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2 

Abstract  19 

While footprinting analysis of ATAC-seq data can theoretically enable investigation of 20 

transcription factor (TF) binding, the lack of a computational method implementing both 21 

footprinting, visualization and downstream analysis has hindered the widespread application 22 

of this method. Here we present TOBIAS, a comprehensive footprinting framework enabling 23 

genome-wide investigation of TF binding dynamics for hundreds of TF simultaneously. As a 24 

proof-of-concept, we illustrate how TOBIAS can unveil complex TF dynamics during zygotic 25 

genome activation (ZGA) in both humans and mice, and explore how the TF Dux activates 26 

cascades of TF, binds to repeat elements and induces expression of novel genetic elements. 27 

TOBIAS is freely available at: https://github.com/loosolab/TOBIAS. 28 
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 32 

Background 33 

Epigenetic mechanisms governing chromatin organization and transcription factor (TF) 34 

binding are critical components of transcriptional regulation and cellular transitions. In recent 35 

years, rapid improvements of pioneering sequencing methods such as ATAC-seq (Assay of 36 

Transposase Accessible Chromatin) [1], have allowed for systematic, global scale 37 

investigation of epigenetic mechanisms controlling gene expression. While ATAC-seq can 38 

uncover accessible regions where TFs might bind, true identification of specific TF binding 39 

sites (TFBS) still relies on chromatin immunoprecipitation methods such as ChIP-seq. 40 

However, ChIP-seq methods require high input cell numbers, are limited to one TF per assay, 41 

and are further restricted to TFs for which antibodies are readily available. Latest 42 

improvements of ChIP based methods [2] can circumvent some of these technical drawbacks, 43 

but the limitation of only being able to identify binding sites of one TF per assay persists. 44 

Therefore, it remains costly, or even impossible, to study the binding of multiple TFs in parallel. 45 

The limitations of investigating TF binding become particularly apparent when investigating 46 

processes involving a very limited number of cells such as preimplantation development (PD) 47 

of early zygotes. PD encompasses the transformation of the fertilized egg that forms the 48 

zygote, which subsequently undergoes a series of cell divisions to finally constitute the 49 

blastocyst, a structure built by the inner cell mass (ICM) and trophectoderm (Figure 1a). 50 

Following fertilization, maternal and paternal mRNAs are degraded prior to zygotic genome 51 

activation (ZGA) (reviewed in [3]), which leads to the transcription of thousands of genes [4]. 52 

Integration of multiple omics-based profiling methods have revealed a set of key TFs that are 53 

expressed at the onset of and during ZGA including Dux [5, 6], Zscan4 [7], and other 54 

homeobox-containing TFs [8]. However, what genetic elements they directly bind to and/or 55 

regulate during PD remains poorly understood. Consequently, the global network of TF 56 

binding dynamics throughout PD remains almost entirely obscure. 57 
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A computational method known as digital genomic footprinting (DGF) [9] has emerged as an 58 

alternative means, which can overcome some limitations of investigating TF binding with ChIP-59 

based methods. DGF is a computational analysis of chromatin accessibility assays such as 60 

ATAC-seq, which makes use of the intrinsic effect that DNA effector enzymes only cut 61 

accessible DNA regions. Similarly to nucleosomes, bound TFs hinder cleavage of DNA, 62 

resulting in defined regions of decreased signal strength within larger regions of high signal - 63 

known as footprints [10] (Figure 1b). This concept shows considerable potential as it 64 

theoretically allows to survey genome-wide binding of multiple TFs in parallel from a single 65 

experiment. 66 

However, there are still a multitude of challenges to DGF methods [11, 12]. While ATAC-seq 67 

became very popular as it is simpler and require less starting material in comparison to 68 

DNAse-seq, only a few of the existing footprinting tools inherently support ATAC-seq analyses 69 

[13-16]. In this context the non-random behavior of cleavage enzymes that bind preferentially 70 

to certain sequence compositions (e.g. Tn5 bias for ATAC-seq) turned out to be a major 71 

challenge [17-20]. In addition, computational issues such as software availability, the use of 72 

non-standard file-formats, varying dependencies and lack of support for multiprocessing have 73 

made current footprinting tools hard to integrate into existing analysis pipelines. Aside from 74 

the identification of footprints, the challenge of integrating footprints, TF motifs and genomic 75 

location of genes to be able to fully investigate the epigenetic processes involving TF binding 76 

is not a trivial task.  77 

While all of these factors significantly influence the outcome of footprinting analyses, previous 78 

investigations have been focused on improving individual computational steps such as 79 

estimating differential TF binding on a global scale [21-23], identifying footprints for specific 80 

TFs in a local genomic context [16, 24], or correcting the bias within the genomic signals [25, 81 

26]. Few methods have included bias correction as an integrated part of footprint detection 82 

[16]. Essentially, a comprehensive framework that takes all of these parameters into account 83 

does not exist.  84 
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Here we describe and exploit application of TOBIAS (Transcription factor Occupancy 85 

prediction By Investigation of ATAC-seq Signal), a comprehensive computational framework 86 

that we created for footprinting analysis (Figure 1c). TOBIAS is a collection of computational 87 

tools utilizing a minimal input of ATAC-seq reads (.bam-format), TF motif information (in the 88 

form of PWMs) and genome information to enable Tn5 bias correction, footprinting, and 89 

comparison of TF binding even for complex experimental designs (e.g. time series). 90 

Furthermore, TOBIAS includes a variety of modules for downstream analysis such as TF 91 

network inference and visualization of footprints. In addition to the TOBIAS Python package, 92 

we provide scalable analysis workflows implemented in Snakemake [27] and NextFlow [28], 93 

including a cloud computing compatible version making use of the de.NBI cloud [29].  94 

Results  95 

Validation of TOBIAS  96 

As a comprehensive framework for DGF analysis comparable to TOBIAS does not exist, we 97 

rated the individual TOBIAS modules in a well-studied system of paired ATAC-seq and ChIP-98 

seq datasets (see Methods; Validation) against published methods where possible. In terms 99 

of Tn5 bias correction, we found that TOBIAS outperforms other tools in distinguishing 100 

between bound/unbound sites (Supp. Figure 1a, Supp. File 1). For detection of footprints, we 101 

also found that TOBIAS clearly outperforms other known methods capable of screening TFs 102 

in parallel (Supp. Figure 1b left and methods). By making use of another exemplary dataset 103 

of ATAC-seq data derived from hESC [30], we confirmed the obvious improvement of footprint 104 

detection after Tn5 bias correction (Supp. Figure 2a left). Importantly, we also identified a 105 

number of cases where the TF motif itself is a disfavored position for Tn5 integration, thereby 106 

creating a false-positive footprint if left uncorrected, which disappears after Tn5 bias correction 107 

(Supp. Figure 2a; right). Utilizing a footprint metric as described by [22] (Supp. Figure 2b) 108 

across different stages of Tn5 bias correction (uncorrected/expected/corrected signals), we 109 

found a high correlation between uncorrected and expected footprinting depths (Supp. Figure 110 
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2c). In contrast, this effect vanished after TOBIAS correction (Supp. Figure 2d), indicating the 111 

gain of a real footprint information superimposed by Tn5 bias. In a global perspective, taking 112 

590 TFs into account, TOBIAS generated a measurable footprint for 64% of the TFs (Supp. 113 

Figure 2e). This is in contrast to previous reports wherein it has been suggested that only 20% 114 

of all TFs leave measurable footprints [22]. To summarize, we found that TOBIAS exceeded 115 

other software solutions in terms of correctly identifying bound TF binding sites.  116 

 117 

Footprinting uncovers transcription factor binding dynamics in mammalian ZGA 118 

To demonstrate the full potential of TOBIAS, in particular in the investigation of processes 119 

involving only few cells, we analyzed a series of ATAC-seq datasets derived from both human 120 

and murine preimplantation embryos at different developmental stages ranging from 2C, 4C, 121 

8C to ICM in addition to embryonic stem cells of their respective species [30] [31]. Altogether, 122 

TOBIAS was used to calculate footprint scores for a list of 590 and 464 individual TFs across 123 

the entire process of PD of human and mouse embryos, respectively. After clustering TFs into 124 

co-active groups within one or multiple developmental timepoints (Human: Figure 2a and 125 

