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Abstract 

Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies 

of reversible RNA modifications. We develop RADAR, a comprehensive analytical tool for 

detecting differentially methylated loci in MeRIP-seq data. RADAR enables accurate 

identification of altered methylation sites by accommodating variability of 

pre-immunoprecipitation expression level and post-immunoprecipitation count using different 

strategies. In addition, it is compatible with complex study design when covariates need to be 

incorporated in the analysis. Through simulation and real datasets analyses, we show that 

RADAR leads to more accurate and reproducible differential methylation analysis results than 

alternatives, which is available at https://github.com/scottzijiezhang/RADAR. 
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Background 

The RNA epigenetics gold rush in the past few years has brought reversible RNA modifications 

into the spotlight as an important mechanism of gene regulation. Particularly, N6-adenosine 

methylation (m6A), the most abundant modification on mRNA, has drawn extensive attention 

due to its important functions in various biological systems [1-3]. Methylated RNA 

immunoprecipitation sequencing (MeRIP-seq) [4-6] is a key technique used in mRNA 

modification studies that has enabled us to survey the epitranscriptome using various study 

designs: 1) identifying the location of modification on the transcript by performing peak calling 

on MeRIP-seq samples of certain phenotype or experimental condition and, 2) identifying 

differentially methylated loci by comparing MeRIP-seq samples across different phenotypical or 

experimental groups. These analyses connect mRNA modifications with phenotypes and have 
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the great potential to reveal its functional consequences.  

Early studies performing qualitative analysis compared peaks called in one experimental 

group versus peaks in another group and identified peaks unique to each experimental group 

as differentially methylated peaks. However, many differential peaks identified by this method 

are caused by boundary cases at the peak-detection threshold rather than true present/absent 

of peaks as noted in an recent study [7]. To enable cross-group comparisons, a few methods 

have been developed and applied to analyze differential methylation in MeRIP-seq data [8-11]. 

ExomePeak uses Fisher’s exact test for differential methylation identifications and its later 

version uses a likelihood ratio test based on the binomial distribution (termed “bltest”) [11, 12]. 

MeTPeak uses a beta-binomial model to infer differential peaks [8]. DRME and its improved 

version — QNB uses a model based on the negative binomial distribution [9, 10].  

While existing methods have yielded promising results, they also have important drawbacks: 

(1) Current methods [8-11] designed for small sample size scenario ignore the existence of 

confounding factors and cannot accommodate complex study designs with covariates (such as 

age, gender, etc.) that are frequently encountered in patient or animal studies with larger 

sample sizes. (2) Most of the differential gene expression (DE) analysis tools such as edgeR, 

DESeq2 and Sleuth [13-15] are compatible with complex study designs. But they rely on 

models developed for RNA-seq experiment and cannot accommodate unique features of 

MeRIP-seq data. A standard MeRIP-seq experiment yields an INPUT and an 

Immunoprecipitation (IP) library for each sample. The INPUT library is the initial RNA fragments 

pool prior to the antibody pull-down — a measurement of RNA expression level. The IP library 

represents the RNA fragments carrying modified bases captured by antibody pull-down — a 

measurement of methylated RNA abundance. RNA Differential Methylation (DM) is defined as 

the alteration of methylated RNA abundance conditioning on the RNA expression background. 

Thus, DM analysis requires assessment of RNA methylation change based on pre-IP and 

post-IP measurements in pairs. In contrast, DE analysis tools only compare a single read count 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867903doi: bioRxiv preprint 

https://doi.org/10.1101/867903
http://creativecommons.org/licenses/by-nc-nd/4.0/


measurement across samples. (3) Current MeRIP-seq specific tools [8, 9, 11] use peak 

(~250bp) read counts in the INPUT library as measurement of RNA expression for a gene 

(~11kb). However, the variability in a small genomic range across samples due to the sparsity of 

reads sampled can result in unwanted variation to the expression level estimation if using local 

read counts. QNB combines local read counts of both INPUT and IP as an estimator of the 

expression level to mitigate this problem. However, incorporating IP read counts can cofound 

pre-IP expression level with post-IP RNA abundance, leading to biased estimation of 

expression level. Inaccurate expression level measurement can lead to substantial false 

discoveries in the subsequent DM analysis. Thus, the utilization of INPUT library to account for 

pre-IP RNA expression level needs to be further optimized.  

