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ABSTRACT

Craniosynostosis (CRS) is a congenital abnormality deformity with a heterogenous genetic

contribution. Previously, there are two attempts to collect genes that are genetically associated

with craniosynostosis and some related syndromes with 57 (Twigg and Wilkie, 2015) and 39

(Goos and Mathijssen, 2019) genes identified, respectively. We expanded this list of craniosyn-

ostosis genes by adding another 17 genes with an updated literature search. These genes are

shown to be more likely to be intolerant to functional mutations. Of these 113 craniosynostosis

genes, 21 (19% vs. 1.5% baseline frequency) are cancer driver genes, a 14-fold enrichment. The

cancer-craniosynostosis connection is further validated by an over-representation analysis of

craniosynostosis genes in KEGG cancer pathway and several cancer related gene-sets. Many

cancer-craniosynostosis overlapping genes participate in intracellular signaling pathways, which

play a role in both development and cancer. This connection can be viewed from the oncoge-

nesis recapitulates ontogenesis framework. Nineteen craniosynostosis genes are transcription

factor genes (16.8% vs. 8.2% baseline), and craniosynostosis genes are also enriched in targets

of certain transcription factors or micro RNAs.
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abbreviations:

CADD: combined annotation dependent depletion;

CML: chronic myelogenous leukemia;

CNV: copy number variation;

CRS: craniosynostosis;

FGF: fibroblast growth factor;

GDI: gene damage index;

GEO: gene expression omnibus database;

GO: gene ontology;

GS: gene-set;

GWAS: genome-wide association studies;

HUGO: Human Genome Organisation;

IPA: Ingenuity Pathway Analysis;

KEGG: Kyoto Encyclopedia of Genes and Genomes;

LOEUF: loss-of-function observed-over-expected upper bound fraction;

MeSH: medical subject headings;

MSigDB: Molecular Signature Database;

OR: odds-ratio;

PID: pathway interaction database;

pv: p-value of a test;

RVIS: residual variation intolerance score;

SNP: single-nucleotide polymorphism;

TDT: transmission disequilibrium test;

TGF: transforming growth factor;

TF: transcription factor;
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Introduction

Craniosynostosis is a congenital condition when the suture of a baby’s skull does not close

in a timely fashion, causing abnormal skull shape (Kabbani and Raghuveer, 2004). This

premature fusion of sutures may also lead to other abnormal traits, a situation called a cran-

iosynostosis syndrome (Muenke and Wilkie, 2014; Ko, 2016). There are 100-200 syndromes

associated with craniosynostosis, including Apert, Pfeiffer, Crouzon, Antley-Bixler, Saethre-

Chotzen, and Muenke syndromes (Wilkie et al., 1995; Carinci et al., 2005); at least 15 of the

syndromes are listed in Online Mendelian Inheritance in Man (www.omim.org), and close to

40 are listed in National Organization for Rare Disorders (rarediseases.org). Craniosynostosis

is highly heterogeneous in its potential causes, etiology of individual cases is often unknown

(Wilkie, 1997), and has long been known to be a multifactorial disease (Hunter and Rudd,

1976). Through genetic studies, tens of genes are shown to be associated with craniosynostosis

(Twigg and Wilie, 2015), providing a foundation for further elucidation of the mechanism of

the trait. Like any phenotypes, there should also be environmental contributions to craniosyn-

ostosis (Shashi and Hart, 2002; Zeiger et al., 2002; Durham et al., 2017), illustrated by an

observation of identical twins with discordant craniosynostosis (Magge et al., 2017).

If a specific gene is part of a known biological pathway, the genes function and its role in a

disease might be hypothesized. However, due to the extreme heterogeneity of craniosynostosis,

no single pathway stands out as the major pathway for all cases (Twigg and Wilie, 2015). We

adopt a different strategy to treat the collection of genes that are genetically associated with

craniosynostosis as a single unit (a gene-set, a molecular signature, etc.) (Jürgens, 1985;

Subramanian et al., 2005; Li et al., 2015b). One gene-set can be checked with any other gene-

sets for overlapping of common genes. If the two gene-sets share more common genes than

expected by chance, an over-representation or enrichment is claimed, which provides evidence

that the two gene-sets are biologically related (Khatri et al., 2012).

Naturally, the major focus on the molecular understanding of craniosynostosis is on early

embryonic developmental pathways, such as the fibroblast growth factor (FGF) signaling path-

way (Ornitz and Marie, 2002) that is associated with several downstream transduction path-

ways of RAS/MAPK (Takenouchi et al., 2014), PI3K/AKT (Dufour et al., 2008), PLCγ (Moen-
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ning et al., 2008), STAT (Lokau and Garbers, 2019), etc. The link between craniosynostosis and

cancer was first suggested by the observation that a craniosynostosis-associated gene, FGFR2,

experiences a higher than expected somatic mutation rate in endometrial cancer (Pollock et

al., 2007).

In this paper, we aim at extending the craniosynostosis-cancer connection from a single

gene (i.e., FGFR2) to the level of pathways and gene-sets. Towards this goal, we would like to

have a more up-to-date list of genes that are genetically associated with craniosynostosis (i.e.,

genes that contain, uniquely or preferably, germline mutations in craniosynostosis patients).

Previously, there have been two attempts to collect craniosynostosis genes: one in 2015 with

57 genes (Twigg and Wilie, 2015) and a more recent one in 2019 with 39 genes (Goos and

Mathijssen, 2019).

Most of these genes are identified through a combination of family studies, candidate gene

investigation, mouse model validation, etc. Recently, there are new strategies, such as GWAS

(genome-wide association study) on common genetic variants (Justice et al., 2012), and exome

sequencing followed by summing all rare variants (Timberlake et al., 2017). Without distin-

guishing different gene mapping methods, we proceed by a systematic search of all PUBMED

titles/abstracts that contain the word of “craniosynostosis and “genetic, finding all gene names,

then followed by a manual check of the original literature. An extra 17 genes have been added

to the craniosynostosis genes list.

On the other hand, a list of cancer driver genes (i.e., somatic mutations in these genes are

positive selected in cancer cell clonal expansion) is readily available with 125 genes in a 2013

study (Vogelstein et al., 2013), and 299 genes in a more recent analysis (Tokheim et al., 2016).

We compare our craniosynostosis gene list and cancer driver gene lists to examine if the overlap

between them is more than expected by chance.

The result section below is organized by a description of our compilation of craniosynostosis

genes; the observation that these genes are more intolerant to functional mutations; these genes

are enriched in cancer driver gene lists; an enrichment analysis of these genes in all gene-set

from a gene-set database; an enrichment analysis of these genes in the Ingenuity pathway

database; and their enrichment in the transcription factor list. The result section is followed

by the Method/Data section and Discussion/Conclusion section.
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Results

Compilation of a more complete list of craniosynostosis genes

In 2015, a set of 57 genes are summarized as being genetically associated with craniosyn-

ostosis (CRS) (Twigg and Wilie, 2015), i.e., variants/mutations are observed in these genes in

CRS patients that are less likely to be observed in people without CRS. A more recent paper

adds 39 more CRS genes published from 2015-2017 (Goos and Mathijssen, 2019), resulting in a

total of 96 genes. The reason for so many genes being linked to the disease can be understood

by the perspective of heterogeneity (McClellan and King, 2010).

When some public PUBMED-search programs such as PolySearch (polysearch.ca) (Liu et

al., 2015) or HuGE Literature Finder (phgkb.cdc.gov/PHGKB/startPagePubLit.actio) (Lin et

al., 2006) were used, we failed to find any new CRS genes. The reason is that these programs

are designed to reduce the number of false positives, aiming at a shorter list of genes, not

longer. As these public domain programs did not serve our purposes, we designed our own

pipeline via a PUBMED search.

In our approach, we first filtered all PUBMED titles/abstracts by the MeSH term of cran-

iosynostosis and genetic. Then, a list of HUGO approved human gene names was used to find

any matching abbreviations in the abstract (two-letter items are ignored). With this raw list

of potential gene names, we manually checked each item and the corresponding abstract to

determine the appropriateness of the match.

