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Abstract 14 

The genome-wide association studies (GWAS) have identified hundreds of 15 

susceptibility loci associated with autoimmune diseases. However, over 90% of risk 16 

variants are located in the noncoding regions, leading to great challenges in 17 

deciphering the underlying causal functional variants/genes and biological 18 

mechanisms. Previous studies focused on developing new scoring method to 19 

prioritize functional/disease-relevant variants. However, they principally 20 

incorporated annotation data across all cells/tissues while omitted the cell-specific or 21 

context-specific regulation. Moreover, limited analyses were performed to dissect the 22 

detailed molecular regulatory circuits linking functional GWAS variants to disease 23 

etiology. Here we devised a new analysis frame that incorporate hundreds of immune 24 

cell-specific multi-omics data to prioritize functional noncoding susceptibility SNPs 25 

with gene targets and further dissect their downstream molecular mechanisms and 26 

clinical applications for 19 autoimmune diseases. Most prioritized SNPs have genetic 27 

associations with transcription factors (TFs) binding, histone modification or 28 

chromatin accessibility, indicating their allelic regulatory roles on target genes. Their 29 

target genes were significantly enriched in immunologically related pathways and 30 

other immunologically related functions. We also detected long-range regulation on 31 

90.7% of target genes including 132 ones exclusively regulated by distal SNPs (eg, 32 

CD28, IL2RA), which involves several potential key TFs (eg, CTCF), suggesting the 33 

important roles of long-range chromatin interaction in autoimmune diseases. 34 

Moreover, we identified hundreds of known or predicted druggable genes, and 35 

predicted some new potential drug targets for several autoimmune diseases, including 36 

two genes (NFKB1, SH2B3) with known drug indications on other diseases, 37 

highlighting their potential drug repurposing opportunities. In summary, our analyses 38 

may provide unique resource for future functional follow-up and drug application on 39 

autoimmune diseases, which are freely available at http://fngwas.online/. 40 

 41 

 42 
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Author Summary 43 

Autoimmune diseases are groups of complex immune system disorders with high 44 

prevalence rates and high heritabilities. Previous studies have unraveled thousands 45 

of SNPs associated with different autoimmune diseases. However, it remains largely 46 

unknown on the molecular mechanisms underlying these genetic associations. 47 

Striking, over 90% of risk SNPs are located in the noncoding region. By leveraging 48 

multiple immune cell-specific multi-omics data across genomic, epigenetic, 49 

transcriptomic and 3D chromatin interaction information, we systematically analyzed 50 

the functional variants/genes and biological mechanisms underlying genetic 51 

association on 19 autoimmune diseases. We found that most functional SNPs may 52 

affect target gene expression through altering transcription factors (TFs) binding, 53 

histone modification or chromatin accessibility. Most target genes had known 54 

immunological functions. We detected prevailing long-range chromatin interaction 55 

linking distal functional SNPs to target genes. We also identified many known drug 56 

targets and predicted some new drug target genes for several autoimmune diseases, 57 

suggesting their potential clinical applications. All analysis results and tools are 58 

available online, which may provide unique resource for future functional follow-up 59 

and drug application. Our study may help reduce the gap between traditional genetic 60 

findings and biological mechanistically exploration of disease etiologies as well as 61 

clinical drug development. 62 

 63 

Keyword 64 

Autoimmune diseases; GWAS; Noncoding; Chromatin interaction; Molecular 65 

mechanisms; Drug repurposing 66 

 67 

Introduction 68 

Autoimmune diseases are groups of complex immune system disorders with high 69 

prevalence rates worldwide (4.5%) [1]. High heritabilities were observed on various 70 
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autoimmune diseases (~60%-90%) [2]. To date, genome-wide association studies 71 

(GWASs) have unraveled hundreds of susceptible loci associated with autoimmune 72 

diseases [3, 4], suggesting many functional genes involved in some key 73 

immunological pathways (eg. MHC gene clusters in antigen presentation, TYK2 in 74 

cytokine signals) [5]. However, the true functional variants and target genes for the 75 

most of GWASs variants remain largely unknown [5], which might be mainly limited 76 

by two challenges. Firstly, the detected variants may be in linkage disequilibrium (LD) 77 

with causal functional SNPs without genotyping. Secondly, over 90% of GWASs 78 

variants are located in the uncultivated noncoding regions, complicating their 79 

functional interpretation. 80 

 81 

In the past few years, many studies have integrated functional epigenetic data to 82 

predict function of noncoding SNPs. Many of these methods such as CADD [6], 83 

DeepSEA [7], GWAVA [8], FATHMM-MKL [9], ReMM [10] and FIRE [11], adopted 84 

machine learning algorithms to develop classifiers through integrating various 85 

annotations and labelled training data to distinguish potential functional/non-86 

functional SNPs. However, the prior labelled training data may be inaccurate and 87 

impractical due to the current knowledge limitation in functional roles underlying 88 

noncoding SNPs. Some other methods like RegulomeDB [12], 3DSNP [13], 89 

GWAS4D [14], IW-Scoring [15], Eigen [16], and FunSeq2 [17] either directly 90 

combined various epigenetic/regulatory features to rank SNP functionality or adopted 91 

a weighted scoring scheme by considering the relative importance of each feature to 92 

assign SNP functionality scores. However, these approaches principally incorporated 93 

epigenetic or transcriptional annotation across all cells or tissues, while omitting the 94 

cell-specific or context-specific regulation. Besides, they mainly aimed to prioritize 95 

potential functional variants rather than dissect the downstream regulatory circuits 96 

linking functional variants to disease etiology. Autoimmune diseases associated 97 

variants are significantly enriched in blood cell-specific enhancers [18], implying that 98 

the integration of cell-specific functional data are required for dissecting molecular 99 

regulatory mechanisms underlying noncoding variants associated with autoimmune 100 
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diseases.  101 

 102 

The incorporation of cell-specific multi-omics data has remarkably accelerated the 103 

decryption of functional mechanisms underlying noncoding GWAS variants [19]. For 104 

example, we recently identified a functional SNP associated with two autoimmune 105 

diseases exerted allele-specific enhancer regulation on IRF5 expression through long-106 

rang loop formation [20]. Nevertheless, these studies primarily focused on one 107 

GWAS susceptibility loci on one disease, and only limited functional causal variants 108 

predisposing to autoimmune diseases have been validated [20]. The autoimmune 109 

diseases share substantial common susceptibility variants and immunopathology [21]. 110 

It is necessary and important to decipher the functions of GWAS noncoding variants 111 

systematically, which is helpful to accelerate the translation from GWASs findings 112 

into useful biological and clinical insights into autoimmune diseases.   113 

 114 

To address these issues, we devised a new analysis frame to prioritize potential 115 

functional noncoding SNPs on 19 autoimmune diseases and further predicted their 116 

local and distal regulatory target genes using epigenetic, transcriptional and 3D 117 

chromatin interaction data across hundreds of blood immune cell types. Our analysis 118 

contains a new functional scoring method to prioritize functional autoimmune SNPs. 119 

We evaluated the performance of our functional scoring method by comparing it with 120 

other representative methods. We next explored potential molecular mechanisms 121 

underlying prioritized SNPs and analyzed the immunologically related function as 122 

well as potential clinical drug applications for predicted target genes. We also 123 

analyzed the roles of long-range chromatin interactions on autoimmune SNPs as well 124 

as potential key regulatory transcription factors (TFs). Finally, we developed an open 125 

web resource (http://fnGWAS.online/) and local analytical pipeline 126 

(https://github.com/xjtugenetics/fnGWAS). 127 

 128 

Results 129 
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Prioritizing potential noncoding functional autoimmune SNPs 130 

We collected 18,857 autoimmune noncoding tag SNPs predisposing to 19 distinct 131 

autoimmune diseases (P < 5×10-8) from multiple resources (Table S1). LD analysis 132 

retained 51,594 noncoding tags and LD expanded (r2 > 0.8) SNPs in 333 genome-133 

wide significant loci (autoimmune positive SNPs). We next collected 26,922,878 134 

background SNPs in all 333 loci, and collected 47,131,427 negative SNPs beyond 135 

these loci. To explore potential key epigenetic regulatory features for autoimmune 136 

diseases, we compared 606 epigenetic data annotation across 47 blood immune cell 137 

types between all autoimmune positive SNPs and background SNPs. Previous studies 138 

had suggested that the autoimmune causal SNPs are significantly enriched in blood-139 

cell specific enhancer marks [18]. Consistently, we found that autoimmune positive 140 