To combat these challenges and allow for accurate identification of differentially methylated 

loci, we present a novel approach to perform RNA methylAtion Differential Analysis in R 

(RADAR) for MeRIP-seq data. RADAR accounts for variation in pre-IP RNA and in post-IP read 

counts using different strategies. Specifically, RADAR uses gene-level read counts instead of 

peak-level read counts in the INPUT library as a robust measurement of the initial pre-IP RNA 

expression level. In addition, RADAR uses a flexible Poisson random effect model to 

accommodate over-dispersion in the post-IP read counts due to variability of biological 

replicates and noise introduced in the immunoprecipitation process. This generalized linear 

model framework enables incorporation of covariates in complex study designs. 

We benchmarked the performance of RADAR with alternative methods on simulated data 

by different data generating models. We showed RADAR achieved higher sensitivity and 

specificity compare to existing alternative methods. We also demonstrated the performance of 

RADAR on real MeRIP-seq data by applying it to four high quality m6A-meRIP-seq (aka 

m6A-seq) datasets generated by us and others, including an ovarian cancer dataset (GSE 

119168) consisting of 7 normal fallopian tubes tissue from healthy individuals and 6 metastatic 

omental tumors, a Type 2 Diabetes (T2D, GSE 120024) dataset consisting of human islets from 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867903doi: bioRxiv preprint 

https://doi.org/10.1101/867903
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 type II diabetes patients and 7 healthy control patients with samples being processed in three 

batches due to different sample acquisition times, a mice liver (GSE 119490) dataset consisting 

of mouse liver from 4 wild type mice and 4 METTL14 knockout mice and a mice brain (GSE 

113781) dataset consisting of 7 mouse cortex samples of stress exposed mice and 7 from 

control mice. We showed that our approach can accommodate distinct study designs and led to 

more sensitive and reproducible DM loci identification than possible alternatives. 

 

Results 

RADAR overcomes challenges in modeling MeRIP-seq data and accommodates complex 

study designs 

Using BAM files as the input, RADAR first divides transcripts (concatenated exons) into 50-bp 

consecutive bins and quantifies pre-IP and post-IP read counts for each bin (Fig. 1A). Unlike 

current differential methylation analysis methods [8-11] that scale to library sizes as a way of 

normalization, which can be strongly skewed by highly expressed genes [16] (Additional file 1: 

Fig. S1), RADAR uses the median-of-ratio method [17] implemented in DEseq2 to normalize 

the INPUT library for the sake of robustness. For the IP library, RADAR normalizes the fold 

enrichment computed from the IP counts divided by the INPUT counts, which takes both IP 

efficiency and IP library size variation into account.  

After proper normalization across all samples, RADAR then calculates the methylation level 

for each bin conditioned on its pre-IP RNA expression level for each sample. In contrast to 

previous methods [8-11] that use peak-level read counts in the INPUT library as its 

measurement of pre-IP RNA expression level, we use gene-level read counts as a more robust 

representation, which is defined as the total number of reads across all bins that span the same 

gene (Fig. 1A). This choice is motivated by the observation that the median read coverage 

within each peak is very low —18 reads per peak (7 reads in a 50-bp bin) (Additional file 1: Fig. 

S2) in a typical MeRIP-seq input sample of 20 million (mappable) reads (Additional file 1: Fig. 
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S3). Over dispersion of low counts due to random sampling in the sequencing process can 

introduce substantial unwanted variation to the estimation of pre-IP RNA level. This can be 

further exacerbated by the uneven distribution of reads caused by local sequence 

characteristics such as GC content and mappability. Using gene-level counts as the estimate of 

pre-IP RNA expression level can mitigate the dispersion by increasing the number of reads (272 

reads on average) and simultaneously diminishing the effects of sequence characteristics 

within a gene (Fig. 1A). By comparing the variance of read counts across replicates at the 

gene-level with that at the bin-level, we show that the cross-sample variance is much less at the 

gene-level than at the bin-level in all three datasets. (Fig. 1B).   