These 17 new genes found through this process were added to the CRS genes list: AXIN2

(Yilmaz et al., 2018), BBS9 (Justice et al., 2012; Sewda et al., 2019), BCOR (O’Byrne et

al., 2017) (for Oculo-facio-cardio-dental syndrome, or microphthalmia syndrome), BGLAP

(Sowińska-Seidler et al., 2018), COLEC10 (for 3MC syndrome) (Munye et al., 2017), FGFRL1

(Rieckmann et al., 2009) (for Antley-Bixler syndrome), GCK (for Greig cephalopolysyndactyly

syndrome) (Zung et al., 2011), LMNA (Sowińska-Seidler et al., 2018), PPP3CA (Mizuguchi et

al., 2018), PTH2R (Kim et al., 2015), RAF1 (for Noonan syndrome with multiple lentigines,

or leopard syndrome) (Rodŕıguez et al., 2019), SIX2 (for frontonasal dysplasia syndrome)

(Hufnagel et al., 2016), SMURF1, SPRY1, SPRY4 (Timberlake et al., 2016, 2017), TCOF1 (for

Treacher Collins syndrome) (Horiuchi et al., 2004), TNFRSF11B (for Juvenile Paget disease)
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(Saki et al., 2013).

There can be various reasons why the above genes are not included in the two collections by

Twigg-Wilkie and Goos-Mathijssen. Obviously, if the paper was published after 2018, it would

not be in the previous lists. Also, we included gene mutations in rare syndromic cases which

include CRS as one of many phenotypes. Note that we did not consider genes causing CRS in

animal models (e.g., BMP3 (Schoenebeck et al., 2012), DUSP6 (Li et al., 2007), SNAI1, SNAI2

(Oram and Gridley, 2005)). We also did not consider genes that are differentially expressed

in relevant tissues in CRS (e.g., FGF7, SFRP4, VCAM1 (Zhang et al., 2002; Stamper et al.,

2011), NELL1 (Zhang et al., 2002), IGF1 (Al-Rekabi et al., 2016)). These genes may still play

a role in the etiology of CRS, or, they might be discovered to harbor germline mutations in

the future, but are excluded for now to be consistent with the previous lists.

The three compilations ((Twigg and Wilie, 2015), (Goos and Mathijssen, 2019), and here)

add up to 113 genes that are genetically associated with craniosynostosis. These 113 cran-

iosynostosis genes are: ABCC9, ADAMTSL4, AHDC1, ALPL, ALX4, ASXL1, ATR, AXIN2,

B3GAT3, BBS9, BCOR, BGLAP, BMP2, BRAF, CD96, CDC45, CHST3, COLEC10, COLEC11,

CRTAP, CTSK, CYP26B1, DPH1, EFNA4, EFNB1, ERF, ESCO2, FAM20C, FBN1, FGF9,

FGFR1, FGFR2, FGFR3, FGFRL1, FLNA, FREM1, FTO, GCK, GLI3, GLIS3, GNAS,

GNPTAB, GPC3, HNRNPK, HUWE1, IDS, IDUA, IFT122, IFT140, IFT43, IGF1R, IHH,

IL11RA, IL6ST, IRX5, JAG1, KANSL1, KAT6A, KAT6B, KMT2D, KRAS, LMNA, LMX1B,

LRP5, MASP1, MED13L, MEGF8, MSX2, NFIA, NTRK2, OSTM1, P4HB, PHEX, POR,

PPP1CB, PPP3CA, PTH2R, PTPN11, PTPRD, RAB23, RAF1, RECQL4, RSPRY1, RUNX2,

SCARF2, SCN4A, SEC24D, SH3PXD2B, SHOC2, SIX2, SKI, SLC25A24, SMAD6, SMC1A,

SMO, SMURF1, SOX6, SPECC1L, SPRY1, SPRY4, STAT3, TCF12, TCOF1, TGFBR1,

TGFBR2, TMCO1, TNFRSF11B, TWIST1, WDR19, WDR35, ZEB2, ZIC1, and ZNF462.

More detailed information on the newly added 17 CRS genes are summarized in the Ap-

pendix. The gene OSTM1 is labeled as OSTEM1 in (Mahmoud Adel et al., 2013; Goos and

Mathijssen, 2019) which is not a HGNC approved name. Also note that BGLAP and LMNA

in our new addition are within a 1.26 Mb deletion and each gene was hypothesized as causing

the disease (Sowińska-Seidler et al., 2018).
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Craniosynostosis genes tend to be intolerant to functional mutations

Sequencing a large number of normal samples allows us to learn which genes tend to have

more amino-acid-changing and/or loss-of-function mutations and which genes tend to have

less. The former is called “tolerant” and the latter “intolerant”. We tested three measures

of intolerance with two goals in mind. One is to check whether our CRS gene list as a whole

tend to be intolerant to functional mutations. Another is to find out which genes in the list

are more tolerant to mutations than others, which flag them as potential false positives.

The RVIS (Residual Variation Intolerance Score) (Petrovski et al., 2013) is derived from the

regression of sum of all common (major allele frequency larger than 0.001) functional variants

within a gene (Y) over sum of all positions with variant in the gene (X). The residual (difference

between the observed Y and the expected value from the regression line), standardized by

the standard deviation, is RVIS (Petrovski et al., 2013). Genes with negative (positive) are

intolerant (tolerant) to functional mutations. Of 104 CRS genes (out of 113) with RVIS

values, 82 are negative (and 19 are positive). The percentage of intolerant CRS genes is 79%,

as compared to the baseline percentage of 53% (Fisher’s test p-value= 9 × 10−9). Direct

comparison of RVIS in CRS gene list and outside also leads to a significant difference: the

t-test p-value is 3.7× 10−9 and the Mann-Whitney-Wilcoxon test p-value is 1.6× 10−11.

The LOEUF (Loss-of-function Observed-over-Expected Upper bound Fraction) is based

on a coarse-grained version of the regression of observed loss-of-function variants (Y) over

expected (X) (Karczewski et al., 2019), for data from the normal individuals. A large (small)

LOEUF value implies a tolerant (intolerant) gene. Of the 113 CRS genes, 95 have LOEUF

smaller than 1 (84.1%). This percentage is significantly larger than the baseline proportion

(55.5%) (Fisher’s test p-value = 1.3 ×10−10). Direct comparison of LOEUF between CRS

genes and the rest leads to the same conclusion (Mann-Whitney-Wilcoxon test p-value is 2.4

×10−16; t-test is not used because the distribution of LOEUF is not normal).

The GDI (Gene Damage Index) is calculated by summing all variants’ predicted damage

impact score according to CADD (Combined Annotation Dependent Depletion) (Kircher et

al., 2014) in a normal dataset (Itan et al., 2015). A large (small) GDI implies a tolerant

(intolerant) gene. A comparison of the GDI score itself between CRS genes and other genes
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does not lead to any significant results. In a recent assessment of various variant pathogenicity

prediction programs, CADD is not performing well (Niroula and Vihinen, 2019). It may cast

doubt on the usefulness of raw GDI score. However, if we use the categorical label on whether

a gene has LOW, MEDIUM, or HIGH damage provided by the GDI site, genes showing high

level of damaging mutations in normal samples might be potential false positives. According

to the assessment from this approach, these genes in the CRS list: FREM1, KANSL1, ALX4,

RECQL4, may need further examination. Despite the possibility that some genes in the list

may be false positives, as a whole, we show evidence that these genes are intolerant to functional

mutations.

Enrichment of craniosynostosis genes in the list of cancer driver genes

A cancer driver gene is defined as those whose mutations “increase net cell growth under the

specific microenvironmental conditions that exist in the cell in vivo” (Tokheim et al., 2016), or

genes whose mutations “promote tumorigenesis” (Vogelstein et al., 2013). Many cancer driver

genes prediction relies on the non-random mutation patterns, instead of mutation frequencies.