SNPs are significantly higher enriched for 347 active epigenetic features (FC > 1, P 141 

< 0.05/606) across 40 blood immune cell types within four epigenetic categories, 142 

including 9 DHSs, 75 active histone modifications (H3K4me1, H3K4me2, H3K4me3, 143 

H3k27ac and H3K9ac), 167 active genomic segmentations (HMM-15, marked as 144 

active transcription or enhancer) and 96 TFBS (Figure 1a and Table S2). To evaluate 145 

the functionality of all positive SNPs, we devised a new epigenetic functional scoring 146 

approach (flowchart shown in Figure S1) using fold enrichment of all 347 significant 147 

epigenetic features across four epigenetic categories as weight. By comparing 148 

functional score of each positive SNPs with scoring distribution of negative SNPs, 149 

we prioritized 15,314 SNPs associated with 19 autoimmune diseases with 150 

functionality support on at least one epigenetic category (Figure 1b-c and Table S3). 151 

 152 

Integrative prediction of potential causal target genes on prioritized SNPs 153 

To explore potential regulatory targets for 15,314 prioritized SNPs, we integrated 154 

both cis-QTL association, 3D chromatin interaction and colocalization analysis from 155 

over 30 blood cell types (Table S4). We predicted 367 high-confident target genes 156 

regulated by 4,272 prioritized functional SNPs (Table S5 and S6), which had both 157 

cis-QTL, chromatin interaction and colocalization evidence (PP4 > 0.8). 158 

 159 
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Functional SNPs are significantly enriched in allele-specific motif and local 160 

molecular QTLs 161 

The functional SNPs might perturb allelic enhancer activities through mediating 162 

several intermediate molecular-level traits, such as bQTL [22], hQTL [23], dsQTL 163 

[24] or caQTL [25] (Figure 2a). To explore potential allelic regulatory mechanisms 164 

linking 4,272 prioritized autoimmune SNPs to predicted gene targets, we firstly 165 

performed motif analysis, and detected allele-specific binding motif on 2,603 SNPs 166 

(Figure 2a). We further analyzed multiple molecular QTL association (Table S7) for 167 

autoimmune SNPs, and identified 592 SNPs associated with several intermediate-168 

level molecular traits (Table S8), including 143 bQTL SNPs preferentially binding to 169 

special allele on 5 TFs (JunD, NF-kB, PU.1, Pou2f1, Stat1) in LCLs, 303 caQTL or 170 

dsQTL SNPs affecting chromatin accessibility in either naive or stimulus-specific 171 

macrophages (n = 157) or CD4+ T cells (n = 24) or LCLs (n = 182), as well as 230 172 

hQTL SNPs affecting chromatin modification on either H3K4me1 (n = 63), 173 

H3K4me3 (n = 83) or H3K27ac (n = 127) in LCLs (Figure 2a). Further analysis 174 

revealed significant enrichment for all molecular QTL association (bQTL, dsQTL, 175 

caQTL and hQTL) on prioritized functional SNPs compared with all autoimmune 176 

SNPs (FC = 1.9 ~ 7.4, P < 0.05, Figure 2b-e), implying their extensive regulatory 177 

roles. We also detected weak while significant enrichment for allele-specific binding 178 

motif on prioritized functional SNPs in comparison with all autoimmune SNPs (FC 179 

= 1.05, P = 1.59×10-14, Figure not shown), further supporting their important 180 

regulatory roles. Together, these analyses suggested potential allelic regulatory 181 

mechanisms underlying 66.0% of prioritized autoimmune functional SNPs. 182 

 183 

Epigenetic functional scoring improves prioritizing functional autoimmune 184 

SNPs compared with other methods 185 

To further assess the performance of our epigenetic functional scoring, we compared 186 

the functional support on multiple immune-cell associated regulatory evidence 187 

between SNPs prioritized by our method and other five functional scoring methods 188 

[11-15]. Table S15 summarized the main characteristics between our method and 189 
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other scoring methods (see discussion for comparison in detail). To ensure fair 190 

comparison of methods performance, we extracted top-ranked SNPs under different 191 

functionality support by our method with corresponding equal or approximately 192 

equal counts of top-ranked SNPs from other methods, which resulted in comparison 193 

with two methods under all functionality support and another three methods under 194 

selected functionality supports (Figure 3a).  195 

 196 

We firstly compared experimentally validated regulatory SNPs in mononuclear cells 197 

[26], and detected substantially more validated SNPs by our method compared with 198 

either FIRE, GWAS4D or IW-Scoring (Figure 3b). We also detected much more 199 

validated SNPs compared with 3DSNP under the first two functionality support and 200 

comparable validated SNPs compared with RegulomeDB (Figure 3b). Consistent 201 

results were found on experimentally validated regulatory SNPs in two no-immune 202 

cell types (K562, HepG2) [27], in which our method had substantially more validated 203 

SNPs compared with all four methods except for 3DSNP (Figure S2a-b). In 204 

comparison with 3DSNP, we identified comparable experimentally validated SNPs 205 

in two no-immune cell types (Figure S2a-b) while substantially more validated ones 206 

in the mononuclear cell (Figure 3b), implying the potential outperformance of our 207 

method in prioritizing immune cell specific regulatory SNPs. We next compared 208 

potential regulatory SNPs under multiple immune-related functional evidence 209 

(potential regulatory SNPs associated with gene expression, SNPs with molecular 210 

association, causal SNPs identified by PICS approach [18], eRNA SNPs from IBD 211 

patients [28]). We found that our prioritized SNPs was significantly higher enriched 212 

for nearly all functional evidence compared with all five methods (Fisher’s exact test, 213 

FC > 1, P < 0.05, Figure 3c-f). We also detected much higher percentage of molecular 214 

QTL SNPs or eRNA SNPs for our prioritized SNPs under the highest functionality 215 

support compared with either IW-Scoring (FC = 1.2, P = 0.08, Figure 3d) or 3DSNP 216 

(FC = 1.3, P = 0.06, Figure 3f) although not significant. Collectively, these analyses 217 

support the outperformance in prioritizing functional autoimmune SNPs by our 218 

epigenetic functional scoring method over other mentioned comparable methods. 219 
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 220 

Target genes are significantly enriched in immunologically related functions 221 

To evaluate the immunologically related functions on predicted target genes on 4,272 222 

prioritized SNPs, we collected multiple immune-relevant functional datasets. We 223 

identified 181/367 highly-supported potential immunological genes (Figure 4a and 224 

Table S9), including 171 genes participated in immunologically related pathways, 25 225 

genes whose knockdown in mouse could display abnormal immune system 226 

phenotypes from IMPC portal [29], as well as 23 genes associated with Mendelian 227 

disorders with immunology-related clinical symptoms from the OMIM database. We 228 

further analyzed other suggestive immune-relevant functions for predicted target 229 

genes, and detected functional support for nearly all (365/367) target genes (Figure 230 

4a and Table S9), including 358 genes expressed on 20 blood immune cell types 231 

(RPKM > 1), 39 genes with tissue-specifically expression on blood as determined by 232 

TSEA approach (pSI < 0.01) [30], 191 immune system diseases associated genes 233 

collected from the DisGeNET database [31], as well as 201 genes showed causal 234 

relationship with autoimmune diseases as implemented the SMR analysis (FDR < 235 

0.05, PHEIDI > 0.05, Table S10) [32]. Collectively, these data suggested potential 236 

immunological function for most gene targets, which may suggest new mechanistic 237 

insights into autoimmune disease etiologies. 238 

 239 

To further verify the immunological roles for predicted target genes, we performed 240 

functional enrichment analysis. We found that the predicted target genes are 241 

significantly enriched in multiple immunologically related pathways (Figure 4b). We 242 

also detected significant enrichment for other immunologically related genes from 243 

different functional datasets (IMPC, OMIM, DisGeNET) and SMR causal genes and 244 

expressed genes on blood cell types on predicted target genes (Fisher’s exact test, FC: 245 