RADAR models the read count distribution using a Poisson random effect model instead of 

a negative binomial distribution, which is commonly used in RNA-seq analysis [13, 15, 17] as 

well as in DRME and QNB for MeRIP-seq analysis [9, 10]. Negative binomial distribution-based 

models assume a quadratic relationship between mean read counts and their variance across all 

genes. We observe in real m6A-seq datasets that the mean-variance relationship of post-IP 

counts across genes significantly differs from that of regular RNA-seq counts (i.e., pre-IP counts). 

The former does not always follow a similar quadratic curvature and can exhibit very different 

patterns of variability (Fig. 1C, Additional file 1: Fig. S4). To overcome these limitations, 

RADAR applies a more flexible generalized linear model framework (see Method) that captures 

variability through random effects.  

Another important advancement of RADAR, compared to existing MeRIP-seq data analysis 

tools [8-11], is the flexibility to incorporate covariates and permit more complex study design. 

Phenotypic covariates such as age and gender as well as experimental covariates such as 

batch information are often encountered in epitranscriptomic profiling studies with 

heterogenous patient samples. Covariates such as litter and age are common in experimental 

animal studies.  For example, in the ovarian cancer dataset, the age of the tissue donors is 

partially confounded with predictor variable – disease status. In the T2D islets dataset, the 
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variance of the first two principal components is confounded with the sequencing batch (Fig. 

1D). After regressing out the batch effect, the remaining variance can be better explained by 

disease status (Fig. 1E). This indicates the importance of controlling for potential confounding 

factors when performing differential methylation tests. The generalized linear model framework 

in RADAR allows the inclusion of covariates and offers support for complex study designs.   

Comparative benchmarks of different methods using simulated datasets 

To evaluate the performance of RADAR in comparison to current methods, we applied RADAR 

and other methods for MeRIP-seq differential analysis including exomePeak, Fisher’s exact test, 

MeTDiff and QNB on simulated datasets. We considered four scenarios: the proposed random 

effect model with/without covariates and the quad-negative binomial (QNB) model adopted from 

QNB [9] [10] with/without covariates. For each scenario, we evaluated the sensitivity and false 

discovery rate (FDR) of different methods using ten simulated copies. We first simulated a 

dataset of 8 samples using the random effect model (Method Section Equation (1), denoted as 

the simple case). The INPUT library was directly drawn from the T2D dataset. We simulated IP 

read count adjusted for pre-IP expression level of each bin according to Equation (1) where μ 

is equal to mean log read count in the “control” group of T2D dataset. The final IP read counts 

were obtained by rescaling simulated data by the average IP/INPUT ratio observed in the T2D 

data. In total, we simulated three datasets of 26324 sites in which 20% of sites are true 

positives with effect size of 0.5, 0.75 or 1, respectively. 

For DM loci with an effect size of 0.5, RADAR achieved 29.1% sensitivity and 12.0% FDR at 

an FDR cutoff of 10%. At the same cutoff, exomePeak and Fisher’s test achieved 72.8% 

sensitivity/52.5% FDR and 72.2% sensitivity/50.5% FDR, respectively. MeTDiff achieved 10.5% 

sensitivity and 16.2% FDR. QNB, on the contrary, did not own any power for the small effect 

size. When the effect size increased, RADAR achieved much higher sensitivity, 77.8% for an 

effect size of 0.75 and 95.7% for an effect size of 1, while FDR were well calibrated at 10.4% 

and 10.1%, respectively. exomePeak and Fisher’s test both achieved 89% and 96% sensitivity 
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for effect sizes of 0.75 and 1, respectively, but at the cost of unsatisfactory FDRs, which were 

greater than 46%. MeTPeak exhibited well-calibrated FDR (12.3% and 11.4%) and moderate 

sensitivity of 50.4% and 81.5% for effect sizes of 0.75 and 1, respectively. QNB only had low 

power for an effect size of 1 (beta=1, 13.9% sensitivity and 0.5% FDR). Overall, for the simple 

case without covariates, RADAR achieved high sensitivity while maintained low FDR at varying 

true effect sizes (Fig. 2A). We then applied the above analysis at varying FDR cutoff and found 

RADAR achieved the highest sensitivity at a fixed level of empirical FDR (Additional file 1: Fig 

S5A). We note exomePeak and Fisher’s test achieved high sensitivity at all effect sizes as 

combining read counts across replicates of the same group helped to gain power. As a tradeoff, 

failing to account for within-group variability resulted in high FDR. On the contrary, RADAR and 

MeTDiff exhibited well-calibrated FDR while achieved high sensitivity at same levels as 

exomePeak for large effect sizes. QNB was overconservative and possessed little power.  