For example, the 20/20 rule states that for oncogenes, > 20% of somatic mutations should

occur in recurrent positions and to be missense, whereas for tumor suppressing genes, 20% of

mutations should be inactivating (loss-of-function, truncating) (Vogelstein et al., 2013).

We obtained the list of 299 cancer driver genes from (Bailey et al., 2018), which is decided

by a combination of 26 computer programs. We first tested enrichment of cancer driver genes

individually in Twigg-Willie’s list, in Goos-Mathijssen’s list, and in our newly added list. The

results are shown in Table 1. There are 12 (out of 57), 6 (out of 39), 3 (out of 17) CRS genes

that are in the cancer driver gene list, for the three collections. The proportions are 21%, 15%,

and 18% respectively. On the other hand, the baseline proportion of cancer driver genes can

be simply 299/20000 or 1.5%. Clearly, cancer driver genes are greatly enriched in the three

CRS gene lists. The overrepresentation test (using Fisher’s test) leads to p-values of 6×10−11,

3× 10−5 and 2× 10−3, respectively.

Within Twigg-Wilkie’s list, there are 20 CRS genes are labeled as core genes. And 5 of

these 20 genes are cancer driver genes (25%). The Goos-Mathijssen’s list can be split into
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two sublists: one with evidence of mutation in multiple persons, and another with mutation

observed only on one patient. The cancer driver genes are in 9% and 24% of the two sub-lists.

All these proportions are much higher than the 1.5% expected by chance. If we combine the

three CRS gene collections (total 113 genes), 21 (or 19%) are cancer driver genes, with the

p-value of 1.2 ×10−16.

To address the question on whether the significant enrichment of cancer driver genes in

CRS genes is robust, with respect to the compilation of driver genes itself, we re-ran the

analysis using an early cancer driver gene list (125 genes) (Vogelstein et al., 2013). The

result is summarized in Table 1 (right). The baseline proportion of this cancer driver genes

is 125/20000 = 0.6%, whereas the proportion of them in the three CRS gene lists are 8.8%,

7.7%, and 5.9%. The corresponding Fisher’s test p-values are 3 × 10−5, 2 × 10−3, and 0.1.

When all three CRS gene collections are combined, 9 out of 113 (8%) are cancer driver genes,

a significant enrichment (p-value= 7×10−8). These results firmly establish the fact that cancer

driver genes are over-presented in CRS genes.

Our results can be made more precise by using a more accurate number of human genes (less

than 20000), and/or by excluding CRS genes from the comparison group. These changes do

not affect the conclusion (result not shown). The 21 cancer driver genes that match the CRS

gene list are ASXL1, ATR, AXIN2, BCOR, BRAF, FGFR1, FGFR2, FGFR3, FLNA, GNAS,

HUWE1, IL6ST, KANSL1, KMT2D, KRAS, PTPN11, PTPRD, RAF1, SMC1A, TCF12, and

TGFBR2.

Enrichment analysis of craniosynostosis genes for all gene-sets in MSigDB

In order to further examine the craniosynostosis-cancer connection, we compared the 113-

CRS-gene list with all gene-sets in MSigDB (Liberzon et al., 2015). We checked whether some

genes in one list may never have a chance to be present in the second list, due to the two-

gene-universe situation (e.g. (Swaminathan and Fury, 2012)). Indeed, MSigDB v6.2 has not

updated all gene names to the current standard, with KANSL1 written as KIAA1267, and

KMT2D written as MLL2 in MSigDB. We manually corrected these inconsistent gene names.

Similarly, non-coding genes in MSigDB may never have a chance to match our CRS gene list
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which is all protein-coding. Therefore, only protein-coding genes are kept in MSigDB gene-sets

in this enrichment analysis. The C1 MSigDB collection is chromosome location based gene

clusters, which is of no interest to us and thus not used here.

The Hallmark, C4, C6, and C7 collection do not have any gene-sets to be significantly over-

lapping with CRS gene list at the family-wide significance p-value of = 5.7 × 10−7. However,

when using the collections-specific multiple testing correction, the TGF-beta signaling (Hall-

mark) (p = 3.3 × 10−5, OR=15.4) is significant. This pathway has already been discussed as

being linked to CRS (Opperman et al., 1997; Hunenko et al., 2001) (see Table 2 for matching

genes, and Fig.1(D) for the volcano plot (Li, 2012)).

The C2 gene-set collection in MSigDB includes some other popular pathways and gene-

sets databases such as KEGG (Kanehisa and Sato, 2000) and REACTOME (Fabregat et al.,

2018). Using a stringent criterion of (Bonferroni correction) p-value < 0.01/nGS, which is 5.7

×10−7 if we use nGS = 17484 for all gene-sets in MSigDB (used in the enrichment analysis),

or 2.1 ×10−6 if we only count the number of gene-sets in C2 (nGS = 4762), 3 or 5 gene-sets

are family-wise significant. These top five gene-sets are: cancer pathway (KEGG) (p-value

(p) = 3.1 × 10−9, odds-ratio (OR) =8.3), FGF pathway (defunct PID (Schaefer et al., 2009))

(p = 1.1 × 10−7, OR=21.6), MAPK signaling pathway (KEGG) (p = 1.7 × 10−7, OR=7.9),

FRS2 mediated cascade (REACTOME) (p = 2.2 × 10−7, OR=28), and signaling by FGFR

mutants (REACTOME) (p = 5.7 × 10−7, OR=29.8), These results and matching genes are

listed in Table 2, and volcano plot (Li, 2012) in Fig.1(A).

The involvement of FGF (fibroblast growth factor), FGFR (fibroblast growth factor recep-

tor), and MAPK/ERK signaling pathways in CRS has long been discussed in the literature

(Marie et al., 2005; Shukla et al., 2007; Kim et al., 2015; Kosty and Vogel, 2015; Pfaff et al.,

2016; Timberlake et al., 2017). However, our top hit gene-set is KEGG’s cancer pathway,

and this link between CRS and cancer is to our knowledge rarely discussed in the literature.

In Table 3, we list few more cancer pathways, though not family-wide significant, that are

significant at p = 10−5 level.

The C3 collection in MSigDB defines gene-sets by their shared DNA sequence motif in

the promoter region. With a p-value threshold of 5.7 ×10−7 and 1.2 ×10−5 (0.01/836), 1

or 6 gene-sets are family-wise significant. Three of our six enriched gene-sets (AACTTT,
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TTGTTT, CTTTGT) appear in the top ten enriched C3 gene-sets in SOX10 regulated genes

(supplementary Table 5 of (Sun et al., 2014)). Similar to SOX6 (Hagiwara, 2011), one of the

CRS genes, SOX10 also plays an important role in embryonic development (Honoré et al.,

2003). These results and matching genes are listed in Table 4, and volcano plot in Fig.1(C).

Although AACTTT/AAAGTT is not labeled as a binding motif for a known transcription

factor (TF), IRF1 is listed as the binding TF for this motif in (Xie et al., 2005). Among other

binding partners, mir21 (Feng and Tsao, 2016; Javanmardi et al., 2017), mir204 (Li et al.,

2016), mir211 Mazar et al., (2016), FOXO4 (Liu et al., 2011; Hornsveld et al., 2018), LEF1

(Hovanes et al., 2001; Li et al., 2009), ETS2 (Sizemore et al., 2017; Fry and Inoue, 2018) are

all discussed in the context of a cancer.

The C5 collection in MSigDB is defined by the Gene Ontology (GO) terms (Gene Ontology

Consortium, 2019). With the number of all MSigDB gene-sets to correct multiple testing, 111

GO gene-sets are significant; with only the number of GO gene-sets (nGS = 5917) to correct,

126 GO gene-sets are significant. We highlight two groups of significant GO gene-sets: the first

group has higher percentage of genes in the overlapping set (Table 5, for percentage > 0.1),

and the second group contains larger gene-sets (Table 6, for gene-set size > 1000 genes). These

two groups as marked in the volcano plot (Li, 2012) can be seen at Fig.1(C). The larger-sized

gene-sets are located near the inner side of the volcano as these are “common events” (Li et

al., 2014), whereas the stronger-signal gene-sets are located at the outer side because these are

relatively rare events.