1.8 ~ 11.1, P: 4.74×10-6 ~ 6.96×10-151, Figure 4c). We further compared tissue-246 

specific expression from TSEA [30] on 25 distinct cell types, and detected 247 

exclusively significant higher enrichment for blood tissue (Fisher’s exact test, FC = 248 

1.4, P = 0.01, Figure 4d) on predicted target genes, which also showed the largest 249 
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number of tissue-specifically expressed genes (Figure 4d). Altogether, these analyses 250 

revealed extensive enrichment of immunologically related functions for target genes, 251 

supporting the credibility of our target gene prediction. 252 

 253 

Prevailing long-range regulation linking functional autoimmune SNPs to distal 254 

target genes 255 

Among 367 prioritized target genes, we detected larger amount of distal genes (n = 256 

333, regulated by distal functional SNPs) compared with local genes (n = 235, 257 

regulated by functional SNPs located within target gene promoter), including 132 258 

distal genes exclusively regulated by distal functional SNPs (Figure 5a). These 259 

exclusive distal genes included many known immunologic genes, such as CD37, 260 

CD28, IL7, IL12RB1 or IL2RA, indicating the important roles of long-range 261 

regulation on autoimmune diseases. We further analyzed all 7,221 SNP-gene 262 

regulatory pairs, and detected predominantly distal pairs (87.87%) compared with 263 

local ones (Figure 5b). Interesting, the distal SNPs residing within local genes are 264 

more likely to regulate the distal target genes compared with their directly located 265 

genes (64.8% vs 17.89%, Figure 5b). We also analyzed the distance between all distal 266 

regulatory pairs, and found that the vast amount of distal SNP-gene regulatory pairs 267 

(66.5%) are located more than 50 kb away (mean distance: 105.4 kb, Figure 5c), 268 

further underscoring the important roles of chromatin looping on autoimmune 269 

diseases. 270 

 271 

The prevailing long-range regulation may indicate that, for many functional 272 

noncoding autoimmune SNPs, their located or directly mapped genes might not be 273 

the direct regulatory target genes. Among 3,139 prioritized functional SNPs within 274 

gene region (intergenic SNPs excluded), we found that 67.1% of SNPs exclusively 275 

regulated 239 distal effect genes instead of directly located local genes. We show one 276 

such example in Figure 5d-f, in which multidimensional evidence (cis-QTLs, 3D 277 

chromatin interactions and colocalization) supported that multiple functional SNPs 278 

within TNPO3 or in the intergenic region near TNPO3 could regulate distal IRF5 279 
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expression through long-range chromatin interactions. The IRF5 was also locally 280 

regulated by several functional SNPs within IRF5 promoter region (Figure 5d-f). The 281 

immunological roles of TNPO3 is largely unknown. In contrast, IRF5 is a well-known 282 

immunological gene with crucial roles in autoimmune etiology [33], thus providing 283 

plausible mechanistic insights linking GWAS risk SNPs at IRF5-TNPO3 locus to 284 

autoimmune pathogenies [20]. 285 

 286 

Distal autoimmune genetic regulatory network may be mediated by several key 287 

TFs 288 

To identify potential functional TFs mediating genetic regulation for autoimmune 289 

diseases, we compared allele-specific motif occupying between 4,272 functional 290 

SNPs and all autoimmune SNPs. We identified 29/366 nominally significant 291 

(Fisher’s exact test, P < 0.05) motif TFs with higher enrichment for functional SNPs 292 

(Figure 5a and Table S11). To explore potential regulatory targets on prioritized TFs, 293 

we considered three possible TF-gene regulatory models (Figure 6b), including (1) 294 

local model: TFs directly bind to target gene promoter to mediate gene expression, 295 

(2) distal model: TFs bind to distal enhancers to regulate target gene expression via 296 

long-range chromatin interactions, and (3) indirect model: the TFs regulate target 297 

gene expression through mediating other regulatory TFs in trans manner. We found 298 

that most of our predicted target genes (72.8%, 267/367) could be regulated by these 299 

29 TFs (Figure 6b-c and Table S11), with predominant distal model (n = 218) 300 

compared with either local model (n = 102) or indirect model (n = 112). Moreover, 301 

CTCF had the most regulatory target genes (Table S11), consistent with its known 302 

role in facilitating long-range chromatin looping [34]. Further analysis revealed that 303 

all 29 TFs had more distal regulatory target genes compared with local genes (Figure 304 

6d), and 25 of them involved potential immunological functions (Figure 6e), 305 

implying their broad roles in distal genetic regulation on autoimmune diseases. We 306 

further analyzed the sharing of gene targets between different TFs, and detected 22 307 

TFs sharing all 267/267 target genes with all 7 other rest TFs (Figure 6f), indicating 308 

their potential central regulatory roles. Together, these analyses suggested several 309 
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possible key regulatory TFs mediating distal genetic regulatory networks on 310 

autoimmune diseases.  311 

 312 

Analyzing potential clinical applications on target genes 313 

To explore potential clinical implications on predicted target genes, we firstly 314 

investigated all approved or experimental drug targets with known indications. We 315 

identified 80 genes targeted by drugs with known clinical indications on either 316 

autoimmune diseases (n = 41) or other immunologically related diseases (eg, allergies, 317 

infections or inflammations, n = 45) or other diseases (n = 57) (Figure 7a-b, Table 318 

S12), implying the extensive therapeutic implications on predicted target genes. The 319 

identified drug target genes showed pervasive shared drug indications, with 62.2 % 320 

of genes targeted for other immunologically related diseases and 42.1 % of genes 321 

targeted for other diseases also shared targeted indications for autoimmune diseases 322 

(Figure 7b and Table S12), indicating potential pleiotropic therapeutic-effect among 323 

drug targets. Except for known drug target genes, we also identified 190 potential 324 

druggable genes, including 118 ones without known drug target indications (Figure 325 

7a and Table S13). In comparison with all genome genes, our predicted target genes 326 

are significantly more enriched in both known drug target genes (Fisher’s exact test, 327 

FC = 4.3, P = 2.93×10-28) and predicted druggable genes (Fisher’s exact test, FC = 328 

3.5, P = 6.94 ×10-61) (Figure 7c), further supporting the potential important clinical 329 

implications on them. 330 

 331 

Consistent with the observed pleiotropic indications among drug target genes (Figure 332 

7b), we found extensive disease association sharing for both autoimmune drug target 333 

genes and other drug target or druggable genes (Figure S3a-b), which may suggest 334 

new potential opportunities for drug repurposing on autoimmune diseases from other 335 

non-autoimmune drug target or druggable genes. To explore the functional relevance 336 

between known autoimmune-drug genes and other genes, we firstly analyzed their 337 

shared biological pathways. We found that the vast majority (36/41) of autoimmune-338 

drug genes shared the same immunologically related pathways with 68.9 % (131/190) 339 
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of drug target or druggable genes (Figure S3c), implying their intimately functional 340 

connectivity. We further performed protein-protein interaction (PPI) analysis, and 341 

detected strong PPI (interaction score > 0.9) between 63.4 % (26/41) of autoimmune-342 

drug genes and 31 other known drug target or druggable genes (Figure 7d), indicating 343 

the pervasive regulatory relevance between known autoimmune-drug target and other 344 

genes. This was further supported by enrichment analysis, in which 41 autoimmune-345 

drug genes showed significantly higher PPI with either predicted druggable genes 346 

(FC = 2.0, P = 1.20×10-71) or known drug target genes (FC = 3.1, P = 2.44×10-108) 347 

compared with whole genome genes (Fisher’s exact test, Figure 7e). Besides, when 348 

restricted PPI targets of autoimmune-drug genes to our predicted gene targets, we 349 

found significantly higher PPI on our predicted target genes compared with either all 350 

predicted druggable genes (FC = 2.2, P = 9.40×10-9) or all known drug target genes 351 