Supp. Table 1; Mouse: see next section), we first asked whether the predicted timing of TF 126 

activation reflects known processes in human PD. Intriguingly, we found 10 defined clusters 127 

of specific binding patterns, the majority of which peaked between 4C and 8C, fully concordant 128 

with the transcriptional burst and termination of ZGA (Figure 2a). 129 

Two clusters of TFs (Cluster 1+2; n=83) displayed highest activity at the 2-4C stage and 130 

strongly decreased thereafter, suggesting that factors within these clusters are likely involved 131 

in ZGA initiation. We set out to classify these TFs, and observed a high overlap with known 132 

maternally transferred transcripts [32] (LHX8, BACH1, EBF1, LHX2, EMX1, MIXL1, HIC2, 133 

FIGLA, SALL4, ZNF449), explaining their activity before ZGA onset. Importantly, DUX4 and 134 

DUXA, which are amongst the earliest expressed genes during ZGA [5, 6], were also 135 

contained in these clusters. Additional TFs included HOXD1, which is known to be expressed 136 

in human unfertilized oocytes and preimplantation embryos [33] and ZBTB17, a TF mandatory 137 
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to generate viable embryos [34]. Cluster 6 (n=67) displayed a particularly prominent 8C 138 

specific signature, that harbored well known TFs involved in lineage specification such as 139 

PITX1, PITX3, SOX8, MEF2A, MEF2D, OTX2, PAX5 and NKX3.2. Furthermore, overlapping 140 

TFs within Cluster 6 with RNA expression datasets ranging from the germinal vesicle to 141 

cleavage stage [5], 12 additional TFs (FOXJ3, HNF1A, ARID5A, RARB, HOXD8, TBP, ZFP28, 142 

ARID3B, ZNF136, IRF6, ARGFX, MYC, ZSCAN4) were confirmed to be exclusively expressed 143 

within this time frame. Taken together, these data show that TOBIAS reliably uncovers 144 

massively parallel TF binding dynamics at specific time points during early embryonic 145 

development. 146 

 147 

 148 

 149 

Transcription factor scores correlate with footprints and gene expression 150 

To confirm that TOBIAS-based footprinting scores are indeed associated with leaving bona 151 

fide footprints we utilized the ability to visualize aggregated footprint plots as implemented 152 

within the framework. Indeed, bias corrected footprint scores were highly congruent with 153 

explicitly defined footprints (Figure 2b) of prime ZGA regulators at developmental stages in 154 

which these have been shown to be active [7]. For example, footprints associated with DUX4, 155 

a master inducer of ZGA, were clearly visible from 2C-4C, decreased from 8C onwards and 156 

were completely lost in later stages, consistent with known expression levels [30] and ZGA 157 

onset in humans. Footprints for ZSCAN4, a primary DUX4 target [5], were exclusively visible 158 

at the 8C stage. Interestingly, GATA2 footprints were exhibited from 8C to ICM stages which 159 

is in line with its known function in regulating trophoblast differentiation [35]. As expected, 160 

CTCF creates footprints across all timepoints. Strikingly, we observed that these defined 161 

footprints were not detectable without TOBIAS mediated Tn5 bias correction (Supp. Figure 162 

2f). These data show that footprint scores can be reliably confirmed by footprint visualizations, 163 

which further allow to infer TF binding dynamics. 164 
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To test if the global footprinting scores of individual TFs correlate with the incidence and level 165 

of their RNA expression, we matched them to RNA expression datasets derived from 166 

individual timepoints throughout zygotic development, taking TF motif similarity into account. 167 

Indeed, we found that TOBIAS scores for the majority of TFs either correlated well with the 168 

timing of their expression profiles or displayed a slightly delayed activity after expression 169 

peaked (Supp. Figure 3a). This is important because it shows that in conjunction with 170 

expression data, TOBIAS can unravel the kinetics between TF expression (mRNA) and the 171 

actual binding activity of their translated proteins. The value of this added information becomes 172 

particularly apparent when analyzing activities of TFs that did not correlate with the timing of 173 

their RNA expression (Supp. Figure 3a; not correlated).  174 

For example, within the non-correlated cluster 13 TFs were identified which are of putative 175 

maternal origin [32] including SALL4. In mice, Sall4 protein is maternally contributed to the 176 

zygote, subsequently degraded at 2C and then reexpressed after zygotic transcription has 177 

initiated [36]. Consistent with this, SALL4 expression increased dramatically from 8C onwards 178 

(Supp. Table 2). Notably, TOBIAS predicted SALL4 to have the highest activity in 2C and 179 

second-highest activity in hESC (on-off-on-pattern). These data show that TOBIAS can predict 180 

true on-off-on-patterns, and can infer significant insight into TF activities, in particular for those 181 

where determining their expression patterns alone does not suffice to explain when they exert 182 

their biological function. 183 

 184 

Differential footprint analysis reveals functional divergence between human and mouse 185 

ZGA 186 

The timing of ZGA varies between mice (2C) and humans (4C to 8C) (reviewed in [37] [38]). 187 

By integrating the TOBIAS scores from human and mouse (Supp. Figure 3b and Supp. Table 188 

3), and instrumentalizing the capability of TOBIAS to generate differential TF binding plots for 189 

all time points automatically, we investigated similarities and differences of PD between these 190 

species. Firstly, reflecting the shift of ZGA onset, we identified 30 TFs which appeared to be 191 
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ZGA specific in both human and mouse (Figure 2c) including several homeobox factors which 192 

already have described functions within ZGA [39] as well as ARID3A which has been shown 193 

to play a role in cell fate decisions in creating trophectoderm [40]. 194 

Next, we used the differential TF binding plots to display differences in ZGA at the transition 195 

between 2C and 4C in mouse (Figure 3a), and human 8C and ICM (Figure 3b) (Supp. File 2 196 

+ 3 for all pairwise comparisons). In mice, we observed a shift of Obox-factor activity in 2C to 197 

an activation of Tead (Tead1-4) and AP-2 (Tfap2a/c/e) motifs in 4C. Notably, AP2/Tfap2c is 198 

required for normal embryogenesis in mice [41] and was also recently shown to act as a 199 

chromatin modifier that opens enhancers proximal to pluripotency factors in human [42]. We 200 

observed a similar shift of TF activity for homeobox factors such as PITX1-3, RHOXF1, CRX 201 

and DMBX1 at the human 8C stage towards higher scores in ICM for known pluripotency 202 

factors such as POU5F1 (OCT4) and other POU-factors. Taken together, these results 203 

highlight the ability of TOBIAS to capture differentially bound TFs, not only across the whole 204 

timeline, but also between individual conditions and species. 205 

Throughout the pairwise comparisons, we observed that TFs from the same families often 206 

display similar binding kinetics within species, which is not surprising since they often possess 207 

highly similar binding motifs (Figure 3a right). To characterize TF similarity, TOBIAS provides 208 

functionality to cluster TFs based on the overlap of TFBS within investigated samples (Figure 209 

3c+3d). This enables quantification of the similarity and clustering of individual TFs that appear 210 

to be active at the same time. Thereby, we observed a group of homeobox motifs which cluster 211 

together with more than 50% overlap of their respective binding sites in mouse (Figure 3c). In 212 

contrast, other TFs such as Tead and AP-2 cluster separately, indicating that these factors 213 

utilize independent motifs (Supp. File 2+3). While this might appear trivial, this clustering of 214 

TFs in fact also highlights differences in motif usage between human and mouse. One 215 

prominent example is the RHOXF1 motif, which shows high binding-site overlap with Obox 216 

1/3/5 and Otx2 binding sites in mouse (Figure 3c; ~60% overlap), but does not cluster with 217 

OTX2 in human (Figure 3d; ~35% overlap). This observation suggests important functional 218 
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differences of RHOX/Rhox TFs between mice and humans. In support of this hypothesis 219 