Most family-wide significant GO gene-sets are expected to be related to CRS as they are

involved in morphogenesis, development, differentiation, ossification. Once again, we see some

significant gene-sets to be related to cell proliferation. A few significantly CRS-associated gene-

sets are related to protein binding, protein transport, signal transduction, cell communication,

etc.

Enrichment analysis of craniosynostosis genes by Ingenuity pathway analysis

We ran an enrichment analysis of 113 CRS genes by the Ingenuity Pathway Analysis (IPA)

(using the Ingenuity Knowledge Base). The top 16 canonical pathways are shown in Fig.2,
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with the p-value cutoff of 1.32E-5. In Fig.2, signaling pathways are marked by blue, and cancer

gene-sets are marked by red, with the rest being well known to be related to development and

differentiation. The presence of the “molecular mechanisms of cancer” gene-set in the top list

once again confirms the link between CRS and cancer.

It is interesting that some IPA cancer genes are not in KEGG cancer pathway list or

cancer driver gene list, which lead to some difference between the overlapping results. More

specifically, of the three overlapping lists (n1 = 21 for driver genes, n2 = 15 for KEGG cancer

genes, and n3 = 13 for IPA molecular mechanism of cancer genes), only four genes appear in

all three lists: BRAF, KRAS, RAF1, and TGFBR2. Besides these four genes, there are also

pairwise shared genes: AXIN2, FGFR1, FGFR2, and FGFR3 between the driver and KEGG

lists, BMP2, SMO, and TGFBR1 between the driver and IPA lists, and ATR, GNAS, and

PTPN11 between the KEGG and IPA lists. The remaining genes are unique to specific lists:

ASXL1, BCOR, FLNA, HUWE1, IL6ST, KANSL1, KMT2D, PTPRD, SMCIA, and TCF12

for the driver list, FGF9, GLI3, IGF1R, and STAT3 for the KEGG list, and IHH, LRP5, and

SMAD6 for the IPA list.

More detailed information of those IPA signaling pathways in Fig.2 are included in Table 7.

Among signaling pathways, IPA shares some common results with KEGG/Reactome/MSigDB,

such as TGF and FGF, though there are other significant hits, such as STAT3, NF-KB, PTEN,

etc. The decision to put certain genes in a pathway, and the definition of a pathway in light

of cross-talk among pathways (Attisano and Labbé, 2004; Guo and Wang, 2009; Mendoza et

al., 2011), may all contribute to these discrepancies. It justified our use of multiple databases

for this analysis.

Besides the IPA canonical pathways, Table 8 shows top-5 hits in other categories: upstream

regulators, diseases, molecular/cellular functions, physiological system development and func-

tion. Most of these hits are expected due to our knowledge of CRS being a developmental

disorder. We do notice cell-signaling as one of the top hits in molecular/cellular functions.

In order to find out which specific CRS genes participate in which signaling pathway, we

checked the 15 CRS genes that overlap with the KEGG cancer pathway. Their presence in

other MSigDB C2 signaling pathways and IPA signaling pathways is summarized in Table 9.

From Table 9, a few “core” genes appear in multiple IPA signaling pathways (FGFR1, FGFR2,
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FGFR3, KRAS, RAF1, STAT3, TGFBR1, TGFBR2), which other are more specific for one or

few signaling pathways. For example, SMO only appears in cardiac hypertrophy and protein

kinase A signaling pathways; GLI3 only appears in protein kinase A signaling pathways; BRAF

only appears in NF-KB and protein kinase A signaling pathways; etc.

Enrichment analysis of craniosynostosis genes in transcription factors

Transcription factors (TF) can be the end target of a signaling pathway. Due to the

enrichment of signaling pathway genes in CRS gene list, we wonder whether TFs are en-

riched in the list also. There have been previous attempts to examine the connection between

TF and diseases (Latchman, 1996; Li et al., 2015a), and it would not be completely unex-

pected that the CRS gene list contains a higher proportion of TFs. MSigDB does not have

a gene-set with a complete list of transcription factors. The closest ones include the gene-

ontology set in C5 “GO SEQUENCE SPECIFIC DNA BINDING” with around 1000 genes,

and “GO REGULATION OF TRANSCRIPTION FROM RNA POLYMERASE II PROMOTER”

with around 1700 genes.

Instead, we used a recently compiled TF list from (Lambert et al., 2018) with 1638 TFs.

There are 19 (out of 113, or 16.8%) CRS genes present in the TF list, compared to the baseline

TF frequency of 8.2% (1638/20000). The Fisher test of the enrichment has p-value = 0.003.

These overlapping genes are: AHDC1, ALX4, ERF, GLI3, GLIS3, IRX5, LMX1B, MSX2,

NFIA, RUNX2, SIX2, SKI, SOX6, STAT3, TCF12, TWIST1, ZEB2, ZIC1, and ZNF462.

There is another TF gene list from ten years ago with 1835 TFs (Vaquerizas et al., 2009).

The overlap between the old and new TF lists is 1423 genes (87% of the new list, and 78%

of the old list). Some CRS genes that are present in the old TF list, e.g., BMP2, SMAD6,

are said to not be DNA binding proteins with specific sequence motifs (Lambert et al., 2018).

Though we may trust less the TF list from ten years ago than the recent list, if we use the

old TF list for enrichment test, it contains 22 CRS genes (22/113=16.5%), vs. the baseline

frequency of 9.2% (1835/20000), with a Fisher test p-value of 0.0008.
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Methods and Data

Statistical analysis: The Fisher’s test for 2-by-2 table is by the R (www.r-project.org)

function fisher.test. Other data manipulation, text parsing, and data plotting tasks are carried

out by our own scripts in perl, python, and R.

Gene intolerance databases: Three databases on whether a gene is tolerant to functional

mutation are used: (1) Residual Variation Intolerance Score (RVIS): genic-intolerance.org. The

RVIS values are based on ExAC (Exome Aggregation Consortium) v2 (release 2.0). (2) Loss-of-

function Observed/Expected Upper bound Fraction (LOEUF): gnomad.broadinstitute.org/downloads,

follow the link of “Constraint”, then “pLoF metrics by gene TSV”. The gene-level metrics

are determined from the gnomAD version 2.1.1 (Karczewski et al., 2019). (3) Gene Damage

Index (GDI): lab.rockefeller.edu/casanova/GDI. The GDI values are based on the healthy in-

dividual’s whole genome sequence data from the 1000 Genomes Project database (phase 3)

(The 1000 Genomes Project Consortium, 2015), and the impact/damage from a variant is

determined by the CADD method (Kircher et al., 2014).

Gene-set database: We downloaded the gene-set data from MSigDB

(software.broadinstitute.org/gsea/msigdb/collections.jsp), version 6.2 (Liberzon et al., 2015).

There are 17810 gene-sets in total, and we excluded the C1 collection which contains chromo-

some location based gene-sets, leaving 17484 gene-sets. We also filter out non-coding genes,

according to the annotation from HGNC (www.genenames.org), from the gene-sets. The re-

maining gene-set collections used are: H (Hallmark collection, nGS=50), C2 (curated gene-sets,

including KEGG (www.genome.jp/kegg ), REACTOME (reactome.org), BioCarta, Canonical

Pathways, Chemical and Genetic Perturbation, nGS=4762), C3 (motif gene-sets, n=836), C4

(cancer gene neighborhoods (Subramanian et al., 2005) and cancer modules (Segal et al.,

2004), nGS=858), C5 (Gene Ontology (geneontology.org) gene, nGS=5917), C6 (GEO microar-

ray derived cancer signatures nGS=189), and C7 (immunologic signatures (Godic et al., 2016),

nGS=4872).