(FC = 2.1, P = 1.96×10-6) (Fisher’s exact test, Figure 7e). Based on these analyses 352 

above, it is reasonable to assume that incorporating both GWAS genetic regulation 353 

and protein interaction network could help prioritize new potential drug target genes 354 

for autoimmune diseases. We prioritized 25 new candidate drug target genes for seven 355 

autoimmune diseases (Figure 7f-h and S5, Table S14), which showed both strong PPI 356 

with known drug target genes and genetic regulation associated with the same 357 

autoimmune disease. Among 25 prioritized genes, we found 14 genes with known 358 

indications on other autoimmune diseases as well as 2 genes (NFKB1, SH2B3) with 359 

indications on other diseases (Figure 7f-h and S4). The rest 9 genes had no indications 360 

while with druggable evidence, including 4 genes (DAG1, IL27, STX4, SH2B1) 361 

predicted targeted for ulcerative colitis and 3 genes (IL27, IFNLR1, PPP5C) 362 

predicted targeted for ankylosing spondylitis as well as 6 genes (IFNLR1, SOCS1, 363 

IL27, STAT2, IL18R1, SH2B1) predicted targeted for psoriasis (Figure 7f-h). Together, 364 

our analysis not only prioritized some new promising drug targets for future drug 365 

exploration, but also suggested some known drug targets (NFKB1, SH2B3) that could 366 

be exploited for future drug repurposing on autoimmune diseases. 367 

 368 

Open web application and local pipeline 369 
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To facilitate quick search for interested SNP(s) or gene(s) prioritized by our 370 

integrative analysis, we developed an open website (http://fngwas.online/) collecting 371 

comprehensive resources including functional scores on all noncoding autoimmune 372 

SNPs, regulatory target genes on prioritized functional SNPs, immunologically 373 

related functions for predicted target genes, clinical drug applications for target genes 374 

as well as regulatory mechanisms underlying functional SNPs. We also provided 375 

precomputed functional analysis results across whole genome SNPs/genes for bulk 376 

downloading (http://fngwas.online/download.php), which included functional scores 377 

and predicted allelic regulatory mechanisms underlying all autosomal noncoding 378 

SNPs as well as multiple disease-relevant function and drug target analysis for all 379 

genome genes. To further expand the potential application of our analytical frame on 380 

other complex diseases/traits, we also developed packaged local pipeline named 381 

fnGWAS (dissecting the functionality of noncoding GWAS SNPs, workflow shown 382 

in Figure S5), which could be run on any local Linux server with user-definable 383 

annotation data and parameters (https://github.com/xjtugenetics/fnGWAS).  384 

 385 

Discussion 386 

The majority of autoimmune susceptibility SNPs are located in the noncoding region. 387 

It remains challenging to pinpoint the causal SNPs and functional genes to decipher 388 

the underlying biological mechanisms. In this study, we systematically evaluated the 389 

molecular mechanisms underlying noncoding susceptibility SNPs associated with 19 390 

autoimmune diseases, through combining functional SNPs prioritizing, target gene 391 

prediction, allelic regulatory mechanisms analysis, gene function annotation as well 392 

as drug application exploration. We found predominant long-range chromatin 393 

interaction linking functional SNPs to distal target genes, which may be mediated by 394 

several key TFs including CTCF. Particularly, we detected extensive regulatory roles 395 

underlying prioritized functional SNPs, as well as broad immunological functions 396 

and clinical drug applications on predicted target genes. We also developed open 397 

website and analytical pipeline. We hope that our systematic analyses may be helpful 398 
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for future experimental follow-up as well as clinical exploitation of drug repurposing 399 

on autoimmune diseases. 400 

 401 

We have previously integrated epigenetic features for known disease-associated 402 

SNPs to predict novel susceptibility loci for complex diseases [35-38]. In this study, 403 

we developed a new improved epigenetic functional scoring method to prioritize 404 

functional autoimmune SNPs through incorporating hundreds of immune cell-405 

specific active epigenetic information. Some other comparable scoring methods are 406 

also developed, such as 3DSNP [13], FIRE [11], GWAS4D [14], IW-Scoring [15] or 407 

RegulomeDB [12]. Compared with these approaches, one distinct feature of our 408 

method was the integrating of immune cell-specific epigenetic information (Table 409 

S15), which might provide better evaluation for disease-specific functional 410 

autoimmune SNPs. Another feature of our analysis frame is the comprehensive 411 

functional evaluation on multiple regulatory levels spanning SNP functional scoring, 412 

gene target prediction, gene function analysis and gene clinical application analysis, 413 

as well as SNP regulatory mechanisms analysis (Table S15). Indeed, the integration 414 

of cell-specific epigenetic annotation has been proved highly successful for 415 

prioritizing functional GWAS SNPs validated by experimental assays in many recent 416 

studies [39, 40]. Our analysis revealed that the top-ranked autoimmune SNPs 417 

prioritized by our method are significantly higher enriched in multiple blood immune 418 

cell associated regulatory elements compared with other methods, implying the 419 

outperformance of our method. We anticipated that future incorporation of more other 420 

cell-specific or context-specific epigenetic information could help identify functional 421 

SNPs associated with other complex diseases/traits.  422 

 423 

Recent studies have shown that considerable noncoding GWAS SNPs could regulate 424 

target genes through long-range loop formation [41-43], providing unprecedented 425 

new mechanical insights underlying GWAS disease association. Consistently, our 426 

analysis revealed prevailing long-range regulation linking functional autoimmune 427 

SNPs to distal target genes, suggesting the important roles of chromatin interactions 428 
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for autoimmune diseases. Our analysis also suggested that many functional SNPs 429 

within local gene could regulate distal target gene expression, including vast amounts 430 

of functional SNPs within local gene promoter. One underlying mechanism 431 

hypothesis was that gene promoter could also act as enhancer which was termed 432 

Epromoter to regulate distal gene expression [44], which was consistent with our 433 

recent findings that one functional autoimmune risk SNP within TNPO3 promoter 434 

could independently regulate distal IRF5 expression via long-range loop formation 435 

[20]. We also identified several potential key regulatory TFs with significant 436 

enrichment in functional autoimmune SNPs, including CTCF. CTCF is well-known 437 

for its regulatory roles for mediating enhancer-promoter interaction in chromatin loop 438 

formation [34], and played essential roles in late B-cell differentiation [45]. In line 439 

with the prevailing long-range genetic regulation detected for autoimmune diseases, 440 

we found predominant distal regulatory genes compared with local ones for all 441 

enriched TFs, indicating their potential roles in mediating distal genetic regulatory 442 

network for autoimmune diseases. Future functional assays are needed to decipher 443 

their precise regulatory mechanisms. 444 

 445 

The past fruitful GWAS findings have remarkably accelerated the translation of new 446 

drug clinical utilities [4]. The drug targets with human genetic evidence of disease 447 

association are twice as likely to lead to approved drugs [46]. Consistently, we found 448 

that our predicted autoimmune target genes are significantly more enriched in both 449 

known drug target genes and druggable genes compared with whole genome genes, 450 

supporting the potential important clinical implications on disease effecter genes. A 451 

previous GWAS study has incorporated PPI with 98 annotated RA risk genes to 452 

predict new drug targets, and highlighted CDK6 and CDK4 as promising candidates 453 

[47]. The incorporation of functional genomic and immune-related annotations as 454 

well as PPI has been demonstrated successfully in prioritizing potential drug target 455 

on immune-related traits [48]. Consistently, our study integrated both genetic 456 

association and PPI, and prioritized 25 candidate drug target genes on 7 autoimmune 457 

diseases, including many genes (16/25) with known indications on autoimmune 458 
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diseases or other diseases. The drug repurposing strategies have shed light on many 459 

new promising therapeutic opportunities for autoimmune diseases, such as the 460 

dopaminergic drug for multiple sclerosis [49] or Fibrate for treating for primary 461 

biliary cirrhosis [50]. Our results may provide important clues for future clinical drug 462 

repurposing on autoimmune diseases. For example, we predicted IL2RA to be a 463 

potential new drug target for ankylosing spondylitis. IL2RA is targeted by several 464 

known drugs (eg. HuMax-TAC) with indications on autoimmune diabetes and has 465 

known roles in the pathogenesis of autoimmunity [5]. Besides, we found that IL2RA 466 

was regulated by several functional SNPs associated with ankylosing spondylitis. 467 

Collectively, these evidence suggest the potential drug repurposing opportunity of 468 