RHOXF1, RHOXF2 and RHOXF2B genes are exclusively expressed at 8C and ICM in 220 

humans, whereas Rhox factors are not expressed in corresponding developmental stages of 221 

preimplantation in mouse (Supp. Table 4). Conceivably, this observation, together with the 222 

finding that murine Obox factors share the same motif as RHOX-factors in humans, suggests 223 

that Obox TFs might function similarly to RHOX-factors during ZGA. Altogether, the TOBIAS 224 

mediated TF clustering based on TFBS overlap allows for quantification of target-similarity 225 

and divergence of TF function between motif families. 226 

 227 

Dux expression induces massive changes of chromatin accessibility, transcription and 228 

TF networks 229 

We became particularly attracted to Dux/DUX4 which TOBIAS correctly predicted to be one 230 

of the earliest factors to be active in both human and mouse (Figure 2a and Supp. Figure 231 

3b)[5-7, 43, 44]. Despite its prominent role in ZGA, there is however still a poor understanding 232 

of how Dux regulates its primary downstream targets, and consequently its secondary targets, 233 

during this process. We therefore applied TOBIAS to identify Dux binding sites utilizing an 234 

ATAC-seq dataset of Dux overexpression (DuxOE) in mESC [5]. 235 

Inspecting the differential TF activity predicted by TOBIAS, we observed an increase of activity 236 

of Dux, Obox and other homeobox-TFs as expected (Figure 4a, Supp. File 4). Interestingly, 237 

this went along with a massive loss of TF binding for pluripotency markers such as Nanog, 238 

Pou5f1 (OCT4) and Sox2 upon DuxOE, indicating that Dux renders previously accessible 239 

chromatin sites associated with pluripotency inaccessible.  240 

Consistently, Dux footprints (Figure 4b; left) were clearly evident upon DuxOE. Importantly, 241 

TOBIAS discriminated ~30% of all potential binding sites within open chromatin regions to be 242 

bound in the DuxOE condition further demonstrating the specificity of this method (Figure 4b; 243 

right). To rank the biological relevance of the individually changed binding sites between 244 

control and DuxOE conditions, we linked all annotated gene loci to RNA expression. A striking 245 
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correlation between the gain-of-footprint and gain-of-expression of corresponding loci was 246 

clearly observed and mirrored by the TOBIAS predicted bound/unbound state (Figure 4c). 247 

Amongst the genes within the list of bound Dux binding sites (Supp. Table 5 for full Dux target 248 

list) were well known Dux targets including Zscan4c and Pramef25 [45], for which local 249 

footprints for Dux were clearly visible (Figure 4d). The high resolution of footprints is 250 

particularly pronounced for Tdpoz1 which harbors two potential Dux binding sites of which one 251 

is clearly footprinted in the score track, while the other is predicted to be unoccupied (Figure 252 

4d; bottom). In line with this, Tdpoz1 expression is significantly upregulated upon DuxOE as 253 

revealed by RNA-seq (log2FC: 6,95). Consistently, Tdpoz1 expression levels are highest at 254 

2C in zygotes and decrease thereafter, strongly indicating that Tdpoz1 is likely a direct target 255 

of Dux during PD both in vitro and in vivo  [31, 46] (Supp. Table 5). Footprinting scores also 256 

directly correlated with ChIP-seq peaks for Dux in the Tdpoz1 promoter (Supp. Figure 4a), an 257 

observation which we also found at many other positions (Examples shown in Supp. Figure 258 

4b+c). 259 

Many of the TOBIAS-predicted Dux targets encode TFs themselves. Therefore, we applied 260 

the TOBIAS network module to subset and match all activated binding sites to TF target genes 261 

with the aim of inferring how these TF activities might connect. Thereby, we could model an 262 

intriguing pseudo timed TF activation network. This directed network uncovered a TF 263 

activation cascade initiated by Dux, resulting in the activation of 7 primary TFs which appear 264 

to subsequently activate 32 further TFs (first three layers depicted in Figure 4e). As Dux is a 265 

regulator of ZGA, we asked how the in vitro activated Dux network compared to gene 266 

expression throughout PD in vivo. Strikingly, the in vivo RNA-seq data of the resolved 267 

developmental dataset [31] confirmed an early 2C specific expression for Dux, followed by a 268 

slightly shifted activation pattern for all direct Dux targets except for Rxrg (Figure 4f). However, 269 

it is of note that Rxrg is significantly upregulated in the in vitro DuxOE from which the network 270 

is inferred (Supp. Table 5), pointing to both the similarities and differences between the in vivo 271 

2C and in vitro 2C-like stages induced by Dux. In conclusion, these data show that beyond 272 
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identifying specific target genes of individual TFs, TOBIAS can infer biological insight by 273 

predicting entire TF activation networks. 274 

Notably, many of the predicted Dux binding sites (40%) are not annotated to genes (Figure 275 

4g), raising the question what role these sites play in ZGA. Dux is known to induce expression 276 

of repeat regions such as LTRs [5] and consistently, we found that more than half of the DUX-277 

bound sites are indeed located within known LTR sequences (Figure 4g) which were 278 

transcribed both in vitro and in vivo (Figure 4h). Interestingly, we found that 28% of all Dux 279 

binding sites overlap with genomic loci encoding LINE1 elements. Although LINE1 expression 280 

does not appear to be altered in mESC cells, there is a striking pattern of increasing LINE1 281 

transcription from 4C-8C (Figure 4h) in vivo, pointing to a possible role of LINE1 regulation 282 

throughout PD. Finally, we found that 6% of the Dux binding sites do not overlap with any 283 

annotated gene nor with putative regulatory repeat sequences, even though transcription 284 

clearly occurs at these sites (Figure 4h bottom). One example is a predicted Dux binding site 285 

on chromosome 13, which coincides with a spliced region of increased expression between 286 

control mESC/DuxOE and comparable high expression in 2C, 4C and 8C (Supp. Figure 5). 287 

These data clearly indicate the existence of novel transcribed genetic elements, the function 288 

of which remains unknown, but which are likely controlled by Dux and could play a role during 289 

PD. 290 

In conclusion, TOBIAS predicted the exact locations of Dux binding in promoters of target 291 

genes, and could unveil how Dux initiates TF-activation networks and induces expression of 292 

repeat regions. Importantly, these data further show that TOBIAS can identify any TFBS with 293 

increased binding, not only those limited to annotated genes, which aids in uncovering novel 294 

regulatory genetic elements. 295 

 296 

Discussion 297 
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Footprint scores reveal true characteristics of protein binding 298 

To the best of our knowledge, this is the first application of a DGF approach to visualize gain 299 

and loss of individual TF footprints in the context of time series, TF overexpression, and TF-300 

DNA binding for a wide-range of TFs in parallel. Importantly, we found that these advances 301 

could in large part be attributed to the framework approach we took in developing TOBIAS, 302 

which enabled us to simultaneously compare global TF binding across samples and quantify 303 

changes in TF binding at specific loci. The modularity of the framework also allowed us to 304 

apply a multitude of downstream analysis tools to easily visualize footprints and gain even 305 

more information about TF binding dynamics as exemplified by the discovery of the Dux TF-306 

activation network.  307 

The power of this framework to handle time-series data becomes especially apparent when 308 

correlating the TOBIAS-based prediction of TF binding to RNA-seq data from the same time 309 

points. For instance, TOBIAS could infer when the maternally transferred TF SALL4 is truly 310 

active while its gene expression pattern alone does not allow to make such conclusions. Along 311 

this line, TOBIAS is also powerful in circumstances where gene expression of a particular TF 312 

appears to be anticorrelated with its binding activity. It is tempting to speculate that TFs for 313 

which footprinting scores are low, even though their RNA expression is high, might act as 314 

transcriptional repressors, because footprinting relies on the premise that TFs will increase 315 

chromatin accessibility around the binding site. In support of this hypothesis, recent 316 

investigations have suggested that repressors display a decreased footprinting effect in 317 

comparison to activators [23]. Therefore, the integration of ATAC-seq footprinting and RNA-318 

seq is an important step in revealing additional information such as classification TFs into 319 

repressors and activators, as well as the kinetics between expression and binding. 320 

 321 

Species-specific TFs use common ZGA motifs in mice and human 322 

By integration of human and murine TF activities using both differential footprinting and 323 

species-specific TFBS overlaps, our analyses revealed that the majority of TF motifs are active 324 
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at corresponding timepoints of human and mouse ZGA. This is not necessarily surprising since 325 

homologous TFs that exert the same functions usually use similar motifs (e.g Pou2f1/POU2F1, 326 

