9] T. R. Simpson, F. Li, W. Montalvo-Ortiz, M. A. Sepulveda, K. Bergerhoff, F. 
Arce, C. Roddie, J. Y. Henry, H. Yagita, J. D. Wolchok, K. S. Peggs, J. V. 
Ravetch, J. P. Allison, S. A. Quezada, Journal of Experimental Medicine 2013, 
210, 1695. 

[10] D. Mittal, M. M. Gubin, R. D. Schreiber, M. J. Smyth, Current Opinion in 
Immunology 2014, 27, 16. 

[11] D. Aran, Z. Hu, A. J. Butte, Genome Biology 2017, 18, 220. 
[12] A. M. Newman, C. L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, C. D. 

Hoang, M. Diehn, A. A. Alizadeh, Nat. Methods 2015, 12, 453. 
[13] J. Racle, K. de Jonge, P. Baumgaertner, D. E. Speiser, D. Gfeller, Elife 2017, 6, 

DOI 10.7554/eLife.26476. 
[14] T. Li, J. Fan, B. Wang, N. Traugh, Q. Chen, J. S. Liu, B. Li, X. S. Liu, Cancer 

Res. 2017, 77, e108. 
[15] E. Becht, N. A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, J. 

Selves, P. Laurent-Puig, C. Sautès-Fridman, W. H. Fridman, A. de Reyniès, 
Genome Biology 2016, 17, 218. 

[16] D. A. Barbie, P. Tamayo, J. S. Boehm, S. Y. Kim, S. E. Moody, I. F. Dunn, A. C. 
Schinzel, P. Sandy, E. Meylan, C. Scholl, S. Fröhling, E. M. Chan, M. L. Sos, K. 
Michel, C. Mermel, S. J. Silver, B. A. Weir, J. H. Reiling, Q. Sheng, P. B. Gupta, 
R. C. Wadlow, H. Le, S. Hoersch, B. S. Wittner, S. Ramaswamy, D. M. 
Livingston, D. M. Sabatini, M. Meyerson, R. K. Thomas, E. S. Lander, J. P. 
Mesirov, D. E. Root, D. G. Gilliland, T. Jacks, W. C. Hahn, Nature 2009, 462, 
108. 

[17] T. Gong, J. D. Szustakowski, Bioinformatics 2013, 29, 1083. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872184doi: bioRxiv preprint 

https://doi.org/10.1101/872184


[18] C. Zheng, L. Zheng, J.-K. Yoo, H. Guo, Y. Zhang, X. Guo, B. Kang, R. Hu, J. Y. 
Huang, Q. Zhang, Z. Liu, M. Dong, X. Hu, W. Ouyang, J. Peng, Z. Zhang, Cell 
2017, 169, 1342. 

[19] X. Guo, Y. Zhang, L. Zheng, C. Zheng, J. Song, Q. Zhang, B. Kang, Z. Liu, L. 
Jin, R. Xing, R. Gao, L. Zhang, M. Dong, X. Hu, X. Ren, D. Kirchhoff, H. G. 
Roider, T. Yan, Z. Zhang, Nature Medicine 2018, 24, 978. 

[20] I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, 
A. Rotem, C. Rodman, C. Lian, G. Murphy, M. Fallahi-Sichani, K. 
Dutton-Regester, J.-R. Lin, O. Cohen, P. Shah, D. Lu, A. S. Genshaft, T. K. 
Hughes, C. G. K. Ziegler, S. W. Kazer, A. Gaillard, K. E. Kolb, A.-C. Villani, C. 
M. Johannessen, A. Y. Andreev, E. M. Van Allen, M. Bertagnolli, P. K. Sorger, 
R. J. Sullivan, K. T. Flaherty, D. T. Frederick, J. Jané-Valbuena, C. H. Yoon, O. 
Rozenblatt-Rosen, A. K. Shalek, A. Regev, L. A. Garraway, Science 2016, 352, 
189. 