IL2RA on ankylosing spondylitis.  469 

 470 

In conclusion, we performed comprehensive functional genetic analysis for 19 471 

autoimmune diseases. We hope that our unique resource may help accelerate the 472 

translation from GWASs findings into biologically and clinically useful insights 473 

underlying autoimmune diseases pathogenies. 474 

 475 

Materials and Methods 476 

Autoimmune SNPs collection 477 

We collected SNPs associated with 19 autoimmune diseases [alopecia areata (AA), 478 

ankylosing spondylitis (AS), autoimmune thyroid disease (ATD), celiac disease 479 

(CEL), Crohn's disease (CRO), IgE and allergic sensitization (IGE), inflammatory 480 

bowel disease (IBD), juvenile idiopathic arthritis (JIA), multiple sclerosis (MS), 481 

narcolepsy (NAR), primary biliary cirrhosis (PBC), primary sclerosing cholangitis 482 

(PSC), psoriasis (PSO), rheumatoid arthritis (RA), systemic lupus erythematosus 483 

(SLE), systemic scleroderma (SSc), type1 diabetes (T1D), ulcerative colitis (UC), 484 

and vitiligo (VIT)] from multiple resources, including the GWAS Catalog [3], the 485 

ImmunoBase (https://www.immunobase.org/ ) and other public studies [51, 52]. All 486 

databases were visited in March 2019 and summarized in Table S1. For SNPs 487 

achieved genome-wide significance reported in European ancestry (P < 5×10-8), any 488 
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coding or splicing SNPs annotated by ANNOVAR [53] using GENCODE v19 489 

reference data were removed. We further excluded SNPs within the major 490 

histocompatibility complex locus (MHC, 491 

https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37.p13) due to 492 

the complex LD patterns. The filtered SNPs were selected as autoimmune tag SNPs. 493 

 494 

LD analysis, positive, background and negative SNPs definition 495 

LD analysis for autoimmune tag SNPs was conducted using PLINK v1.90 [54] in 496 

European samples from 1000 genome v3 genotype data [55], with maximum distance 497 

for r2 calculation set as 1M. Genome-wide significant loci were defined as merged 498 

unique regions surrounding 1M of any filtered noncoding tag SNPs with overlapping 499 

MHC region truncated. We extracted noncoding tags and LD expanded (r2 > 0.8) 500 

SNPs within genome-wide significant loci as positive SNPs and all noncoding SNPs 501 

in these loci as background SNPs. We collected 41,377 susceptible SNPs with ID 502 

record in the 1000 genome v3 genotype data [55] from GWAS Catalog (visited in 503 

March 2019). All other noncoding SNPs beyond genome-wide significant loci and 504 

beyond MHC region with low LD (r2 < 0.1) with the GWAS catalog susceptible SNPs 505 

were selected as negative SNPs. 506 

 507 

Epigenetic functional scoring 508 

Epigenetic features selection. We collected 606 epigenetic data (called peak region) 509 

on 47 blood cell types from Roadmap [56] and ENCODE Project [57]. Four different 510 

epigenetic categories of data were incorporated for SNP annotation, including 15 511 

chromatin states (HMM-15), histone modification, DNase I hypersensitive sites 512 

(DHS) and transcription factor binding sites (TFBS). One epigenetic feature 513 

represents one epigenetic annotation in one cell type (eg, H3K4me1 in GM12878). 514 

SNPs were labeled as annotated or unannotated on each epigenetic feature by 515 

analyzing their overlapping with selected feature using bedtools v2.25.0 [58]. We 516 

performed enrichment analysis for each epigenetic feature by comparing counts of 517 

annotated positive SNPs and background SNPs using chi-square test. All epigenetic 518 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2019. ; https://doi.org/10.1101/871384doi: bioRxiv preprint 

https://doi.org/10.1101/871384
http://creativecommons.org/licenses/by/4.0/


19 
 

features with significantly higher enrichment for positive SNPs compared with 519 

background SNPs (Fold enrichment > 1, Bonferroni adjusted P < 0.05) were selected 520 

for the following epigenetic scoring. The fold enrichment (FC) is defined as:  521 

FC = 
annotated positive SNPs × total background SNPs

annotated background SNPs × total positive SNPs
 522 

 523 

Functional scoring. Based on our previous epigenetic enrichment approach [37, 38], 524 

we developed a new cell-specific epigenetic weighted scoring method to evaluate the 525 

functionality for all noncoding autoimmune positive SNPs (flowchart shown in 526 

Figure S1). For each epigenetic category (HMM-15, histone modification, DHS, 527 

TFBS), we adopted an accumulative quantitative score system using fold enrichment 528 

of selected significant features within each category as weight, separately, which is 529 

defined as follows: 530 

Score =
1

n

j

j

FC B


  531 

Where j denotes particular feature (1 ≤ j ≤ n) among each epigenetic category 532 

(assuming n total features), B indicates whether the tested positive SNP was 533 

annotated (B = 1) or unannotated (B = 0) on feature j. Therefore, we can get four 534 

independent functional scores across four different epigenetic categories for each 535 

tested SNP. For each epigenetic category, we further scored for all negative SNPs to 536 

build null distribution, and prioritized any positive SNPs with score higher than the 537 

top 5% ranked score value of all negative SNPs as potential functional. Finally, any 538 

positive SNPs with functionality support in at least one epigenetic category were 539 

determined as potential functional. 540 

 541 

Predicting target genes for prioritized functional SNPs 542 

Cis-QTL analysis. We examined the cis-quantitative trait loci (cis-QTLs) association 543 

between prioritized noncoding SNPs and all nearby genes in 1M region. We collected 544 

12 cis-eQTL and 2 cis-pQTL data over 20 blood immune cell types from 13 different 545 

published studies (Table S4). For pQTL data from the INTERVAL study [59], we 546 

extracted all cis-pQTL (1M surrounding gene TSS) pairs and transformed the protein 547 
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ID to gene symbol ID using the UniProt online tools. For any full QTL dataset 548 

without multiple testing corrections, we adjusted original P using false discovery rate 549 

(FDR)  method. All significant QTL results with probe/gene level FDR < 5% 550 

validated by at leaste two different datasets were retained.  551 

 552 

Three-dimensional (3D) chromatin interaction analysis. All SNP-gene pairs with 553 

cis-QTL associations were divided into either local (SNPs within target gene 554 

promoter (1KB surrounding TSS)) or distal (SNPs beyond target gene promoter). We 555 

collected chromatin interaction assay (5C, in situ Hi-C, capture Hi-C, HiChIP, ChIA-556 

PET) and predicted chromatin interaction data (IM-PET, PreSTIGE, PHM) on 557 

multiple blood immune cell types from 11 different studies (Table S4). To validate 558 

the long-range regulation between distal SNP-gene pairs, the 3D chromatin 559 

interactions between prioritized SNP and gene transcript promoter region 560 

(GENCODE v19) were examined using bedtools v2.25.0 [58]. The integration of cis-561 

QTLs and 3D chromatin interactions might better identify causal regulatory effect at 562 

GWAS loci by diminishing the potential accidental overlapping with QTLs for 563 

GWAS SNPs [60]. All distal SNP-gene pairs with chromatin interaction evidence 564 

from at leaste two different datasets were retained. 565 

 566 

Co-localization analysis. To validate the potential causal genetic regulatory effect for 567 

filtered local or distal target genes, we employed two complementary methods [61, 568 

62] to assess whether the detected GWAS signal and cis-QTL association shared the 569 

same causal variant. For 16 GWAS summary and 7 full QTL datasets available (Table 570 

S1 and S4), we employed the Coloc [61] method using coloc R package for Co-571 

localization analysis. The Coloc method [61] adopted a Bayesian statistical test using 572 

summary-level data to estimate five posterior probabilities: no association with either 573 

GWAS or QTL (PP0), association with GWAS while not with QTL (PP1), association 574 

with QTL while not with GWAS (PP2), association with GWAS and QTL while with 575 

two independent SNPs (PP3), association with both GWAS and QTL with one shared 576 

causal SNP (PP4). We defined 100-KB region surrounding each GWAS index SNP 577 
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(P < 5×10-8) and tested for co-localization with any overlapping QTL genes. For all 578 

curated GWAS and QTL datasets (including datasets with no full summary-level data 579 

available, Table S1 and S4), we also employed another adapted Coloc method named 580 