Otx1/OTX1 and/or Foxa3/FOXA3). Interestingly though, we found that this is not the case for 327 

all TF motifs. In this context, we found that the human RHOXF1 motif (Figure 2b) is likely not 328 

utilized by Rhox proteins in mice even though more than 30 Rhox genes exists. Evidently, 329 

throughout multiple duplications, Rhox genes seem to have obtained other functionalities in 330 

mouse [47] in comparison to the two human RHOX genes that are expressed in reproductive 331 

tissues [48]. Therefore, although we found the human RHOXF1 motif to be highly active in 332 

mice, this motif is most likely utilized by other proteins such as the mouse specific Obox 333 

proteins. In support of this conclusion, expression patterns of Obox proteins appear to be 334 

tightly regulated during PD [49] ([31]). High expression of Obox 1/2/5/7 is observed from the 335 

zygote to 4C stage, while Obox3/6/8 are expressed and peak at later stages (Supp. Table 4). 336 

Notably, there is a significant sequence similarity of the homeobox domains but not in the 337 

other parts of the RHOXF1 and Obox protein sequences, which supports the similarity in 338 

binding specificity. Although the potential functional overlap of RHOXF1 and Obox factors 339 

remains unresolved, our inter-species analysis suggests an unappreciated function of these 340 

factors and their targets during PD, clearly warranting an in depth investigation. 341 

In the context of TF target prediction, the power of TOBIAS was particularly highlighted by the 342 

fact that the analysis could identify almost all known Dux targets. In addition to coding genes, 343 

our analysis disclosed novel Dux binding sites and significant footprint scores at LINE1 344 

encoding genomic loci, which appear to be activated at the 4C/8C stage. This finding is 345 

especially interesting because a recent study has shown that LINE1 RNA can interact with 346 

Nucleolin and Kap1 to repress Dux expression [50]. Therefore, our findings give rise to a 347 

kinetics driven model in which Dux not only initiates ZGA but also regulates its own termination 348 

by a temporally delayed negative feedback loop. How this feedback loop is exactly controlled 349 

remains to be determined.  350 

Limitations and outlook of footprinting analysis 351 
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Despite the striking capability of DGF analysis, some limitations and dependencies of this 352 

method still remain. Amongst these is the need of high-quality TF motifs for matching footprint 353 

scores to individual TFs with high confidence. In other words, while the binding of a TF might 354 

create an effect that can be interpreted as a footprint, without a known motif, this effect cannot 355 

be matched to the corresponding TF. This becomes evident in the context of DPPA2/4, a TF 356 

described by several groups to act in PD and even upstream of Dux [44]. DPPA2/4 targets 357 

GC rich sequences [44], but its canonical binding motif remains unknown. It also needs to be 358 

noted that footprinting analysis cannot take effects into account that arise from heterogeneous 359 

mixtures of cells wherein TFs are bound in some cells and in others not. Therefore, if not 360 

separated, the classification of differential binding will be an observation averaged across 361 

many cells, possibly masking subpopulation effects. Recent advances have enabled to 362 

perform ATAC-seq in single cells [51], but this generates sparse matrices, rendering 363 

footprinting approaches on single cells illusive. However, we speculate that by creating 364 

aggregated pseudo-bulk signals from large clustered SC ATAC datasets, DGF analysis might 365 

also become possible in single cells.  366 

 367 

Conclusions 368 

Here, we have illustrated the TOBIAS framework as a versatile tool for ATAC-seq analysis 369 

which helps to unravel transcription factor binding dynamics in complex experimental settings 370 

that are otherwise difficult to investigate. We showed that entire networks of TF binding, which 371 

have previously been explored using a combination of omics methods, can be recapitulated 372 

to a great extent by DGF analysis, which requires only ATAC-seq and TF motifs. From a global 373 

perspective, we provided new insights into PD by quantifying the stage-specific activity of 374 

specific TFs. Furthermore, we highlighted the usage of TOBIAS to study specific transcription 375 

factors as exemplified by our investigations on Dux. Finally, we used the specific TF target 376 
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predictions to gain insights into the local binding dynamics of Dux in the context of TF-377 

activation networks, repeat regions and novel genetic elements. 378 

In conclusion, we present TOBIAS as the first comprehensive software that performs all steps 379 

of DGF analysis, natively supports multiple experimental conditions and performs visualization 380 

within one single framework. Although we utilized the process of PD as a proof of principle, 381 

the modularity and universal nature of the TOBIAS framework enables investigations of 382 

various biological conditions beyond PD. We believe that continued work in the field of DGF, 383 

including advances in both software and wet-lab methods, will validate this method as a 384 

versatile tool to extend our understanding of a variety of epigenetic processes involving TF 385 

binding. 386 

 387 

 388 

 389 

 390 

 391 

 392 
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Methods 419 

 420 

Datasets 421 

Organism Deposited data Source Identifier 

Mouse ATAC-seq, RNA-seq and ChIP-seq from mESC 

control and Dux overexpression 

[5] GEO: 

GSE85632 

Mouse ATAC-seq and RNA-seq from various 

preimplantation stages 

[31] GEO: 

GSE66390 
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Human ATAC-seq and RNA-seq from various 

preimplantation stages 

[30] GEO: 

GSE101571 

 422 

For all public data sets used in this study (see table above), raw files were obtained from the 423 

European Nucleotide Archive [52] and processed as described in the methods section. See 424 

also methods section “Comparison of TOBIAS to existing methods” for links to the ENCODE 425 

data used for method validation.  426 

 427 

Processing of ATAC-seq data 428 

Raw sequencing  fastq files were assessed for quality, adapter content and duplication rates 429 

with FastQC v0.11.7, trimmed using cutadapt [53] and aligned with STAR v2.6.0c [54] 430 

(parameters: “--alignEndsType EndToEnd --outFilterMismatchNoverLmax 0.1 --431 

outFilterScoreMinOverLread 0.66 --outFilterMatchNminOverLread 0.66 --outFilterMatchNmin 432 

20 --alignIntronMax 1 --alignSJDBoverhangMin 999 --alignEndsProtrude 10 ConcordantPair -433 

-alignMatesGapMax 2000 --outMultimapperOrder Random --outFilterMultimapNmax 999 --434 

outSAMmultNmax 1”) to either the mouse or human genome using Mus_musculus.GRCm38 435 

or Homo_sapiens.GRCh38 versions from Ensembl [55]. Accessible regions were identified by 436 

peak calling for each sample separately using MACS2 (parameters: “--nomodel --shift -100 --437 

extsize 200 --broad”) [56]. Peaks from each sample were merged to a set of union peaks 438 

across all conditions using “bedtools merge”. Each union peak was annotated to the 439 

transcriptional start site of genes (GENCODE [57]) in a distance of -10000/+1000 from the 440 

TSS using UROPA [58]. 441 

Processing of RNA-seq data 442 

Raw reads were assessed for quality, adapter content and duplication rates with FastQC 443 

v0.11.7, trimmed using cutadapt [53] and aligned with STAR v2.6.0c [54] (parameters: “--444 

outFilterMismatchNoverLmax 0.1 --outFilterScoreMinOverLread 0.9 --445 
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outFilterMatchNminOverLread 0.9 --outFilterMatchNmin 20 --alignIntronMax 200000 --446 

alignMatesGapMax 2000 --alignEndsProtrude 10 ConcordantPair --outMultimapperOrder 447 

Random --outFilterMultimapNmax 999”) to either the mouse or human genome using 448 

Mus_musculus.GRCm38 or Homo_sapiens.GRCh38 versions from Ensembl [55]. 449 

Differentially expressed genes were identified using DESeq2 v1.22 [59]. Only genes with a 450 

minimum log2 fold change of ±1, a maximum Benjamini–Hochberg corrected P-value of 0.05 451 

and a minimum combined mean of five reads were classified as significantly differentially 452 

expressed. 453 

Processing of ChIP-seq data 454 

Raw sequencing files in fastq format were quality assessed by Trimmomatic by trimming reads 455 

after a quality drop below a mean of Q15 in a window of 5 nucleotides [60]. All reads longer 456 

than 15 nucleotides were aligned versus the mouse genome version mm10, keeping just 457 

unique alignments (parameters: --outFilterMismatchNoverLmax 0.2 --458 

outFilterScoreMinOverLread 0.66 --outFilterMatchNminOverLread 0.66 --outFilterMatchNmin 459 