[21] N. Riaz, J. J. Havel, V. Makarov, A. Desrichard, W. J. Urba, J. S. Sims, F. S. 
Hodi, S. Martín-Algarra, R. Mandal, W. H. Sharfman, S. Bhatia, W.-J. Hwu, T. 
F. Gajewski, C. L. Slingluff, D. Chowell, S. M. Kendall, H. Chang, R. Shah, F. 
Kuo, L. G. T. Morris, J.-W. Sidhom, J. P. Schneck, C. E. Horak, N. Weinhold, T. 
A. Chan, Cell 2017, 171, 934. 

[22] W. Hugo, J. M. Zaretsky, L. Sun, C. Song, B. H. Moreno, S. Hu-Lieskovan, B. 
Berent-Maoz, J. Pang, B. Chmielowski, G. Cherry, E. Seja, S. Lomeli, X. Kong, 
M. C. Kelley, J. A. Sosman, D. B. Johnson, A. Ribas, R. S. Lo, Cell 2017, 168, 
542. 

[23] N. Auslander, G. Zhang, J. S. Lee, D. T. Frederick, B. Miao, T. Moll, T. Tian, Z. 
Wei, S. Madan, R. J. Sullivan, G. Boland, K. Flaherty, M. Herlyn, E. Ruppin, 
Nature Medicine 2018, 24, 1545. 

[24] S. T. Kim, R. Cristescu, A. J. Bass, K.-M. Kim, J. I. Odegaard, K. Kim, X. Q. 
Liu, X. Sher, H. Jung, M. Lee, S. Lee, S. H. Park, J. O. Park, Y. S. Park, H. Y. 
Lim, H. Lee, M. Choi, A. Talasaz, P. S. Kang, J. Cheng, A. Loboda, J. Lee, W. 
K. Kang, Nature Medicine 2018, 24, 1449. 

[25] D. Miao, C. A. Margolis, N. I. Vokes, D. Liu, A. Taylor-Weiner, S. M. 
Wankowicz, D. Adeegbe, D. Keliher, B. Schilling, A. Tracy, M. Manos, N. G. 
Chau, G. J. Hanna, P. Polak, S. J. Rodig, S. Signoretti, L. M. Sholl, J. A. 
Engelman, G. Getz, P. A. Jänne, R. I. Haddad, T. K. Choueiri, D. A. Barbie, R. 
Haq, M. M. Awad, D. Schadendorf, F. S. Hodi, J. Bellmunt, K.-K. Wong, P. 
Hammerman, E. M. Van Allen, Nature Genetics 2018, 50, 1271. 

[26] F. Fend, L. Quintanilla-Martínez, Haematologica 2014, 99, 599. 
[27] A. Kalyan, S. Kircher, H. Shah, M. Mulcahy, A. Benson, Journal of 

Gastrointestinal Oncology 2018, 9, 160. 
[28] M. B. Schaaf, A. D. Garg, P. Agostinis, Cell Death & Disease 2018, 9, 115. 
[29] S. Delhalle, S. F. N. Bode, R. Balling, M. Ollert, F. Q. He, npj Systems Biology 

and Applications 2018, 4, 9. 
[30] D. M. Pardoll, Nature Reviews Cancer 2012, 12, 252. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872184doi: bioRxiv preprint 

https://doi.org/10.1101/872184


[31] M. W. L. Teng, S. F. Ngiow, A. Ribas, M. J. Smyth, Cancer Res. 2015, 75, 
2139. 

[32] L. Martínez-Lostao, A. Anel, J. Pardo, Clin Cancer Res 2015, 21, 5047. 
[33] M. Lawand, J. Déchanet-Merville, M.-C. Dieu-Nosjean, Front Immunol 2017, 8, 

DOI 10.3389/fimmu.2017.00761. 
[34] P. Jiang, S. Gu, D. Pan, J. Fu, A. Sahu, X. Hu, Z. Li, N. Traugh, X. Bu, B. Li, J. 