Cancer driver gene lists: The 2018 list with 299 cancer driver genes is downloaded from Sup-

plement Table S1: https://www.sciencedirect.com/science/article/pii/S009286741830237X#app2

of the paper (Bailey et al., 2018) (doi: 10.1016/j.cell.2018.02.060). The 2013 list with 125 driver
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genes is downloaded from the Supplementary Table S2A:

www.sciencemag.org/cgi/content/full/339/6127/1546/DC1 in the paper (Vogelstein et al., 2013)

(doi: 10.1126/science.1235122).

Ingenuity pathways: Ingenuity Systems is a commercial package ( c©2000-2019 QIAGEN)

with an expert-curated Knowledge Base, including canonical pathways.

Transcription factor lists: The 2018 list of 2764 transcription factors is downloaded from

humantfs.ccbr.utoronto.ca/, also as a supplement Table S1 in (Lambert et al., 2018)

(doi: 10.1016/j.cell.2018.01.029). The 2009 list of transcription factors is downloaded from the

supplementary Table 2 of (Vaquerizas et al., 2009) (doi: 10.1038/nrg2538).

Discussions

The statistical evidence linking craniosynostosis and cancer is robust: We have

obtained strong statistical evidence (p-value ∼ 10−16) that craniosynostosis genes and cancer

driver genes sets are more overlapping than by chance. The evidence is even more convincing

that when craniosynostosis genes list is split into three pieces according to the time when it

was compiled, there is an over-representation for each sub-list. Furthermore, even when we

use an older cancer driver gene list with half of the genes as the new list, thus smaller sample

sizes, the enrichment test is still significant (p-value ∼ 10−7). The craniosynostosis-cancer

connection is further confirmed in two other databases: the KEGG cancer pathway and the

IPA molecular mechanism of cancer gene-set, despite the difference between these cancer gene

lists.

Redundancy between gene-sets is not enough to carry over an enrichment be-

tween craniosynostosis gene list and one gene-set and that of another: It is known

that gene-set databases contain redundant gene-sets (Vivar et al., 2013; Stoney et al., 2018). In

order to check whether redundancy is the reason that we obtained multiple enrichment gene-

sets in Table 2, we examine the self-enrichment between KEGG PATHWAYS IN CANCER

and other C2 and C3 MSigDB gene-sets. Fig.3 shows enrichment Fisher’s test (− log
10
) p-

value as a function of the C2/C3 gene-set sizes. The points (C2/C3 gene-sets) at the top of

the plot exhibit significant overlap with the KEGG cancer pathway gene-set. The gene-sets
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that significantly overlap with craniosynostosis gene list are marked in red.

Indeed, KEGG MAPK SIGNALING PATHWAY shares 82 out of 266 in common with the

KEGG cancer gene-set, REACTOME SIGNALING BY FGFR IN DISEASE shares 53 out of

122 in common, followed by SIGNALING BY FGFR (Reactome): 31/43, FRS2 MEDIATED CASCADE

(Reactome): 29/36, FGF (PID): 30/55, and SHC MEDIATED SIGNALING (Reactome):

10/15. For C3 gene-sets, AACTTT motif defined gene-set shares 83/1820 with the KEGG

cancer list, once again, indicating a potential link with the cancer. The C2 cancer gene-sets

listed in Table 3 are marked in blue in Fig.3, which are all highly correlated with the KEGG

cancer gene-set. However, a high enrichment with the KEGG cancer gene-set does not guar-

antee an enrichment with the craniosynostosis gene list. For example, the top two points

in Fig.3(A) are KEGG small-cell lung cancer gene-set and KEGG prostate cancer gene-set.

While the prostate cancer gene-set has some overlap with craniosynostosis gene list (6 out of

89, p-value=3×10−5), the small-cell lung cancer gene-set actually has zero overlap with the

craniosynostosis gene list.

Signaling pathways as the main cause for craniosynostosis-cancer connection:

Our results in Tables 2,7 and Fig.3(A) all indicate the importance of signaling pathways in

craniosynostosis, as well as their common link to both craniosynostosis and cancer. This

is consistent with previous findings. FGFR2 is the first gene highlighted to be involved in

both craniosynostosis and cancer (Pollock et al., 2007). The FGF signaling pathway has been

well established to participate both morphogenesis/development/differentiation (Deimling and

Drysdale, 2011; Drewer et al. 2016), on one hand, and carcinogenesis, on the other (Ahmed et

al., 2012; Fearon et al., 2013; Gallo et al., 2016). The FGF signaling pathway was proposed

as a drug target for treating cancers (Lee and Secord, 2014; Porta et al., 2017; Hanrahan et

al., 2019). The WNT signaling pathway is associated with craniosynostosis (Timberlake et

al., 2016), and is also associated with cancer (Clevers, 2006; Clevers and Nusse, 2012; Zhan

et al., 2017). The Hedgehog signaling pathway is discussed in connection to craniosynostosis

(Jenkins et al., 2007), and is also associated with cancer (Jiang and Hui, 2008; Skoda et al.,

2018).

In Table 9 we can see that all craniosynostosis-KEGG-cancer overlapping genes are compo-

nents of some signaling pathways (not mentioned in Table 9, AXIN2 is part of the WNT sig-
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naling pathway, BMP2, GLI3, and SMO are part of the Hedgehog signaling pathway, IGF1R’s

binding partner, IGF1, is in the P53, mTOR, and PIP3 signaling pathways). Among 16 more

craniosynostosis genes that are not in Table 9 but in the cancer driver list or in the IPA

molecular mechanisms of cancer list, FLNA, GNAS, IHH, IL6ST, LRP5, PTPN11, PTPRD,

and SMAD6 are also in one of the significantly enriched signaling pathways in Tables 2 and 7.

The existence of so many three-way overlapping genes (craniosynostosis, cancer, signaling) is

evidence that signaling pathways might be behind the craniosynostosis-cancer connection.

Transcription factors and microRNA associated with craniosynostosis: A biolog-

ical process can be traced from the chemical signal sent from outside the cell, through the cell

membrane, through intra-cellular signaling pathways, into the nucleus, to trigger transcription

factors, bind to promoters of certain genes, and initiate transcription. From this description,

both transcription factors and their targets can be involved in the etiology of a disease. We

have already seen that TFs are enriched in craniosynostosis genes. We can also ask the same

question on targets of TFs.

Table 4 shows six TF-motif defined gene-sets are enriched in the craniosynostosis gene list.

It hints, though does not prove, that FOXO4, LEF1, ETS2, and possibly IRF1, are relevant

to craniosynostosis. A similar point can also be made on micro RNA regulation: mir21 and

mir204/mar211. Some craniosynostosis-cancer overlapping genes do not appear in any signal

pathways, but they are present in some motif-defined significantly enriched gene-sets, e.g.

ASXL1, BCOR, TCF12. These results may guide us to investigate further their role in both

craniosynostosis and in cancer.

Interestingly, TF genes are also enriched in cancer driver genes. Using the new TF list

from (Lambert et al., 2018), 51 out of 299 cancer driver genes from (Bailey et al., 2018) (17%)

are TFs, as compared to the baseline TF frequency of 8%. The Fisher’s test on enrichment

has p-value = 7.8×10−7. The participation of TF in tumorigenesis is widely studied (Darnell,

2002; Harris, 2002; Zheng and Blobel, 2011; Gupta et al., 2019), including the most famous

TF p53 (TP53 gene) (Harris, 1993; Staib et al., 2003; Muller and Vousden, 2013). However,

when the three gene lists are compared (TF, cancer driver, CRS), only one gene, TCF12 (Lee

et al., 2012; Sharma et al., 2013), appears in all lists.

The oncogenesis recapitulating ontogenesis framework: Julius Cohnheim (1839-
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1884) was perhaps the first person to propose the embryonic origin of cancer (Capp, 2019),

influenced by his teacher Rudolf Virchow (1821-1902) (Ackerknecht, 1958). This parallel be-

tween normal developmental process in embryo and cancer in adults can be called “oncogenesis

recapitulating ontogenesis” (Huang et al., 2009). Note that there is also a perceived parallel

between individual development and species evolution, called “ontogeny recapitulating phy-

logeny” (Swinnerton, 1938; Richardson and Keuck, 2002).