20 --alignIntronMax 1 --alignSJDBoverhangMin 999 --outFilterMultimapNmax 1 --460 

alignEndsProtrude 10 ConcordantPair)  by using the STAR mapper [54]. Read deduplication 461 

was done by Picard (http://broadinstitute.github.io/picard/).  462 

Processing of transcription factor motifs 463 

TF motifs were downloaded from JASPAR CORE 2018 [61], the JASPAR PBM HOMEO 464 

collection and Hocomoco V11 [62] databases. We further included the human ARGFX_3 motif 465 

from footprintDB [63] which originates from a HT-SELEX assay [64]. In annotation to the 466 

Dux/Dux4 motifs of JASPAR and Hocomoco, we also included two TF motifs for MDUX/DUX4 467 

created using MEME-ChIP [65] with standard parameters on the ChIP-seq peaks of [45] 468 

(GSE87279). 469 
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JASPAR motifs were linked to Ensembl gene ids by mapping the provided “Uniprot id” to the 470 

“Ensembl gene id” through biomaRt [66]. Hocomoco motifs were likewise linked to genes 471 

through the provided HGNC/MGI annotation. Due to the redundancy of motifs between 472 

JASPAR and Hocomoco, we further filtered the TF motifs to one motif per gene, preferentially 473 

choosing motifs originating from mouse/human respectively. For each TOBIAS run, we 474 

created sets of expressed TFs as estimated from RNA-seq in the respective conditions. This 475 

amounted to 590 motifs for the dataset on human preimplantation stages, 464 motifs for the 476 

dataset on mouse preimplantation, and 459 for the DuxOE dataset. 477 

Maternal genes 478 

Maternal genes for human and mouse were downloaded from the REGULATOR database 479 

[32]. Entrez gene ids were converted to Ensembl gene ids using biomaRt [66] and 480 

subsequently matched to available TF motifs. 481 

Overlap of Dux binding sites to repeat elements 482 

Repeat elements for mm10 were downloaded from UCSC 483 

(http://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/rmsk.gz). Overlap of Dux sites 484 

to individual repeat elements (as seen in figure 4G) was performed using “Bedtools intersect”. 485 

The sum of overlaps were counted by repeat class (LINE1/LTR). 486 

Visualization 487 

All TF-score heatmaps were generated by R Version 3.5.3 and complex heatmap package 488 

version 3.6 [67]. Individual gene views were generated by loading TOBIAS output tracks into 489 

IGV version 2.6.2 [68] or using the svist4get visualization tool [69]. TF networks were drawn 490 

with Cytoscape version 3.7.1 [70]. Heatmaps of genomic signal density were generated using 491 

Deeptools version 3.3.0 [71]. All other figures, such as footprint plots, volcano plots and motif 492 

clustering dendrograms were generated by the TOBIAS visualization modules as described 493 

below. 494 
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The TOBIAS framework 495 

In developing TOBIAS, we found that there were six main areas of DGF which had not been 496 

comprehensively addressed in the context of ATAC-seq footprinting analysis: 497 

● All-in-one framework including bias correction, footprinting, quantification of protein 498 

binding and visualization 499 

● Investigation of TF binding on a global level (which TFs are more bound globally ) as 500 

well as the locus-specific level (which TF binds to which genomic locations including 501 

statistics on differential binding) 502 

● Consideration of the redundancy and similarity of known TF binding motifs in the 503 

context of footprinting 504 

● A scoring model for TF-DNA binding taking into account the potential lack of a 505 

canonical footprint effect 506 

● Comparison and quantification of TF binding activity within complex experimental 507 

settings (multiple conditions or time series) 508 

● All in one automated workflows for recurring analysis tasks 509 

 510 

Modules enabling these individual analysis steps are included in the TOBIAS package, which 511 

is publicly available at Github (https://github.com/loosolab/TOBIAS) as well as on PyPI and 512 

Bioconda. Besides the examples given in the repository README, we also provide a Wiki 513 

(https://github.com/loosolab/TOBIAS/wiki) which introduces some of the individual software 514 

modules. We used the pre-defined workflows in Snakemake and NextFlow to run the full 515 

analysis. The single modules are explained in more detail below. 516 

Bias correction (TOBIAS ATACorrect module) 517 

Each Tn5-cut site is defined as the 5’ end of the read shifted by +5 at the plus strand and -4 518 

at the minus strand to center the transposase event. Using the mapped reads from closed 519 

chromatin, ATACorrect builds a dinucleotide weight matrix [72] representing the preference of 520 

Tn5 insertion. In contrast to the classical position weight matrix (PWM) the dinucleotide weight 521 
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matrix (DWM) captures the inter-base relationships which arise due to the palindromic nature 522 

of the bias. A background model is similarly built by shifting all reads +100bp as described by 523 

[17]. 524 

Reads within open chromatin peaks are then corrected by estimating the expected number of 525 

cuts per base pair and subtracting this from the observed cut sites as follows (modified from 526 

[24]): 527 

      528 

where   529 

     ,          ,        530 

where  is the observed cut sites, is the expected cut sites,  is the calculated bias level, 531 

and  is the corrected cut sites at position i. To limit the influence of low-bias positions in the 532 

calculation of , a lower limit is set for  by calculating the fit of cutsites vs. bias to a rectified 533 

linear unit function (ReLu) in moving 100bp-windows and setting every  below the linear fit 534 

to 0. This calculation is performed for all base pairs within open chromatin, setting all other 535 

positions  to 0. Lastly, each  is rescaled to fit the original sum of cuts  for each window. 536 

Footprinting (TOBIAS ScoreBigwig module) 537 

We estimate footprint scores across open chromatin regions by calculating: 538 

    539 

where 540 

         ,         541 

     542 
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 is the number of cuts at position i,  wf = width of flank in bp, wm = width of middle (footprint) 543 

in bp. The defaults used are: wf = [10;30], wm = [20;50]. 544 

The term will be negative and will therefore raise the score if there is a high depletion of 545 

cuts in the footprint (middle). If there is no depletion, the score will simplify to the mean of cuts 546 

in the flanking regions, representing accessibility. It is therefore not necessary to see a 547 

canonical footprint shape for the footprint score to be high. The footprint score can be 548 

interpreted as higher scores being more evidence that a protein was bound at a given position. 549 

All calculations are done by the TOBIAS “ScoreBigwig” module. 550 

Estimation of transcription factor states and pairwise comparison between conditions 551 

(TOBIAS BINDetect module) 552 

To match the calculated footprint scores to potential binding sites, TOBIAS BINDetect 553 

integrates genomic sequence, footprint scores from several conditions and motifs to identify 554 

up- and down regulated TFs based on footprint scores.  555 

In the first step of the algorithm, the MOODS library (https://github.com/jhkorhonen/MOODS 556 

[73]) is used to detect TF binding sites (within peaks) with a p-value threshold of 1e-4. 557 

Background base pair probabilities are estimated from the input peak set. Subsequently, each 558 

binding site is matched to footprint scores for each condition. Simultaneously, a background 559 

distribution of values is built by randomly subsetting peak regions at ~200bp intervals, and the 560 

scores from each condition are normalized to each other using quantile normalization. These 561 

values are used to calculate a distribution of background log2FCs for each pairwise 562 

comparison of conditions.  563 

Overlaps between the TFBS identified in the first step are quantified by creating a distance 564 

matrix of TFs. The distance between a TF pair (TF1;TF2) is calculated as: 565 

 566 

 567 

 568 
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where and  are the total basepairs of all TF1 and TF2 sites respectively 569 

and is the amount of base pairs of TF1 which overlap with TF2 sites. The 570 

max-statement ensures that the overlap is calculated with regards to the shortest TF motif. 571 