Liu, G. J. Freeman, M. A. Brown, K. W. Wucherpfennig, X. S. Liu, Nat. Med. 
2018, 24, 1550. 

[35] L. W. Pfannenstiel, C. M. Diaz-Montero, Y. F. Tian, J. Scharpf, J. S. Ko, B. R. 
Gastman, Cancer Immunol Res 2019, 7, 510. 

[36] O. J. Finn, Ann Oncol 2012, 23, viii6. 
[37] M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, N. Hacohen, Cell 2015, 160, 48. 
[38] M. N. McCall, B. M. Bolstad, R. A. Irizarry, Biostatistics 2010, 11, 242. 
[39] S. Hänzelmann, R. Castelo, J. Guinney, BMC Bioinformatics 2013, 14, 7. 
[40] M. Schelker, S. Feau, J. Du, N. Ranu, E. Klipp, G. MacBeath, B. Schoeberl, A. 

Raue, Nature Communications 2017, 8, 2032. 
[41] E. Eisenberg, E. Y. Levanon, Trends Genet. 2013, 29, 569. 

 

 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872184doi: bioRxiv preprint 

https://doi.org/10.1101/872184


Figure1. Immune cell types estimated by ImmuCellAI and the workflow of 

ImmuCellAI 

A. Immune cell subsets enumerated by ImmuCellAI. Genes on the line to cell types 

are the examples of their marker genes. B. The pipeline of the ImmuCellAI algorithm. 

The three red boxes are the three main steps of ImmuCellAI algorithm. The reference 

expression profiles of the immune cells were obtained from GEO, and marker genes 

per immune cell type were obtained from the literature and analytical methods. For 

each queried sample, the enrichment score of total expression deviation of the signal 

gene sets was calculated and assigned to each immune cell type by the ssGSEA 

algorithm. The compensation matrix and least square regression were implemented to 

correct the bias caused by the shared marker genes among different immune cell 

types. 
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Figure2. Performance comparison of ImmuCellAI and other methods 

A. Immune cell types can be estimated in ImmuCellAI and other five methods 

(CIBERSORT, EPIC, MCP-counter, TIMER, and xCell). B. Prediction accuracy of 

ImmuCellAI and other methods for our sequenced blood samples from healthy 

individuals and AML patients. The rows correspond to methods and the columns 

indicate the Pearson coefficient for the corresponding cell in the pie graph. Cell types 

not available in the corresponding methods are marked with a black “×.” The “–” in 

the circle denotes the correlation analysis result was “NA.” C. Performance of 

ImmuCellAI and other methods when applied to public RNA-Seq datasets. D. 

Performance of ImmuCellAI and other methods on microarray datasets. E. 
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Correlation deviation of each method, which took sample size and overall accuracy 

into consideration to measure the global performance of each tool. “×” means that 

TIMER was not suitable for estimating the cell fraction of the two microarray datasets 

(PBMC: GSE65133 and FL: GSE65136). 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872184doi: bioRxiv preprint 

https://doi.org/10.1101/872184


 

Figure3. Case study of the application of ImmuCellAI to the immunotherapy datasets 
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A-B. The significant abundance differences of 3 types of immune cells in before (Pre) 

and during (On) anti-PD1 treatment (A), and responders (R) and non-responders (NR) 

at on-treatment (anti-PD1) time point. C. The receiver operating characteristic (ROC) 

curve of the immunotherapy response prediction model in the test and validation 

cohorts. “Cohort 1” contains 53 samples (8 responders and 45 non-responders, 

random sampling from GSE91061, GSE78220 and GSE115821). “Cohort 2” contains 

41 samples (7 responders and 33 non-responders, SRP011540). “Cohort 3” contains 

45 samples (12 responders and 33 non-responders, ERP107734).  