PICCOLO [62] for Co-localization analysis. The PICCOLO [62] estimates the 581 

colocalization of GWAS and QTL PICS (Probabilistic Identification of Causal SNPs) 582 

[18] credible set using reported lead SNPs and P-value. The PICS was a fine-mapping 583 

algorithm to estimate each SNP’s probability of being causal at a given locus [18]. 584 

We performed PICCOLO analysis as described using piccolo R package by 585 

Tachmazidou et al. [63]. Briefly, we firstly estimated the PICS credible set for each 586 

lead GWAS index SNP and each top QTL SNP using pics.download and then 587 

performed colocalization analysis using pics.coloc.lite with default parameter. For 588 

both Coloc and PICCOLO, any genes with both PP4 greater than 80% and significant 589 

QTL association with prioritized SNPs from at least two cis-QTL datasets were 590 

considered to support the co-localization.  591 

 592 

Local and distal target gene prediction. We predicted local or distal target gene on 593 

prioritized SNPs using different strategies. For local ones, any genes with both cis-594 

QTLs assocaition and colocalization evidence were prioritized to be potential target 595 

genes. For distal ones, any genes with multidimensional evidence including cis-QTLs 596 

assocaition, 3D chromatin interaction and colocalization were considered to be 597 

potential target genes.  598 

 599 

Deciphering allelic regulatory mechanisms underlying prioritized SNPs  600 

Allele-specific motif analysis. We analyzed the allelic effect of prioritized functional 601 

SNPs on transcription factor binding motifs using FIMO from MEME Suite toolkit 602 

(v4.11.0) [64] with default parameters and TF motifs available from 5 public motif 603 

databases, including JASPAR (2018 version) [65], HOCOMOCO (v11) [66], 604 

SwissRegulon [67], Transfac and Jolma2013 [68]. To identify potential functional 605 

motifs, we focused motif search on TF genes with high expression in at least one of 606 

the 20 blood immune cells from Roadmap [56] or DICE [69] (RPKM >1). The allele-607 
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specific binding motifs predicted by at least two different datasets were retained. 608 

 609 

Molecular QTL analysis. We collected different molecular QTL data in multiple 610 

blood cell types from 8 studies (Table S7), including transcription factor binding 611 

quantitative trait loci (bQTL) on five immune-relevant TFs (NF-κB, PU.1, Stat1, 612 

JunD, and Pou2f1), histone modification quantitative trait loci (hQTL) 613 

(H3K4me1/H3K4me3/H3K27ac), DNase-I hypersensitivity quantitative trait loci 614 

(dsQTL) and chromatin accessibility quantitative trait loci (caQTL). For all QTL 615 

datasets, the tested SNP and molecular peak (TF binding sites or ChIP-Seq peaks) 616 

pairs could be divided into either local (SNP located within molecular peak) or distal 617 

ones (SNP located beyond molecular peak). We retained significant association 618 

results between prioritized functional SNPs and local molecular peaks which passed 619 

multiple testing corrections (FDR < 0.1).  620 

 621 

Comparison with other functional scoring methods 622 

Curation of top-ranked SNPs. We compared our epigenetic functional scoring with 623 

five other functional scoring methods, including 3DSNP [13], FIRE [11], GWAS4D 624 

[14], IW-Scoring [15] and RegulomeDB [12]. The IW-Scoring [15] integrated eleven 625 

commonly used scoring methods to assign SNP a combined significance level (P-626 

value) and outperformed any single method. We therefore did not compare our 627 

method with these eleven methods. Functional scores of all autoimmune positive 628 

SNPs from these methods were collected from online database in March 2019. We 629 

extracted prioritized autoimmune SNPs by our method under four different minimum 630 

functionality evidence (≥4, ≥3, ≥2, ≥1, n = 1,791 ~ 15,331), and extracted 631 

equivalent or approximately equivalent top-ranked SNPs by other five methods for 632 

functional comparison. (1) Since both 3DSNP and FIRE adopted the quantitative 633 

scoring system, we selected those top scoring ranked SNPs equal to our prioritized 634 

SNPs under different minimum evidence (≥4, ≥3, ≥2, ≥1) for functional 635 

comparison, respectively. (2) The GWAS4D calculated combined regulatory 636 

probability (P-value) for examined variants by jointly considering cell type-specific 637 
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regulatory potential and cell type-free composite score. We retained significant SNPs 638 

on GM12878 (P < 0.05, n = 16,868) for comparison with our prioritized SNPs under 639 

at least one functional evidence (≥1, n = 15,314), which had approximately equal 640 

SNP counts. (3) Similarly, we selected significant SNPs (P < 0.05, n = 341) by IW-641 

scoring for functional comparison with our prioritized SNPs under at least four 642 

evidence (≥4, n = 1,791), which had the closest SNP counts. (4) The RegulomeDB 643 

adopted a category based scoring system (class from 1-7, with lower rank means 644 

higher functional support). We extracted SNPs ranked within class 1 (n = 1,958) or 645 

within class 1-2 (n = 3,575) for functional comparison with our prioritized SNPs 646 

under at least three (≥3, n = 3,973) or four evidence (≥4, n = 1,791), respectively, 647 

which had the closest SNP counts.  648 

 649 

Functional enrichment comparison. For collected functional SNPs set from each 650 

methods, we firstly compared their experimentally validated SNPs count in three cell 651 

types (blood mononuclear cells, K562 and HepG2) from two recent high-throughput 652 

screen reports [26, 27]. We next compared their functionality enrichment on multiple 653 

regulatory data support using Fisher’s exact test, including (1) SNPs with predicted 654 

local or distal target genes by integrating cis-QTL and chromatin interaction analysis 655 

on over 30 blood immune cell types (Table S4), (2) SNPs annotated with molecular 656 

QTL (bQTL, hQTL, dsQTL and caQTL) on multiple blood immune cell types (Table 657 

S7), (3) reported causal SNPs associated with 16 autoimmune diseases (AA, AS, ATD, 658 

CEL, CRO, JIA, MS, PBC, PSC, PSO, RA, SLE, SSC, T1D, UC, VIT) prioritized by 659 

the PICS approach [18], and (4) SNPs annotated with enhancer RNA (eRNA) from 660 

IBD patient samples [28]. 661 

 662 

Exploring immunologically related functions for predicted target genes 663 

Pathway analysis and functional genes curation. We performed biological pathway 664 

enrichment analysis (including Gene Ontology [GO], Kyoto Encyclopedia of Genes 665 

and Genomes [KEGG], Disease Ontology [DO] and Reactome pathway) for all 666 

predicted gene targets using clusterProfiler R package with default parameter [70], 667 
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except that setting use_internal_data = TURE for KEGG enrichment analysis to 668 

enable online query from latest KEGG data. To identify potential immunologically 669 

related genes, we manually curated immunologically related biological pathways 670 

from all annotated terms on predicted target genes. We also collected 671 

immunologically related genes from other public datasets, including the International 672 

Mouse Phenotyping Consortium (IMPC) portal (http://www.mousephenotype.org/, 673 

release-9.2), the Online Mendelian Inheritance in Man (OMIM) database 674 

(https://www.omim.org/), and the DisGeNET database 675 

(http://www.disgenet.org/home/, v6.0, expert curated or text mining predicted genes) 676 

[31]. All dataset were downloaded or queried online in May 2019. 677 

 678 

Gene expression and tissue-specific expression analysis. We collected gene 679 

expression data on 5 blood immune cell types (CD4 memory, CD4 naïve, Mobilized 680 

CD34, Peripheral blood mononuclear, GM12878) from Roadmap [56] and 15 681 

primary immune cells types from the DICE project (http://dice-database.org/) [69]. 682 

Gene expression was measured by RPKM (reads per kilobase per million mapped 683 

reads). We collected the gene lists with tissue-specific expression (as based on a 684 

specificity index threshold [pSI], pSI < 0.01) in 25 broad GTEx tissue types from 685 

report by Wells et al. [30].  686 

 687 

SMR analysis. We analyzed the causal relationship between predicted target genes 688 

and autoimmune diseases risk using 16 GWAS summary and 7 QTL summary data 689 

(Table S1 and S4) by the summary data–based Mendelian randomization (SMR) 690 

approach [32]. We ran SMR (v0.712) with default parameters. LD correlations 691 

between SNPs were estimated from 6,743 unrelated European samples from the 692 

Atherosclerosis Risk in Communities (ARIC) data (dbGap: phs000280.v3.p1.c1) [71] 693 

with one of each pair of individuals with a SNP-derived relatedness estimate of > 694 