In the second step of the algorithm, every TF binding site found (for each motif given as input) 572 

is split into bound and unbound sites based on a score threshold per condition. The threshold 573 

is set at the level of significance of a normal-distribution fit to the background distribution of 574 

scores (user-defined p-value). As well as the per-condition split, each site is assigned a 575 

log2FC (fold change) per comparison, which represents whether the binding site has 576 

larger/smaller footprint scores in comparison. The global distribution of log2FC’s per TF is 577 

compared to the background distributions to calculate a differential binding score, which is 578 

calculated as: 579 

  580 

where  and  are the means and standard deviations of the observed and 581 

background log2FC distributions respectively. A p-value is also calculated by subsampling 582 

100 log2FCs from the background and calculating the significance of the observed change 583 

(Python’s scipy.stats.ttest_1samp). By comparing the observed log2FC distribution to the 584 

background log2FC, the effects of any global differences due to sequencing depth, noise etc. 585 

are controlled. 586 
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The differential binding scores and p-values are visualized as a volcano plot per condition-587 

comparison. All TFs with -log10(pvalue) above the 95% quantile or differential binding scores 588 

smaller/larger than the 5% and 95% quantiles (top 5% in each direction) are colored and 589 

shown with labels. Below the plot, hierarchical clustering of the TFBS-distance matrix is shown 590 

and all TFs with distances less than 0.5 (overlap of 50% of bp) are colored as separate 591 

clusters. 592 

The result of BINDetect is a folder-structure containing an overview of all potential binding 593 

sites (as .bed as well as excel files), the predicted split into bound and unbound sites, and a 594 

global overview of differentially bound TFs per condition-comparison. 595 

Visualizing aggregate plots and calculation of footprint depth (TOBIAS PlotAggregate 596 

module) 597 

Footprints are visualized using the subtool “TOBIAS PlotAggregate”. Aggregate footprints are 598 

created by aligning genomic signals centered on all binding sites (taking into account 599 

strandedness), to create a matrix of (n sites) x (n bp). The aggregate signal is calculated as 600 

the mean of each column (each bp). The default of +/- 60bp from the motif center was used 601 

throughout this manuscript. 602 

The aggregate footprinting depth (FPD), which is applied in Supp. Figure 2c-d, was calculated 603 

for each TF as: 604 

 605 

 606 

where  is the mean of the signal centered on the TFBS (30bp) and  607 

is the mean of the signal in the remaining flanks ([-60;-15] and [+15;+60] bp) (See Supp. Figure 608 

2b).  609 

 610 
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Similarly to the investigations in previous literature [22], we applied a mixture model from the 611 

Mixtools R package [74] to estimate the fractions of TFs with/without measurable footprints 612 

(Supp. Figure 2e). 613 

Transcription factor binding network (TOBIAS CreateNetwork module) 614 

The TF-TF network for Dux was built by subsetting all binding sites on the following 615 

characteristics: Bound in the promoter of a target gene, labeled “Unbound” in Control, labeled 616 

“Bound” in DuxOE, and log2FC footprint score increasing for DuxOE vs. Control. All targets 617 

were further reduced to only include genes encoding TFs with available motifs. Motifs were 618 

matched to genes as explained in the methods section “Processing of transcription factor 619 

motifs”. The network was then created using “TOBIAS CreateNetwork”. The result is a network 620 

of source and target nodes with directed edges, which in words can be described as: (Source 621 

TF) binds in the promoter of (Target TF). 622 

TOBIAS framework output structure 623 

The output generated by the TOBIAS framework is organized in a hierarchical folder structure, 624 

which increases clarity of all steps of the analysis. The folder structure specifically organizes 625 

input data, pre-processing output like peak-calling and annotation, genomic tracks such as 626 

bias correction and footprints, as well as the local and global TF predictions. Particularly, the 627 

output for every individual TF investigated is arranged into separate folders containing TF 628 

specific plots, annotations and binding predictions. This structure makes it simple to use the 629 

output for further downstream analysis, as was showcased in this work. An exemplary output 630 

of the complete framework can be found at: 631 

https://figshare.com/projects/Digital_Genomic_Footprinting_Analysis_of_ATAC-632 

seq_dataset_from_preimplantation_timepoints_via_TOBIAS/69959 633 
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Validation 634 

Comparison of TOBIAS to existing methods 635 

Although footprinting tools for DNase-seq exist [18, 75, 76] [24, 77-79] [80], we have focused 636 

our comparison on tools which are easily obtainable and installable, do not require ChIP-seq 637 

training-data, and are explicitly supporting ATAC-seq. We have additionally added two metrics 638 

for “peak strength” and “PWM score” to compare TOBIAS to other footprinting-free metrics. 639 

The validation datasets and usage of existing tools are described in the following sections.  640 

Datasets 641 

The TOBIAS framework was benchmarked using ATAC-seq data for the GM12878 cell line 642 

(GEO: GSE47753) and TF ChIP-seq data from ENCODE for the same cell line. ATAC-seq 643 

data was prepared as explained in the section “Processing of ATAC-seq data”. ChIP-seq peak 644 

peak regions were downloaded and associated to motifs from Jaspar CORE 2018 using 645 

“MEME Centrimo” [81]. Only ChIP-seq experiments with motif enrichment > 1.0e-100 646 

(Centrimo E-value) were kept. The pairing of the remaining 36 motifs and ChIP-seq peaks is 647 

seen below: 648 

ENCODE accession TF name  JASPAR 

motif ID 

ENCSR987MTA BHLHE40 MA0464.2 

ENCSR681NOM CEBPB MA0466.2 

ENCSR839XZU Crem MA0609.1 

ENCSR000DZN CTCF MA0139.1 

ENCSR000DZQ EBF1 MA0154.3 

ENCSR841NDX ELF1 MA0473.2 

ENCSR000DZB ELK1 MA0028.2 

ENCSR000BKA ETS1 MA0098.3 

ENCSR626VUC ETV6 MA0645.1 

ENCSR331HPA Gabpa MA0062.2 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 9, 2019. ; https://doi.org/10.1101/869560doi: bioRxiv preprint 

https://doi.org/10.1101/869560


28 

ENCSR009MBP HSF1 MA0486.2 

ENCSR000DYS JUND MA0491.1 

ENCSR000DYV MAFK MA0496.2 

ENCSR000DZF MAX MA0058.3 

ENCSR000BKB MEF2A MA0052.3 

ENCSR000BNG MEF2C MA0497.1 

ENCSR000DZI MXI1 MA1108.1 

ENCSR000DNM NFYB MA0502.1 

ENCSR514VYD NR2F1 MA0017.2 

ENCSR000DZO NRF1 MA0506.1 

ENCSR000BHD PAX5 MA0014.3 

ENCSR000BGR PBX3 MA1114.1 

ENCSR711XNY PKNOX1 MA0782.1 

ENCSR000BGF REST MA0138.2 

ENCSR000BRI RUNX3 MA0684.1 

ENCSR041XML SRF MA0083.3 

ENCSR739IHN TBX21 MA0690.1 

ENCSR000BGZ Tcf12 MA0521.1 

ENCSR501DKS Tcf7 MA0769.1 

ENCSR000BGI USF1 MA0093.2 

ENCSR000DZU USF2 MA0526.2 

ENCSR000BNP YY1 MA0095.2 

ENCSR000BHC ZBTB33 MA0527.1 

ENCSR000DZL ZNF143 MA0088.2 

ENCSR072PWP ZNF24 MA1124.1 

ENCSR000DYP ZNF384 MA1125.1 

 649 

Bound binding sites per TF were defined as any TFBS within +/- 100bp from the paired ChIP-650 

seq peak summit. In case of two or more binding sites per peak, the one closest to the summit 651 
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was set to bound, and others were excluded. Unbound binding sites were defined as any 652 

TFBS not overlapping any ChIP-seq peak, as well as not overlapping bound sites from any 653 

other factors.  654 

Bias correction approaches 655 

TOBIAS was compared to the existing bias correction methods as follows: 656 

● seqOutBias ([25]) 657 

The seqOutBias software was downloaded from GitHub 658 

(https://github.com/guertinlab/seqOutBias). Following the vignette for ATAC-seq, 659 

mappability files were created and ATAC-seq reads were corrected for plus/minus 660 

strand reads separately. After correction, we further shifted the positive and negative 661 

tracks +5 and -4bp respectively, as this was not performed by the tool itself.  662 