 

 

Figure 4. Analysis of the infiltration of immune cells in TCGA data by ImmuCellAI 

A. A landscape of the comparison of the infiltration of immune cells between the 

tumor and adjacent tissues. The orange blocks indicate that cells infiltrated more in 

the nidus tissue and green blocks indicate the opposite. Statistical significance was 

evaluated using Wilcoxon’s rank sum test with an FDR of 0.10. B. Association of 

tumor-infiltrating immune cells with patient survival. For each cancer type, 

multivariate Cox regression was performed, with covariates including the abundance 

of immune cell, patient age at diagnosis, gender, and clinical stage. C. Kaplan–Meier 

curves of cancers by the combination of multiple immune cell types. Statistical 

significance and hazard ratios were calculated using multivariate Cox regression.  
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Table of contents 

Immune Cell Abundance Identifier (ImmuCellAI) is a novel gene set signature-based 

method for precisely estimating the abundance of 24 immune cell types including 18 

T-cell subsets. Application of ImmuCellAI to immunotherapy datasets revealed the 

dynamic change of immune cell abundance during immune checkpoint blockade 

therapy. An ImmuCellAI result-based model for predicting the immunotherapy 

response achieved high accuracy with AUC 0.80~0.91. 
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Supporting Information 

Figure S1 Direct comparison (Pearson correlation analysis) between cell fractions 

predicted by ImmuCellAI and the real cell abundance listed in Fig. 2B on PBMCs of 

samples from healthy individuals (A) and patients with AML (B).  
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Figure S2 Direct comparison between cell fractions predicted by ImmuCellAI and the 

real cell abundance listed in Fig. 2C and 2D in public datasets estimated by RNA-Seq 

(A) and microarray (B).  
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Figure S3 Partial correlation analysis of the infiltration of immune cells between the 

nidus and adjacent tissues, taking age and gender into consideration  
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Figure S4 Kaplan–Meier curves of melanoma (SKCM) by the infiltration of 12 

immune cell types including Tfh, γδ T, Tc, Neutrophil, Th1, NKT, CD8 T, Th2, CD8 

naïve, NK, Th17, and iTreg.  

 
Figure S5 Partial correlation analysis of the infiltration of immune cells and clinical 

factors (age and gender) 
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Figure S6 Association of the infiltration of antitumor (A) and tumor suppressor (B) 

immune cells with microsatellite instability (MSI) status in COAD and STAD.  
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Figure S7 The abundance of tumor-infiltrating Tex, Th1, iTreg, and CD8+ T cells 

elevated with the clinical stage in KIRC 

 

Table S1 All marker genes used in ImmuCellAI 

Table S2 A list of immune cell reference expression profiles collected from the GEO 

database 
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Table S3 Immune cell antibodies used in flow cytometry 

Cell type Antibody 

Bcell CD45+CD19+ 
DC CD11c+HLA-DR+ 
Macrophage CD45+CD11b+ 
Monocyte CD45+CD14+ 
Neutrophil CD66b+CD11c+ 
NK CD45+CD56+CD3- 
NKT CD45+CD3+CD56+ 
CD4 naïve CD3+CD4+CD45RA+CCR7+ 
CD4 T CD3+CD4+ 
iTreg CD4+CD25+FOXP3+Helios- 
nTreg CD4+CD25+FOXP3+ Helios+ 
Tfh CD4+CD25-CXCR5+PD-1+ 
Th1 CD45+CD4+IFN-r 
Th17 CD45+CD4+IL-17a 
Th2 CD45+CD4+IL-4 
Tr1 CD4+CD25-LAG3+ 
CD8 naïve CD3+ CD8+CD45RA+ CCR7+ 
CD8 T CD3+CD8+ 
Exhausted CD45+CD3+CD8+PD-1+ 
Cytotxic CD3+CD8+CD57+TCRVβ+ 
Central memory CD45+CD3+CD45RO+CCR7+ 
Effector memory CD45+CD3+CD45RO+CCR7- 