0.025 suggested by GCTA (v1.91) [72] randomly removed. Gene-disease pairs 695 

passed both multi-SNP-based SMR test (FDR adjusted PSMR < 0.05) and 696 

heterogeneity test by HEIDI (PHEIDI > 0.05) were considered to be potential causal.  697 
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 698 

Regulatory TF analysis 699 

We performed enrichment analysis for all allele-specific binding TFs on functional 700 

autoimmune SNPs by comparing annotated functional SNPs with all positive 701 

autoimmune SNPs using Fisher’s exact test. For each TF with significant higher 702 

enrichment on autoimmune SNPs (P < 0.05, FC > 1), we assigned the predicted 703 

regulatory targets of its binding SNPs as its direct regulatory target genes. The TF-704 

gene regulatory network was visualized by Cytoscape V3.4 705 

(http://www.cytoscape.org/). 706 

 707 

Drug target and drug repurposing analysis 708 

Curation of drug target genes. Clinically approved or experimental drug target genes 709 

with known indications were obtained from 3 different databases, including the 710 

DrugBank database (https://www.drugbank.ca/, v5.1.2) [73], the Therapeutic target 711 

database (TTD, 2018 updated) [74] and Open Targets database [75]. All three drug 712 

databases were queried in March 2019. For TTD dataset, we translated the UniProt 713 

protein ID into corresponding gene symbol ID using UniProt online tools. All drug 714 

indications were manually classified into autoimmune diseases, immunologically 715 

related diseases (allergies, infections, inflammations, rejection, immune system 716 

diseases and hematologic malignancies) or other diseases. 717 

 718 

Curation of druggable genes. We collected potentially druggable genes from either 719 

DGIdb (www.dgidb.org, v3.0.2) [76], Pharos (https://pharos.nih.gov/idg/targets) [77] 720 

or report by Finan et al. [78]. We queried DGIdb and Pharos in March 2019. The 721 

DGIdb organized druggable genome under two classes, including over 35 validated 722 

or predicted drug-gene interaction types from 20 disparate sources, and 39 gene 723 

categories associated with druggability. The Pharos classified all targets into 4 groups 724 

by characterizing the degree to which they are not studied (labeled Tdark) or studied 725 

(labeled Tbio, Tchem or Tclin). The studied targets from Pharos were retained. Any 726 

gene targets with druggability evidence from at least two resources were prioritized 727 
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as potentially druggable. 728 

 729 

Predicting new potential drug target genes. For all annotated drug target or 730 

druggable genes, we analyzed protein-protein interaction (PPI) between these genes 731 

and all other genes. PPI was queried online from the STRING database (https://string-732 

db.org/) in June 2019 with only high-confident interacted pairs (interaction score > 733 

0.9) retained. By leveraging both PPI and upstream autoimmune diseases regulatory 734 

information, we can prioritize new potential drug target gene A or for particular 735 

disease B by filtering: (1) A has strong PPI (interaction score > 0.9) with any drug 736 

target gene C which had known indication on autoimmune disease B, (2) Both A and 737 

C are regulated by upstream functional SNPs predisposing to autoimmune disease B, 738 

(3) A is either known drug target gene or predicted druggable gene. The predicted 739 

genes with known indication on other disease might suggest new potential drug 740 

repurposing opportunities. 741 

 742 

Functional enrichment analysis 743 

Functional enrichment for all collected immune-relevant functional datasets (IMPC, 744 

OMIM, SMR, DisGeNET, TSEA, gene expression, drug target) on predicted target 745 

genes was analyzed by comparing annotated target genes with whole genome genes 746 

in each dataset using Fisher’s exact test. Functional enrichment for immune-cell 747 

associated regulatory data (motif, molecular QTL) on prioritized functional SNPs 748 

was analyzed by comparing annotated functional SNPs with all positive autoimmune 749 

SNPs using Fisher’s exact test. 750 

 751 

Data availability 752 

All analysis results are free for searching online or bulk downloading at 753 

http://fngwas.online.  754 

Analysis pipeline scripts are available at https://github.com/xjtugenetics/fnGWAS. 755 

 756 
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Description of Supplemental Data 757 

Supplemental Data contains 5 supplementary figures and 15 supplementary tables. 758 
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Figures Legends 970 

 971 

Figure 1. Epigenetic functional scoring for autoimmune SNPs 972 

(a) Heatmap showing epigenetic feature enrichment analysis on 606 epigenetic data 973 

from 47 blood cell types across four epigenetic groups (Left: DHS, HMM-15, histone 974 

modification. Right: TFBS) between all autoimmune positive SNPs and background 975 

SNPs. FC: fold enrichment on each feature comparing autoimmune positive SNPs with 976 

background SNPs. Red color represents feature with higher enrichment in autoimmune 977 

positive SNPs (Log2FC > 0). All significant and active features (Bonferroni adjusted P 978 

< 0.05, FC > 1) selected for SNP scoring were marked with asterisk. Enrichment 979 

analysis was performed using Fisher’s exact test. (c) Ranking plot for scores of all 980 

autoimmune negative SNPs within four epigenetic categories, with red dashed line 981 
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represents top 5% ranked value. (d) Venn diagram showing count of autoimmune SNPs 982 

with functionality support in each of four epigenetic categories by comparing the 983 

scoring value with top 5% ranked value of all negative autoimmune SNPs in (a). See 984 

also Figure S1. 985 

 986 

 987 

 988 

Figure 2. Dissecting allelic regulatory mechanisms underlying functional SNPs 989 

(a) Schematic showing several potential molecular-level regulatory mechanisms 990 

underlying functional autoimmune SNPs (upper) and summary of corresponding SNP 991 

counts (bottom). (b-e) Functional enrichment for each collected molecular QTL data on 992 

functional SNPs compared with all positive autoimmune SNPs. Fisher’s exact test was 993 

performed in b-e, with fold enrichment and P-value shown. 994 
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 995 

Figure 3. Comparing epigenetic functional scoring with other methods 996 

(a) Description of top-scored SNPs sets from each method for functional comparing in 997 

b-f, which are marked by different colors (bottom). (b) Comparison of experimentally 998 

validated functional SNPs between our method and other five methods from a high-999 

throughput screen assay in mononuclear cells [26]. (c-f) Comparison of percentage of 1000 

annotated SNPs within different regulatory evidence between our method and other five 1001 

methods, including (c) potential regulatory SNPs with predicted target gene by 1002 

combining cis-QTL and chromatin interaction analysis, (d) potential functional SNPs 1003 

with significant molecular QTL (bQTL, hQTL, dsQTL or caQTL) association, (e) 1004 

casual autoimmune associated SNPs identified by PICS approach [18], and (f) potential 1005 

regulatory SNPs within eRNA detected from IBD patients [28]. Fisher’s exact test was 1006 

performed in c-f with asterisk represented significant higher enrichment on our method 1007 

(FC > 1, P < 0.05). NS, not significant. See also Figure S2. 1008 
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 1009 

Figure 4. Immunological function analysis for predicted target genes 1010 

(a) Summary of multiple immunologically related functions for predicted target genes. 1011 

(b) Top 10 significant biological pathways on predicted target genes. Both P-value (line 1012 

chart) and gene counts (bar chart) are shown. (c) Functional enrichment for potential 1013 

immunologically related gene set with different functional evidence between predicted 1014 

target genes and whole genome genes. Enrichment analysis was performed using 1015 

Fisher’s exact test. (d) Tissue Specific Expression Analysis (TSEA) for predicted target 1016 

genes on 25 diverse tissues, with dot size representing gene counts and dot color 1017 

indicating significance level (P-value) using Fisher’s exact test. Only one significant 1018 

(P < 0.05) tissue (blood) was detected. 1019 
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 1020 

Figure 5. Prevailing long-range regulation linking functional SNPs to distal gene 1021 

targets 1022 

(a) Schematic showing different regulatory models underlying prioritized functional 1023 

autoimmune SNPs and gene targets. (b) Pie chart showing comparison between local 1024 

and distal regulatory pairs (left), as well as between 3 types of distal regulatory pairs  1025 