● HINT-ATAC ([16]) 663 

The HINT software was downloaded from PyPI as part of the RGT software suite. Bias-664 

correction was performed from the ATAC-seq reads using the command “rgt-hint 665 

tracks --bc --bigWig <bam>”. 666 

 667 

Aggregate footprints for each method across all (within peaks), bound and unbound binding 668 

sites (see explanation above) were visualized using “TOBIAS PlotAggregate”. 669 

 670 

Footprinting 671 

For comparing TOBIAS to existing footprinting methods as follows: 672 

● msCentipede ([14]) 673 

The msCentipede software was downloaded from GitHub 674 

(https://github.com/rajanil/msCentipede). For each TF, the binding model was built 675 

using the 5000 TFBS with highest PWM score genomewide. The resulting models 676 

were then used to infer the posterior binding-probability of TFBS in peaks. 677 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 9, 2019. ; https://doi.org/10.1101/869560doi: bioRxiv preprint 

https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/guertinlab/seqOutBias
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://github.com/rajanil/msCentipede
https://doi.org/10.1101/869560


30 

● Wellington ([76]) 678 

The pyDNase software was downloaded from PyPI. Footprints in ATAC-seq peaks 679 

were estimated using “wellington_footprints.py” with the “-A” option for ATAC-seq 680 

mode. 681 

● Peak strength 682 

The “Peak strength” metric is defined as the mean number of Tn5 insertions in the 683 

ATAC-seq peak where the binding site is found. This score represents the accessibility 684 

of a certain region not taking into account local footprint information. 685 

● PWM score 686 

The score of the motif-sequence match at the specific TFBS. As this is based on 687 

sequence alone, the PWM-score is independent of chromatin accessibility. 688 

 689 

The area under the ROC curve (auROC) was used to evaluate the predictive power of each 690 

method.  691 

Note on comparison: Overall, we find that TOBIAS performs at least equally well in 692 

comparison to msCentipede [14], a learning based approach, that demands high 693 

computational performance and individually trained models for every TF under investigation 694 

(Supp. Figure 1b). Of note, although this learning-based approach performs well overall, it 695 

exhibits a drastic loss of predictive power for some TFs, while the TOBIAS scoring model 696 

provides robust binding prediction scores even for those TFs that do not leave visible footprints 697 

at first glance (Supp. Figure 1b right). 698 

 699 

  700 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 9, 2019. ; https://doi.org/10.1101/869560doi: bioRxiv preprint 

https://doi.org/10.1101/869560


31 

Figures and figure legends  701 

 702 

Figure 1: The use of chromatin accessibility assays to investigate early developmental 703 

processes 704 

(a) Early embryonic development in human and mouse.  The fertilized egg undergoes a series of 705 

divisions ultimately creating the structure of the blastocyst. While maternal transcripts are depleted, the 706 

zygotic genome is activated in waves as indicated by the dark shading. ZGA initiates in mouse at 2-cell 707 

stage and in human at the 4-8-cell stage. 708 

(b) The concept of footprinting using ATAC-seq. The Tn5 transposase cleaves and inserts 709 

sequencing adapters in open chromatin, but is unable to cut in chromatin occupied by e.g. nucleosomes 710 
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or transcription factors. The mapped sequencing reads can be used to create a signal of single Tn5-711 

events (cutsites), in which binding of transcription factors is visible as depletion of signal (the footprint). 712 

(c) The TOBIAS digital genomic footprinting framework. Using an input of sequencing reads from 713 

ATAC-seq, transcription factor motifs and sequence information, the TOBIAS footprinting framework 714 

detects local and global changes in transcription factor binding. Bias-correction of the Tn5 sequence 715 

preference enables detection of local chromatin footprints and matching to individual TFBS. Footprint 716 

scores can be compared between conditions and are used to define differential binding in pairwise 717 

comparisons. The global binding map allows for a variety of downstream analysis such as 718 

visualization of local and aggregated footprints across conditions, prediction of target genes for each 719 

TF as well as comparison of binding specificity between several transcription factors. Functional 720 

annotation such as GO enrichment can be used to infer biological meaning of target gene sets. 721 

  722 
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 723 

Figure 2: TOBIAS enables investigation of global changes in transcription factor 724 

binding 725 

(a) Clustering of transcription factor activities throughout development. Each row represents one 726 

TF, each column a developmental stage; blue color indicates low activity, red color indicates high 727 

activity. In order to visualize cluster trends, each cluster is associated with a trend line and time point 728 

specific boxplots.  729 

(b) Bias-corrected ATAC-seq footprints reveal dynamic TF binding. Aggregated footprinting plot 730 

matrix for transcription factor binding sites. Plots are centered around binding motifs (n=* relates to the 731 

number of binding sites). Rows indicate TFs DUX4, ZSCAN4, GATA2, and CTCF; columns illustrate 732 

developmental stages from left to right. Active binding of the individual TFs  at the respective timepoints 733 

is visible as a depletion in the signal around the binding site (highlighted in red). Upper three TFs are 734 

related to developmental stages, CTCF acts as a universal control, generating a footprint in all 735 

conditions. See Supplementary Figure 2A for uncorrected footprints.    736 
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(c) TF activity is shifted by ZGA onset in human and mouse. Heatmaps show activity of known 737 

ZGA-related TFs for human (left) and mouse (right) across matched timepoints 2C / 8C / ICM / hESC 738 

(mESC). Mean TF activity (top panel) peaks at 4-8C stage in human and is shifted to 2-4C stage in 739 

mouse by the earlier ZGA onset. 740 

  741 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 9, 2019. ; https://doi.org/10.1101/869560doi: bioRxiv preprint 

https://doi.org/10.1101/869560


35 

 742 

Figure 3: Comparison of binding site overlaps shows specification of ZGA functions 743 

between mouse and human 744 

(a-b) Pairwise comparison of TF activity between developmental stages. The volcano plots show 745 

the differential binding activity against the -log10(pvalue) (as provided by TOBIAS) of the investigated 746 

TF motifs; each dot represents one motif. For (A) 2C stage specific/significant TFs are labeled in red, 747 

4C specific factors are given in blue. For (B) 8C stage specific/significant TFs are labeled in red, ICM 748 

specific factors are given in blue.  749 

(c-d) Clustering of TF motifs based on binding site overlap. Excerpt of the global TF clustering 750 

based on TF binding location, illustrating individual TFs as rows. The trees indicate genomic positional 751 

overlap of individual TFBS with a tree-depth of 0.2 representing an overlap of 80% of motifs. Each TF 752 

is indicated by name and unique ID in brackets. Clusters of TFs with more than 50% overlap (below 0.5 753 

tree distance) are colored. (C) shows overlap of motifs included in the mouse analysis, and (D) shows 754 

clustering of human motifs. Complete TF trees are provided in Supp. File 2 and Supp. File 3.  755 
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 756 

Figure 4: Dux binding induces transcription at gene promoters and LTR sequences in 757 

mouse 758 

(a) Volcano plot comparing TF activities between mDux GFP- (Control) and mDux GFP+ (DuxOE). 759 

Volcano plot showing the TOBIAS differential binding score on the x-axis and -log10 (p value) on the y-760 

axis; each dot represents one TF. DuxOE specific/significant TFs are labeled in blue,  Control 761 

specific/significant TFs are labeled in red. 762 

(b) Aggregated footprint plots for Dux. The plots are centered on the predicted binding sites for Dux 763 

and shown for Control and DuxOE condition. The total possible binding sites for DuxOE (n=12095) are 764 

separated into bound and unbound sites (right). The dashed line represents the edges of the Dux motif. 765 
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(c) Change in expression of genes near Dux binding sites. The heatmap shows 2664 Dux binding 766 

sites found in gene promoters. Footprint log2(FC) and RNA log2(FC) represent the changes between 767 