Gamma delta T（γδT） CD3+TCRVδ2+ 

MAIT CD3+ CD161++ Va7.2 TCR+ 

 

Table S4 Antibody and its corresponding clone id used in flow cytometry 

Antibody Clone id 
anti-CD45-APC-H7 clone 2D1 
anti-CD4-BB515 clone RPA-T4 
anti-CD8-PE clone RPA-T8 
anti-CD3-PerCPCy5.5 clone SP34-2 
anti-CD25-PECy7 clone M-A251 
anti-CD279-APC clone MIH4 
anti-CCR7-Alexa Fluor 647 clone 3D12 
anti-IL-4-PE clone 8D4-8 

anti-IFN-γ- PercpCy5.5 clone 4S.B3 

anti-IL-17-Alexa Fluor 647 clone 
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SCPL1362 
anti-Helios-Alexa Fluor 647 clone 22F6 

anti-FoxP3-BB700 
clone 
236A/E7 

anti-LAG-3-PE clone T47-530 
anti-CXCR5-BB700 clone RF8B2 
anti-CD56-PECy7 clone B159 
anti-CD19-APC clone HIB19 
anti-HLA-DR-PECy7 clone G46-6 
anti-CD11c-PE clone B-ly6 
anti-CD66b-PerCPCy5.5 clone G10F5 
anti-CD11b-APC clone M1/70 
anti-CD14-FITC clone M5E2 
anti-CD45RA- PECy7 clone HI100 
anti-CD45RO- PECy7 clone UCHL1 
anti-CD57-FITC clone NK-1 

anti-TCR-Vβ2-PE clone REA654 

anti-Vδ2 TCR-PE clone B6 

anti-CD161-FITC clone DX12 
anti- TCR-Va7.2-APC clone REA179 

 

Table S5 The real immune cell fraction calculated from single-cell barcode of 

GSE98638 

sample CD8 naive MAIT Exhausted CD4 naive Treg Th 
p0205p 0.121 0.071 0.000 0.558 0.080 0.027 
p0205t 0.009 0.037 0.092 0.005 0.436 0.179 
p0322n 0.005 0.405 0.000 0.074 0.005 0.279 
p0322p 0.088 0.137 0.003 0.245 0.232 0.046 
p0322t 0.010 0.138 0.121 0.036 0.363 0.183 
p0407n 0.013 0.100 0.017 0.071 0.088 0.363 
p0407p 0.107 0.036 0.008 0.433 0.119 0.024 
p0407t 0.000 0.040 0.048 0.082 0.072 0.401 
p0508n 0.005 0.283 0.000 0.052 0.009 0.344 
p0508p 0.156 0.051 0.000 0.452 0.126 0.037 
p0508t 0.004 0.006 0.203 0.052 0.376 0.102 
p1116n 0.000 0.100 0.000 0.021 0.170 0.390 
p1116p 0.048 0.024 0.000 0.335 0.287 0.004 
p1116t 0.003 0.020 0.187 0.003 0.313 0.093 
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Table S6 The real immune cell fraction calculated from single-cell barcode of 