There are multiple similarities between development and cancer, nicely summarized in

(Naxerova et al., 2009). The microscope image of some cancer tissues look like undifferentiated

immature cells (Rosai et al., 1985). Cell migration during embryonic development is similar to

cancer metastasis (Ridley et al., 2003). More recently, expression profiling (transcriptome) of

both certain cancer and developmental tissues exhibit similar signatures (Borczuk et al., 2003;

Kho et al., 2004; Coulouarn et al., 2005; Hu and Shivdasani, 2005; Liu, 2006; Dekel et al. 2006;

Kaiser et al., 2007; Naxerova et al., 2009; Li et al., 2010; Palmer et al., 2012; Soundararajan

et al., 2015). There are also many theoretical hypotheses and frameworks building around the

idea (Garraway and Sellers, 2006; Ao et al., 2008; Huang et al., 2009; Huang, 2011; Yuan et

al., 2017; Zhou et al., 2018; Liu, 2018, 2019) The results in our paper add another path linking

development and cancer.

In conclusion, we provide solid evidence that a higher proportion of genes associated with

craniosynostosis are also linked to cancer. This observation is consistent with the perspective

that adult carcinogenesis (oncogenesis, tumorigenesis) and embryonic ontogenesis (morpho-

genesis) share certain biological process in common, such as signaling pathways. Transcription

factors, as end points of signaling pathways, also play prominent roles in both craniosynostosis

and cancers.
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and Human Genetics.

Appendix: More information on the 17 craniosynostosis genes

The following table summarizes these information on the extra 17 craniosynostosis genes: (1)

gene name and the corresponding OMIM number; (2) chromosome band location (the genes

are ordered according to this column); (3) information about mutation, such as whether it’s

de novo, whether it’s non-synonymous (missense) single-nucleotide polymorphism (nsSNP),

or copy number variation (CNV), whether it’s autosomal dominant (AD) or autosomal re-

cessive (AR) (question mark indicates the information is obtained from OMIM). There are

two complex inheritance detection methods using many patients: one is TDT (transmission

disequilibrium test) applied to many family trios (for BBS9), another is burden test of rare

variance (SPRY1, SPRY4, SMURF1) – these methods are very different from the Mendelian

gene detection methods. (4) information about phenotype, such as syndrome name (with

OMIM number) for syndromic CRS, and suture location for non-syndromic CRS; (5) number

of patients with the mutation described. For the two complex inheritance detection methods,

the number of patients is indicated by a non-specific n; (6) the publication in which the gene

mutation is studied.
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Gene Cband Mutation & Clinical disorder& suture NumS Reference

(OMIM) inheritance pattern (OMIM)

LMNA 1q22 de novo. metopic & unilateral 1 (Sowińska-Seidler et al., 2018)

(150330) CNV (duplication) lambdoid

BGLAP 1q22 de novo. metopic & unilateral 3 (Sowińska-Seidler et al., 2018)

(112260) CNV (duplication) lambdoid

SIX2 2p21 CNV (deletion) Fronyonasal dysplasia 1 (Hufnagel et al., 2016)

(604994) syndrome (136760). sagittal

PTH2R 2q34 inversion sagittal & metopic 1 (Kim et al., 2015)

(601469)

RAF1 3p25.2 nsSNP Noonan syndrome with 1 (Rodŕıguez et al., 2019)

(164760) multiple lentigines (151100)

FGFRL1 4p16.3 AR? frameshift Antley-Bixler 1 (Rieckmann et al., 2009)

(605830) syndrome (207410)

PPP3CA 4q24 de novo nsSNP metopic (trigonocephaly) 2 (Mizuguchi et al., 2018)

(114105) plagiocephaly

SPRY1 4q28.1 de novo. nsSNP sagittal 5 (Timberlake et al., 2016)

(602465) burden n (Timberlake et al., 2017)

SPRY4 5q31.3 de novo. nsSNP sagittal 1 (Timberlake et al., 2016)

(607984) burden n (Timberlake et al., 2017)

TCOF1 5q32- AD? de novo. Treacher Collins syndrome 1 (Horiuchi et al., 2004)

(606847) q33.1 stop-gain (154500)

BBS9 7p14.3 AD. nsSNP coronal, 1 (Sewda et al., 2019)

(615986) GWAS TDT. sagittal n (Justice et al., 2012)

GCK 7p13 AD? Greig Cephalopolysundactyly 1 (Zung et al., 2011)

(138079) CNV (deletion) syndrome (175700)

SMURF1 7q22.1 de novo. nsSNP metopic 1 (Timberlake et al., 2016)

(605568) burden n (Timberlake et al., 2017)

TNFRSF11B 8q24.12 Juvenile Paget’s disease 1 (Saki et al., 2013)

(602643) (239000) with CRS

COLEC10 8q24.12 AR. nsSNP 3MC syndrome 3 (Munye et al., 2017)

(607620) (248340)

AXIN2 17q24.1 de novo. sagittal 1 (Yilmaz et al., 2018)

(604025) frameshift

BCOR Xp11.4 de novo. nsSNP Oculofaciocardiodental 1 (O’Byrne et al., 2017)

(300485) syndrome (300166)
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n=299 driver n=125 driver

CRS gene-set N Ndri (per) odds-ratio Fisher p-value Ndri (per) OR pv

Twigg,Wilkie(-2015) 57 12(21%) 17.6 6×10−11 5 (8.8%) 15.3 3 ×10−5

core genes 20 5 (25%) 22.0 1 ×10−5

Goos,Mathijssen(2015-2017) 39 6 (15%) 12.0 3 ×10−5 3 (7.7%) 13.3 2 ×10−3

multiple-per 22 2 (9%) 6.6 0.04

single-per 17 4 (24%) 20.3 1 ×10−4

Twigg+Goos 96 18 (19%) 15.2 1 ×10−14 8 (8.3%) 14.5 2 ×10−7

Suchir et al (-2019) 17 3 (18%) 14.1 0.002 1 (5.9%) 9.9 0.1

All: Twigg + Goos + Suchir 113 21 (19%) 14.7 1.2 ×10−16 9 (8%) 13.8 7 ×10−8

Table 1: Enrichment of cancer driver genes (n=299 set from (Bailey et al., 2018) and n=125 set from (Vogelstein

et al., 2013)) in various lists of craniosynostosis genes ((Twigg and Wilie, 2015; Goos and Mathijssen, 2019)

and this paper). The 299 cancer driver genes are used to compare with the craniosynostosis genes. for cancer

driver genes frequency is 299/20000= 1.5% or 125/20000= 0.6%, respectively in the two cancer driver gene

lists, assuming the total number of human genes to be 20000.
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H (hallmark); C2 (curated)

gene-set name MSigDB-g gs-size match fisher-pv OR

TGF-beta signaling h 54 5 3.3E-5 15.4

BMP2, SKI, SMAD6, SMURF1, TGFBR1

cancer pathway (KEGG) c2 325 15 3.1E-9 8.3

AXIN2, BMP2, BRAF, FGF9, FGFR1, FGFR2, FGFR3, GLI3,

IGF1R, KRAS, RAF1, SMO, STAT3, TGFBR1, TGFBR2

FGF (PID) c2 55 7 1.1E-7 21.6

BGLAP, FGF9, FGFR1, FGFR2, FGFR3, PTPN11, RUNX2

MAPK signaling (KEGG) c2 266 12 1.7E-7 7.9

BRAF, FGF9, FGFR1, FGFR2, FGFR3, FLNA,

KRAS, NTRK2, PPP3CA, RAF1, TGFBR1, TGFBR2

FRS2 mediated cascade (Reactome) c2 36 6 2.2E-7 28

FGF9, FGFR1, FGFR2, FGFR3, KRAS, RAF1

signaling by FGFR mutants (Reactome) c2 43 6 5.7E-7 23.5

FGF9, FGFR1, FGFR2, FGFR3, KRAS, STAT3

SHC mediated cascade (Reactome) c2 28 5 1.8E-6 29.8

FGF9, FGFR1, FGFR2, FGFR3, KRAS

signaling by FGFR in disease (Reactome) c2 122 8 1.5E-6 11.2

BRAF, FGF9, FGFR1, FGFR2, FGFR3, KRAS, RAF1, STAT3

Table 2: Gene-sets in MSigDB H and C2 that are enriched with craniosynostosis genes (significant at the