Control and DuxOE for footprints and gene expression, respectively. Log2(FC) is calculated as 768 

log2(DuxOE/Control). The column “Binding prediction” depicts whether the binding site was predicted 769 

by TOBIAS to be bound/unbound in the DuxOE condition. 770 

(d) Genomic tracks showing footprint scores of Dux-binding. Genomic tracks indicating three DUX 771 

target gene promoters (one per row) and respective tracks for cut site signals (red/blue), TOBIAS 772 

footprints (blue), detected motifs (black boxes), and gene locations (solid black boxes with arrows 773 

indicating gene strand). 774 

(e) Dux transcription factor network. The TF-TF network is built of all TFBS with binding in TF 775 

promoters with increasing strength in DuxOE (log2(FC)>0). Sizes of nodes represent the level of the 776 

network starting with Dux (Large: Dux, Medium: 1st level, Small: 2nd level). Nodes are colored based 777 

on RNA level in the OE condition [5]. 778 

(f) Correlation of the Dux transcription factor network to expression during development. The 779 

heatmap depicts the in vivo gene expression during developmental stages from [31]. The right-hand 780 

group annotation highlights the difference in mean expression for each timepoint. The heatmap is split 781 

into target genes of Dux, target genes of Arnt, Rxrg and Mef2d, as well as the pooled target genes from 782 

Tbx4, Mafb, Zscan4c and Zscan4f (Additional targets). 783 

(g) Dux binding sites overlap with repeat elements.  All potential Dux binding sites are split into sites 784 

either overlapping promoters/genes or without annotation to any known genes. The bottom pie chart 785 

shows a subset of the latter, additionally having highly increased binding (log2(FC)>1), and overlapping 786 

LTR/LINE1 elements. 787 

(h) Dux induces expression of transcripts specific for preimplantation. Genomic signals for the 788 

Dux binding sites which are bound in DuxOE with log2(FC) footprint score >1 (i.e. upregulated in 789 

DuxOE) are split into overlapping either LTR, LINE1 or no known genetic elements (top to bottom). 790 

Footprint scores (+/- 100bp from Dux binding sites) indicate the differential Dux binding between control 791 

and DuxOE. RNA-seq shows the normalized read-counts from [5] and [31] within +/- 5kb of the 792 

respective Dux binding sites, while red color indicates high expression. 793 
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 796 

 797 

 798 

Supplementary Figure 1: Comparison of existing bias-correction and footprinting 799 

methods 800 

(a) Comparison of aggregate footprints for different bias-correction methods. Bound and 801 

unbound transcription factor binding sites for MAX and NRF1 are shown across uncorrected signal 802 

(pileup of Tn5 insertions), TOBIAS ATACorrect, SeqOutBias and HINT-BC correction methods. An 803 

overview of all included TFs can be found in Supplementary File 1. 804 
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(b) Comparison of predictive ability across different footprinting methods. (left) auROC is 805 

calculated based on ENCODE ChIP-seq for 36 TFs and compared across methods. Boxes indicate 806 

quantiles, horizontal line indicates mean auROC of all TFs. Significance is indicated if applicable as 807 

asterisk. (center) TOBIAS and msCentipede are compared by pairwise dotplot, each dot represents 808 

one TF, TOBIAS has significant gains in auROC for JUND, BHLHE40 and NFYB, for which individual 809 

aggregated footprints are shown (left, uncorrected in blue, corrected in red) 810 
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 812 

Supplementary Figure 2: Tn5-bias correction is important for visualization of 813 

footprints from ATAC-seq 814 

(a) Examples of Tn5-bias correction using “expected”-intermediates. For ZSCAN4, the 815 

uncorrected signal is clearly influenced by the expected Tn5 bias, whereas the corrected signal 816 
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uncovers the underlying effect of protein binding. Likewise, the uncorrected signal of HLX resembles a 817 

footprint which is mirrored by the expected signal. However, the corrected signal shows uniformity and 818 

uncovers that there is little effect of protein binding. 819 

(b) Aggregate footprint depth model. The footprint depth is calculated using a similar metric as 820 

described in [22]. 821 

(c) Uncorrected Tn5-bias. The scatter plot show the depth of footprints for uncorrected vs. expected 822 

footprints  823 

(d) Corrected Tn5-bias. The scatter plot  show the depth of corrected vs. expected footprints.  824 

(e) Mixture model of all footprinting depths shows that 65% of motifs fall into the category of a 825 

measurable footprint in the aggregated profile. Data is based on 590 motifs in hESC. 826 

(f) A depiction of uncorrected footprint aggregates across timepoints for transcription factors 827 

DUX4, ZSCAN4, GATA2 and CTCF. In contrast to the corresponding corrected signals seen in Figure 828 

2A, the footprints are hardly visible in the uncorrected aggregates. 829 
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 831 

Supplementary Figure 3: Transcription factor activity and expression during mouse and 832 

human development 833 

(a) Correlation of footprints and RNA-seq. The left heatmap (blue) depicts expression of transcription 834 

factor clusters in the respective developmental stages. The left heatmap (red) depicts the corresponding 835 

TOBIAS scores across human developmental stages. Spearman column represents the spearman 836 

correlation between TOBIAS/RNA. The TF clusters are grouped into “Correlated” (Spearman≥0.2), 837 

“shifted” (RNA max value appears before TOBIAS max value) and “Not correlated” (Spearman<0.2 with 838 

no apparent shift in RNA).  839 

(b) Dynamic transcription factor binding during mouse embryonic development. Similarly to 840 

figure 2A, the heatmap depicts the TOBIAS-predicted footprint scores for 464 motifs during the 841 

timepoints 2C, 4C, 8C, ICM and mESC. The rows are clustered into 6 clusters using hierarchical 842 

clustering. Individual cluster members are given in Supplementary Table 2. 843 
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 845 

 846 

 847 

Supplementary Figure 4: Predicted footprinting scores correlate with ChIP-signal for 848 

Dux  849 
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(a) A view of the footprinting scores in the promoter of Tdpoz1. Genomic tracks show corrected 850 

ATAC-seq cutsites at 1bp resolution (blue), footprint scores as calculated by TOBIAS (red), and pileup 851 

of reads from Dux ChIP-seq of [5] (green). Potential Dux binding sites are highlighted in blue.  852 

(b-c) Footprinting correlates with ChIP-signal at multiple genomic loci. Genomic tracks are the 853 

same as described for (a). 854 
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 856 
 857 

Supplementary Figure 5: Predicted Dux binding site correlates with increase in 858 

expression of closeby non-annotated regions 859 

The figure shows genomic tracks of RNA-seq from [31] (blue) and [5] (red), TOBIAS footprint scores 860 

predicted from ATAC-seq (green) ([5]), predicted Dux binding site as well as known repeats as 861 

annotated by RepeatMasker (Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0).  862 
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Supplemental Information 864 

List of Supplementary Files 865 

Supplementary File 1: Visualization of different methods for Tn5 bias correction across all 36 866 

TFs with matched ChIP-seq. Each page contains footprints for a specific TF across all binding 867 

sites (in peaks), bound sites (overlapping ChIP-seq) and unbound sites (not overlapping ChIP-868 

seq) for uncorrected/expected/corrected signals from different bias correction methods. 869 

Supplementary File 2: The direct output file of the “TOBIAS BINDetect”-module containing 870 

differential binding plots across all pairwise-comparisons of human developmental stages.  871 

Supplementary File 3: The direct output file of the “TOBIAS BINDetect”-module containing 872 

differential binding plots across all pairwise-comparisons of mouse developmental stages. 873 

Supplementary File 4: The direct output file of the “TOBIAS BINDetect”-module containing 874 

differential binding plots between control (mESC) and DuxOE samples. 875 

 876 

List of Supplementary Tables 877 

Supplementary Table 1: Prediction of transcription factor binding across human 878 

2C/4C/8C/ICM/hESC clustered into co-active TFs. Each transcription factor is further linked to 879 

expression of the factor based on RNA-seq.   880 

Supplementary Table 2: TOBIAS TF scores for human PD timepoints, correlated to 881 

corresponding RNA expression. 882 

Supplementary Table 3: Prediction of transcription factor binding across mouse 883 

2C/4C/8C/ICM/mESC clustered into co-active TFs. Each transcription factor is further linked 884 

to expression of the factor based on RNA-seq. 885 
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Supplementary Table 4: Human and Mouse RNA expression for Obox and RHOX/Rhox genes 886 

during preimplantation developmental stages.  887 

Supplementary Table 5: Full list of the predicted Dux binding sites as well as their change 888 

between mESC and DuxOE as predicted by TOBIAS. 889 
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