GSE99254 

Sample CD4 naive Tcm Treg Exhausted MAIT CD8 naive 
P0616A_P 0.158 0.055 0.060 0.000 0.004 0.070 
P0616A_T 0.004 0.015 0.126 0.004 0.024 0.007 
P0616P_P 0.154 0.101 0.000 0.000 0.016 0.202 
P0616P_T 0.000 0.000 0.017 0.111 0.000 0.017 
P0617_N 0.003 0.091 0.023 0.000 0.000 0.003 
P0617_P 0.063 0.194 0.063 0.004 0.004 0.026 
P0617_T 0.000 0.015 0.031 0.037 0.031 0.002 
P0619_N 0.011 0.018 0.060 0.021 0.000 0.000 
P0619_P 0.101 0.105 0.072 0.000 0.018 0.080 
P0619_T 0.003 0.003 0.145 0.222 0.003 0.000 
P0706_P 0.010 0.058 0.010 0.000 0.000 0.019 
P0706_T 0.028 0.051 0.252 0.126 0.008 0.002 
P0729_N 0.003 0.000 0.016 0.006 0.003 0.013 
P0729_P 0.020 0.081 0.054 0.000 0.000 0.071 
P0729_T 0.000 0.004 0.033 0.050 0.017 0.012 
P0913_N 0.049 0.038 0.000 0.011 0.000 0.011 
P0913_P 0.084 0.158 0.134 0.000 0.000 0.039 
P0913_T 0.029 0.006 0.243 0.049 0.006 0.004 
P1010_N 0.005 0.028 0.133 0.000 0.000 0.005 
P1010_P 0.049 0.171 0.046 0.000 0.000 0.003 
P1010_T 0.000 0.008 0.299 0.053 0.002 0.000 
P1011_N 0.000 0.000 0.000 0.231 0.000 0.000 
P1011_P 0.202 0.154 0.123 0.003 0.003 0.084 
P1011_T 0.000 0.004 0.169 0.127 0.002 0.000 
P1118_N 0.005 0.047 0.026 0.005 0.000 0.000 
P1118_P 0.133 0.254 0.023 0.000 0.000 0.152 
P1118_T 0.007 0.028 0.113 0.035 0.007 0.000 
P1120_N 0.000 0.000 0.000 0.073 0.049 0.000 
P1120_P 0.124 0.084 0.084 0.000 0.026 0.061 
P1120_T 0.001 0.006 0.201 0.128 0.011 0.001 
P1202_N 0.004 0.015 0.045 0.015 0.023 0.004 
P1202_P 0.121 0.088 0.058 0.000 0.006 0.000 
P1202_T 0.007 0.024 0.164 0.073 0.004 0.011 
P1208_P 0.164 0.085 0.141 0.000 0.009 0.141 
P1208_T 0.005 0.014 0.153 0.032 0.014 0.000 
P1219_N 0.070 0.000 0.000 0.000 0.009 0.000 
P1219_P 0.131 0.049 0.087 0.000 0.038 0.038 
P1219_T 0.000 0.000 0.055 0.008 0.016 0.000 
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Table S7 The real immune cell fraction calculated from single-cell barcode of 
GSE72056  

Sample Bcell Macrophage Endothelial NK CD4 T CD8 T 
Patient53 0.050 0.066 0.066 0.061 0.189 0.112 
Patient58 0.024 0.012 0.000 0.024 0.116 0.387 
Patient59 0.018 0.009 0.000 0.000 0.000 0.000 
Patient60 0.372 0.019 0.000 0.041 0.130 0.126 
Patient65 0.052 0.021 0.000 0.000 0.096 0.344 
Patient67 0.159 0.000 0.008 0.008 0.218 0.194 
Patient71 0.023 0.015 0.000 0.000 0.036 0.145 
Patient72 0.168 0.000 0.005 0.005 0.291 0.103 
Patient74 0.079 0.028 0.000 0.006 0.041 0.415 
Patient75 0.013 0.010 0.003 0.000 0.029 0.554 
Patient78 0.013 0.000 0.000 0.000 0.000 0.000 
Patient79 0.088 0.000 0.003 0.001 0.038 0.186 
Patient80 0.101 0.002 0.057 0.010 0.179 0.103 
Patient81 0.013 0.004 0.009 0.004 0.039 0.109 
Patient82 0.019 0.039 0.010 0.029 0.122 0.069 
Patient84 0.145 0.140 0.005 0.038 0.123 0.117 
Patient88 0.044 0.106 0.003 0.023 0.094 0.122 
Patient89 0.215 0.051 0.006 0.002 0.049 0.230 
Patient94 0.171 0.007 0.057 0.002 0.164 0.078 
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