family-wide level), and the corresponding overlapping gene names. Gene-set size, overlapping set size, Fisher’s

test p-value and odds-ratio (OR) are also listed.
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potentially interesting enrichment for cancer-related gene-sets in C2

gene-set name gs-size match fisher-pv OR

colorectal cancer (KEGG) 62 6 4.1E-6 16.2

AXIN2, BRAF, KRAS, RAF1, TGFBR1, TGFBR2

pancreatic cancer (KEGG) 70 6 7.8E-6 14.4

BRAF, KRAS, RAF1, STAT3, TGFBR1, TGFBR2

Greshock cancer copy number 322 11 7.4E-6 5.9

BRAF, FGFR1, FGFR2, FGFR3, GNAS, KAT6B

KRAS, PTPN11, RECQL4, SMO, TCF12

melanoma (KEGG) 71 6 8.5E-6 14.2

BRAF, FGF9, FGFR1, IGF1R, KRAS, RAF1

CML (KEGG) 73 6 9.8E-6 13.8

BRAF, KRAS, PTPN11, RAF1, TGFBR1, TGFBR2

Table 3: Cancer-related gene-sets in MSigDB C2 that just missed the family-wide significance level, and the

corresponding overlapping gene names. Gene-set size, overlapping set size, Fisher’s test p-value and odds-ratio

(OR) are also listed.
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C3 (motif)

gene-set: motif (TF or micro RNA) gs-size m pv OR

AACTTT (IRF1?) 1820 35 1E-9 4

ALX4, AXIN2, BCOR, COLEC10, CYP26B1, EFNA4, ERF, FGF9, FGFR1,

FGFR2, GNAS, GPC3, IGF1R, IL6ST IRAX5, JAG1, KIAA1267, KAT6A,

MLL2, KRAS, LMNA, MSX2, NFIA, PHEX, PTH2R, RAB23, RSPRY1,

SMAD6, SOX6, SPRY1, STAT3, TCF12, ZEB2, ZIC1, ZNF462

ATAAGCT (mir21) 112 8 8.3E-7 12.2

HNRNPK, JAG1, PPP3CA, SKI, SOX6, SPRY1, STAT3, TGFBR2

TTGTTT (FOXO4 01) 1979 31 1.2E-6 3.1

ASXL1,AXIN2,BCOR, CD96, CTSK, DPH1, EFNA4,EFNB1,FGF9,GNAS,GPC3,

IGF1R, IL6ST, JAG1, LRP5, MASP1, MSX2, NFIA, NTRK2, PHEX, PPP1CB,

PTPRD,RAB23,RUNX2,SHOC2,SMAD6,SOX6,STAT3,TWIST1,ZEB2,ZIC1

AAAGGGA (mir204/mir211) 219 10 1.7E-6 7.9

ALPL,FREM1,GLIS3,MED13L,NTRK2,P4HB,RUNX2,SEC24D,TCF12,TGFBR2

CTTTGT (LEF1 Q2) 1892 29 4.5E-6 2.9

ATR, AXIN2, BRAF, CD96, EFNA4, EFNB1, FAM20C, FGF9, FGFR3, GLIS3

GPC3,HNRNPK,IGF1R,IRX5,KAT6A,MLL2,KRAS,LRP5,MASP1,PPP1CB

RSPRY1, SMAD6, SOX6, STAT3, TCF12, TCOF1, TGFBR1, ZEB2, ZIC1

RYTTCCTG (ETS2 B) 1048 20 8.9E-6 3.5

BMP2,BRAF,CD96,COLEC11,CTSK,ERF,FGFR2,HNRNPK,IFT43,IL11RA,

KIAA1267,MLL2,LMX1B,LRP5,NFIA,PHEX,PTPN11,TCF12,TGFBR2,ZEB2

Table 4: Gene-sets in MSigDB C3 (motif) that are enriched with craniosynostosis genes (significant at the

family-wide level), and the corresponding overlapping gene names. Gene-set size, overlapping set size(m),

Fisher’s test p-value (pv) and odds-ratio (OR) are also listed.
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C5 (gene ontology), stronger signal (10% genes of gene-set overlap)

gene-set name gs-size m pv OR

bone dev 155 22 1E-22 27.8

skeletal sys morphog 200 23 8E-22 22.8

bone morphog 79 16 6.3E-19 37.5

cranial ske dev 55 14 6.7E-18 46.2

reg ossification/pos/neg 174/82/67 19/9/7 9.3E-18/5.2E-9/3.8E-7 21.1/18.9/17.7

appendage dev 166 18 8.1E-17 20.8

reg osteoblast diff/pos 109/58 15/9 1.4E-15/3.2E-10 25.2/26.8

reg smoothened sig/pos 62/24 11/5 8.6E-13/9E-7 31.3/34.7

embryonic skeletal sys morphog 93 12 2.3E-12 22.9

embryonic skeletal sys dev 122 13 2.4E-12 19.1

odontogenesis 105 12 8.3E-12 20.9

embryonic cranial skeleton morphog 46 9 5.1E-11 33.8

smad binding 70 10 6.7E-11 24.9

biomineral tissue dev 75 10 1.2E-10 23.2

chondrocyte diff 60 9 4.2E-10 25.9

reg cartilage dev/pos 62/29 9/6 5.5E-10/7.2E-8 25.1/34.8

craniofacial suture morphog 14 6 1.8E-9 75.2

reg chondrocyte diff/pos 45/19 8/5 1.2E-9/3.3E-7 30.4/43.9

trans-mem rec prot kinase/tyrosine 81/64 9/7 4.7E-9/2.9E-7 19.2/18.5

bone mineralization 38 7 1.1E-8 31.3

ciliary tip 43 7 2.4E-8 27.6

reg mesenchymal cell proliferation/pos 34/27 6/6 1.7E-7/4.9E-8 29.7/39.6

embryonic digit morphog 59 7 1.7E-7 20.1

pos reg stem cell proliferation 61 7 2.1E-7 19.5

body morphog 44 6 6.5E-7 22.9

endochondral bone morphog 45 6 7.3E-7 22.4

prot transport along microtubule 27 5 1.5E-6 30.9

Table 5: Partial gene-sets in MSigDB C5 (gene-ontology) that are enriched with craniosynostosis genes (signif-

icant at the family-wide level), with number of overlapping genes (m) at least 10% of the gene-set size. Fisher’s

test p-value (pv) and odds-ratio (OR) are also listed. act: activity; dev: development; diff: differentiation;

mem: membrane; morphog: morphogenesis; neg: negative; pos: positive; prot: protein; rec: receptor; reg:

regulation; sig: signaling; sys: system;
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C5: gene ontology, large gene-set size (> 1000 genes); or very significant

gene-set name gs-size match fisher-pv OR

tissue dev 1501 43 4.7E-18 6.8

reg cell diff 1470 41 9.6E-17 6.4

reg multicell org dev 1652 39 1.5E-13 5.2

pos reg dev 1129 32 3.9E-13 5.9

reg tran (RNA polII prom) 1763 39 1.1E-12 4.9

res endogenous stimulus/cellular.. 1440/1000 35/25 1.8E-12/31.E-9 5.2/4.8

reg cell proliferation 1478 35 3.7E-12 5

cell res org substance 1833 38 1.7E-11 4.5

pos reg biosynthetic proc 1792 36 1.7E-10 4.2

pos reg gene expression 1719 35 2.3E-10 4.3

cell dev 1406 31 5.1E-10 4.5

pos reg resp stimulus 1878 36 5.9E-10 4

pos reg multicell org proc 1382 30 1.5E-9 4.4

neurogenesis 1388 30 1.7E-9 4.3

pos/neg reg cell communication 1520/1176 31/27 3.3E-9/3.8E-9 4.1/4.5

reg anatomical struture morphog 1011 25 3.8E-9 4.8

reg cell death 1458 29 2.1E-8 3.9

immune sys proc 1927 32 2.1E-7 3.3

skeletal sys dev 453 37 3.1E-30 18.9

org morphog 839 42 1.8E-26 12.1

Table 6: Partial gene-sets in MSigDB C5 (gene-ontology) that are enriched with craniosynostosis genes (sig-

nificant at the family-wide level), with at least 1000 genes in the gene-set. Number of overlapping genes (m),