(right) in a. (c) Counts of SNP-gene pairs at different distance (kb). (d-f) IRF5-TNPO3 1026 

region example showing that multiple functional autoimmune SNPs located within 1027 

other gene regulated distal target gene expression via long-range chromatin interactions. 1028 

The regulatory evidence including both (d) chromatin interactions, (e) cis-QTL 1029 

association (one local example SNP and another distal example SNP were shown) and 1030 

(f) colocalization between GWAS association on RA and IRF5 cis-eQTL association in 1031 
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LCLs. Genomic annotation and chromatin interaction at IRF5 locus were visualized 1032 

using WashU Epigenome Browser.  1033 

 1034 

 1035 

Figure 6. Identifying key TFs mediating autoimmune genetic regulatory network 1036 

(a) Scatter plot showing fold enrichment (FC) and significance level for enrichment in 1037 

366 predicted motif TFs between prioritized functional SNPs and all autoimmune SNPs. 1038 

Nominally significantly higher enriched TFs (FC > 1, P < 0.05) are marked in blue. (b) 1039 

Schematic showing three TF-target gene regulatory models. The gray arrow indicates 1040 

SNP-target gene interaction. (c) Venn diagram showing counts of three types of target 1041 

genes on significant TFs in (b). (d) Comparison between distal and local target genes 1042 

on significant TFs. (e) Annotated immunological functions on significant TFs. (f) 1043 

Pervasive sharing of regulatory target genes between different significant TFs. The 1044 

orange rectangle represented 22 TFs shared all target genes with the rest (blue) of TFs, 1045 

which might indicate their central regulatory roles. The transparency indicated counts 1046 

of regulatory target genes, with CTCF mediated the most target genes (n = 113). 1047 
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 1048 

Figure 7. Predicted new drug targets with potential repurposing opportunities for 1049 

three autoimmune diseases 1050 

(a) Pie chart showing gene count and percentage among predicted target genes for either 1051 

known drug targets with indications or predicted druggable genes or others. (b) Venn 1052 

diagram showing sharing counts of drug target genes with indications on either 1053 

autoimmune diseases, other immunologically related diseases or other diseases (Table 1054 

S12 for detail). (c) Functional enrichment analysis for either known drug target or 1055 

predicted druggable genes on our predicted target genes compared with all genome 1056 

genes using Fisher’s exact test. (d) PPI (score > 0.9) between autoimmune-drug target 1057 

genes (marked in red) and other drug target or druggable genes. PPI plot was from 1058 

STRING database by querying online. (e) Functional enrichment analysis showing 1059 

percentage of genes showing strong PPI (score > 0.9) with autoimmune-drug target 1060 
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genes on either predicted druggable genes or known drug target genes. The comparison 1061 

was performed between our predicted target genes (marked in green) and all druggable 1062 

or drug target genes (marked in orange), as well as between all druggable genes or drug 1063 

targets and all genome genes (marked in blue) using Fisher’s exact test, respectively. 1064 

(f-h) Predicted new candidate drug targets on three autoimmune diseases. The orange 1065 

rectangle shows predicted new drug genes, with genes with known indications on other 1066 

autoimmune or non-autoimmune diseases marked in black or green and genes without 1067 

known drug target indications marked in red. See also Figure S3 and S4.  1068 
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Supplementary Figures Legends 1069 

Figure S1. Workflow of epigenetic functional scoring 1070 

The top panel shows definition for positive, background and negative autoimmune 1071 

SNPs for the following epigenetic functional scoring. Any coding, spicing or MHC 1072 

region SNPs were removed. The middle panel shows the process for functional scoring. 1073 

FC: fold enrichment. Epigenetic data in 47 blood immune cell types across four 1074 

epigenetic categories (HMM-15, histone modification, DHS, TFBS) are used for 1075 

enrichment analysis using Fisher’s exact test. M1-M4 denotes annotated or unannotated 1076 

positive/background SNPs count on each epigenetic feature. A1-A4 denotes four 1077 

epigenetic categories with m1-m4 significant enriched features for scoring. The bottom 1078 

panel shows how to determine functionality support for each positive SNP. Each SNP 1079 

had four scores (n1-n4) across four epigenetic groups, which were further compared 1080 

with 5% top ranked score value of all negative SNPs (S1-S4) to determine its 1081 

functionality support. Relative to Figure 1. 1082 

 1083 

Figure S2. Comparing epigenetic functional scoring with other methods using 1084 

experimentally validated regulatory SNPs 1085 

Comparison of experimentally validated functional SNPs between our epigenetic 1086 

functional scoring and other five methods from high-throughput screen assay in HepG2 1087 

(a) and K562 (b) cells [27]. Relative to Figure 3. 1088 

 1089 

Figure S3. Prevailing sharing of genetic disease-association and biological 1090 

pathways on drug target genes   1091 

(a-b) Count of (a) autoimmune drug target genes or (b) other drug target and predicted 1092 

druggable genes associated with paired autoimmune diseases, with genes associated 1093 

with individual disease shown in diagonal line. Disease association on gene targets are 1094 

derived from their upstream functional SNPs. (c) Counts of shared immunological 1095 

related pathways between 41 known autoimmune-drug target genes (row) and all 198 1096 

drug target or druggable genes (column). Pathways were manually curated from all 1097 
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annotated biological terms (GO, KEGG, DO, Reactome) on predicted target genes 1098 

(Table S9). Relative to Figure 7. 1099 

 1100 

Figure S4. Predicted new potential drug targets for four autoimmune diseases 1101 

The yellow rectangle shows predicted new drug genes for four autoimmune diseases 1102 

which had strong PPI with known drug target genes (blue). All predicted drug genes 1103 

had known indications on other autoimmune diseases or non-autoimmune diseases. 1104 

Relative to Figure 7. 1105 

 1106 

Figure S5. Flowchart of fnGWAS pipeline 1107 

The blue rectangle summarized five main analysis steps of fnGWAS pipeline, with aim 1108 

for each step shown (Step 1-5). For each analysis step, the input data (represented by 1109 

cylinder) and simplified example summarized output result (represented by yellow 1110 

table) are shown, respectively. By default, fnGWAS begins with an epigenetic 1111 

functional scoring pipeline (Step1) using all susceptible SNPs associated with any 1112 

interested diseases/traits as input, which outputs functional scores and functionality 1113 

support for all positive SNPs (see detailed workflow for step 1 in Figure S1). Target 1114 

gene prediction were then employed for all positive SNPs with functionality support 1115 

(Step 2). Downstream functional analysis were then performed predicted target genes 1116 

and their regulatory functional SNPs (Step 3-5). Alternatively, each step of fnGWAS 1117 

can be run independently, which support any user-defined input data. The whole 1118 

pipeline including input annotation data are free available at 1119 

https://github.com/xjtugenetics/fnGWAS or http://fngwas.online/download.php. 1120 

  1121 
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Supplementary Tables 1122 

Table S1. Summary of datasets for autoimmune SNPs collection 1123 

Table S2. Significantly enriched active epigenetic features selected for epigenetic 1124 

functional scoring 1125 

Table S3. Epigenetic functional scores on all positive autoimmune SNPs 1126 

Table S4. Summary of cis-QTLs and chromatin interactions datasets for target gene 1127 

prediction 1128 

Table S5. Predicted regulatory target genes on prioritized potential functional SNPs 1129 

Table S6. Colocalization between GWAS and cis-QTL association for predicted target 1130 

genes 1131 

Table S7. Summary of intermediate molecular QTL datasets 1132 

Table S8. Potential molecular regulatory mechanisms underlying functional 1133 

autoimmune SNPs 1134 

Table S9. Summary of immunologically related functions for target genes 1135 

Table S10. Potential causal autoimmune target genes identified by SMR 1136 

Table S11. Regulatory target genes and immunologically related functions for 1137 

significantly enriched TFs 1138 

Table S12. known drug target genes with clinical indications 1139 

Table S13. Prioritized candidate druggable genes 1140 

Table S14. Predicted new potential drug target or drug repurposing genes on 1141 

autoimmune diseases 1142 

Table S15. Comparison between fnGWAS and other representative scoring approaches 1143 
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