Fisher’s test p-value (pv) and odds-ratio (OR) are also listed. dev: development; diff: differentiation; morphog:

morphogenesis; neg: negative; org: organismal; pos: positive; proc: process; prot: protein; prom: promoter;

reg: regulation; res: response; sys: system; tran: transcription;
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Ingenuity pathway analysis (IPA). Signalingand cancer-related canonical pathways.

name p-value

STAT3 pathway 4E-12

(12) FGFR1, FGFR2, FGFR3, IGF1R, IL11RA, IL6ST, KRAS,

NTRK2, RAF1, STAT3, TGFBR1, TGFBR2

NF-KB signaling 1E-10

(12) BMP2, BRAF, FGFR1, FGFR2, FGFR3, IGF1R,

KRAS, NTRK2, RAF1, TGFBR1, TGFBR2, TNFRSF11B

cardiac hypertrophy signaling (enhanced) 4E-10

(17) FGF9, FGFR1, FGFR2, FGFR3, FGFRL1, GNAS, IGF1R, IL11RA, IL6ST,

KRAS, PPP3CA, RAF1, SMO, STAT3, TGFBR1, TGFBR2, TNFRSF11B

TGF-beta signaling 1E-9

(9) BMP2, KRAS, RAF1, RUNX2, SKI, SMAD6, SMURF1, TGFBR1, TGFBR2

FGF signaling 1E-8

(8) FGF9, FGFR1, FGFR2, FGFR3, FGFRL1, PTPN11, RAF1, STAT3

PTEN signaling 2E-8

(9) FGFR1, FGFR2, FGFR3, IGF1R, KRAS, NTRK2, RAF1, TGFBR1, TGFBR2

molecular mechanism of cancer 1E-7

(13) ATR, BMP2, BRAF, GNAS, IHH, KRAS, LRP5,

PTPN11, RAF1, SMAD6, SMO, TGFBR1, TGFBR2

protein kinase A signaling 1E-7

(13) BRAF, FLNA, GLI3, GNAS, IHH, PPP1CB, PPP3CA,

PTPN11, PTPRD, RAF1, SMO, TGFBR1, TGFBR2

BMP signaling 5E-6

(6) BMP2, KRAS, RAF1, RUNX2, SMAD6, SMURF1

colorectal cancer metastasis signaling 6E-6

(9) BRAF, GNAS, IL6ST, KRAS, LRP5, SMO, STAT3, TGFBR1, TGFBR2

CNTF signaling 1E-5

(5) IL6ST, KRAS, PTPN11, RAF1, STAT3

role of NFAT in cardiac hypertrophy 1E-5

(8) GNAS, IGF1R, IL6ST, KRAS, PPP3CA, RAF1, TGFBR1, TGFBR2

GM-CSF signaling 3E-5

(5) KRAS, PPP3CA, PTPN11, RAF1, STAT3

Table 7: More information on the IPA canonical pathways in Fig.2 (enrichment p-value < 3× 10−5) that are

either a signaling pathway, or related to cancer: number and names overlapping genes and enrichment p-value.
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Ingenuity pathway analysis. others.

name p-value num.molecules

upstream regulators

RUNX2 5.9E-14

beta-glycerophosphoric acid 1.3E-11

FGF2 3.9E-11

BMP2 5.5E-11

beta-estradiol 3.6E-9

diseases and disorders

connective tissue disorders 1.8E-8 ∼ 7.1E-71 90

hereditary disorder 1.9E-8 ∼ 7.1E-71 82

organismal injury and abnormalities 2.1E-8 ∼ 7.1E-71 112

developmental disorder 1.9E-8 ∼ 1.8E-43 99

skeletal and muscular disorders 1.8E-8 ∼ 1.8E-43 82

molecular and cellualr functions

cellular development 2.1E-8 ∼ 8.8E-25 69

cell signaling 1.7E-14 ∼ 1.6E-16 22

cellular growth and proliferation 2.1E-8 ∼ 2.1E-15 60

cell death and survival 1.2E-8 ∼ 8.6E-15 67

gene expression 5E-11 ∼ 3.4E-14 51

physiological system development and function

organismal development 1.7E-8 ∼ 2.7E-38 88

embryonic development 1.4E-3 ∼ 2.2E-37 75

connective tissue development and function 3E-2 ∼ 5.8E-35 67

skeletal and muscular system development and function 4.9E-2 ∼ 5.8E-35 66

tissue development 2.4E-1 ∼ 5.8E-35 79

Table 8: IPA top five hits in other categories, based on enrichment/association analysis with the craniosynos-

tosis genes: upstream regulators, diseases and disorders, molecular and cellular functions, physiological system

development and function.
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(MSigDB C1) MAPK mediate signaling X X X X X X X X X

FRS2 mediated cascade X X X X X X

signaling FGFR mutants X X X X X X

SHC mediated signaling X X X X X

signaling FGFR in disease X X X X X X X X

(IPA) STAT3 pathway X X X X X X X X X

NF-KB signaling X X X X X X X X X X

cardiac hypertrophy signaling X X X X X X X X X X X

TGF-beta signaling X X X X X

FGF signaling X X X X X X

PTEN pathway X X X X X X X X

protein kinase A signaling X X X X X X

BMP signaling X X X

(MSigDB C3) AACTTT (unknown, IRF?) X X X X X X X

ATAAGCT (mir21) X X

TTGTTT (FOX04) X X X X

AAAGGGA (mir204/mir211) X

CTTTGT (LEF1) X X X X X X X X

TYTTCCTG (ETS2) X X X X

transcription factor y y

Table 9: Fifteen craniosynostosis genes that are also in KEGG cancer pathway: their presence in cancer driver

gene list; in IPA cancer gene list; in other MSigDB C2, C3 gene-sets; in IPA signaling pathways; and in a

transcription factor list (Lambert et al., 2018).
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Figure 1: Volcano plot (x: (log) odds-ratio, y: − log10(Fisher p-value) (Li et al., 2014)) for enrichment

(over-representation) analysis of craniosynostosis genes in MSigDB gene-sets: (A) curated gene-sets, including

KEGG, Reactome, PID (C2); (B) motif based gene-sets (C3); (C) gene ontology gene-sets (C5). Two groups

of significantly enriched gene-sets are highlighted: large gene-sets (> 1000 genes) (in blue), and high propor-

tion (> 10%) of overlapping genes (in red); (D) other categories of gene-sets (hallmark, microarray expression

derived signatures (C4, C6, C7)).
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Figure 2: IPA canonical pathways that are significantly enriched with craniosynostosis genes at p-value of

3×10−5 level. The cancer related pathways are colored by red, and signaling pathways by blue. The remaining

pathways are all related to development and differentiation.
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Figure 3: Enrichment of KEGG cancer pathway genes in other MSigDB C2 and C3 gene-sets. The x-axis is

the the gene-set size (in log-scale), and the y-axis is the minus log10 of Fisher’s test p-value. In (A), the red

dots are C2 gene-sets listed in Table 2, and blue dots are the cancer-related C2 gene-sets listed in Table 3. In

(B), the red dots are C3 gene-sets listed in Table 4.
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