We next applied the aforementioned methods to the proposed model with a covariate 

(effect size equal to 2, denoted as the difficult case) (Fig. 2B). As a result, at an FDR cutoff of 

10%, RADAR achieved 38.4%, 79.7% and 95.7% sensitivity with empirical FDRs slightly higher 

than those in the simple case (18.2%, 14.4% and 13.7% for effect sizes of 0.5, 0.75 and 1, 

respectively). MeTDiff, with similar performance as RADAR in the simple case, lost power in the 

difficult case due to incapability of accounting for confounding factors. exomePeak, Fisher’s test 

and QNB behaved similarly as in the simple case. The advantage of RADAR over other 

methods is robust to the choice of FDR cutoff as shown in Additional file 1: Fig. S5B. In 

summary, RADAR outperformed existing alternatives in both cases. 

Taking the covariate model with a DM effect size of 0.75 as an example, we also checked 

the distributions of effect size estimates and p-values obtained from each method. In all 

methods, effect sizes were overall correctly estimated with estimates for “true” sites centered at 

0.75 (Additional file 1: Fig. S6A) and that for null sites centered at zero (Additional file 1: Fig. 

S6B). However, we note the distribution of beta estimates is narrower for RADAR, especially in 
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the difficult case, suggesting a more confident estimation. P-values of exomePeak and Fisher’s 

test at null sites were enriched near zero, indicating over-detection of false positive signals 

(Additional file 1: Fig. S6C). We also observed many large p-values obtained by QNB for “true” 

sites in both cases and MeTDiff in the difficult case, which suggested a high false negative rate 

(Additional file 1: Fig. S6D). 

We then repeated simulation studies using the QNB model. Instead of setting the variances 

of INPUT and IP libraries equal as presented in the QNB paper, we let the variance of IP read 

count be larger than that of INPUT. This setting better reflects our observation in the real data 

as extra noise can be introduced during immunoprecipitation process for IP reads generation 

(Additional file 1: Fig. S4). In the simple case without covariates, RADAR exhibited the lowest 

empirical FDR (18.9% and 18.5%) despite of slightly lower sensitivity comparing to other 

methods (73.5% and 82.3%) when the effect sizes were relatively large (for effect sizes of 0.75 

and 1). QNB performed better when the effect size was small with 58.6% sensitivity and 15.6% 

FDR for an effect size of 0.5 (Fig. 2C). The results were consistent when we evaluated their 

performance with different FDR cutoffs. Overall, QNB performed slightly better than RADAR 

with an effect size of 0.5. RADAR achieved similar sensitivity but better calibrated FDR when 

effect sizes equal to 0.75 and 1 (Additional file 1: Fig. S5C). In the model with covariates, 

RADAR exhibited the lowest empirical FDR, with 25.8%, 23.0% and 22.5% at effect sizes of 0.5, 

0.75 and 1, respectively, while other methods either failed to detect the signal or had a higher 

empirical FDR. Specifically, MeTDiff had sensitivity below 0.5% at varying effect sizes and QNB 

reached FDRs of 64.1%, 55.8% and 50.5% for effect sizes of 0.5, 0.75 and 1, respectively, at an 

FDR cutoff of 10% (Fig. 2D). The advantage of RADAR over alternative methods hold in the 

difficult case at varying cutoffs (Additional file 1: Fig. S5D). In summary, RADAR outperformed 

other existing methods in most scenarios, particularly when covariates were present. 

Comparative benchmarks of different methods using four real m6A-seq datasets 
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Next, we compared the performance of different methods using four real m6A-seq datasets: 

ovarian cancer (GSE119168), T2D (GSE120024), mouse liver (GSE119490) and mouse brain 

(GSE113781). To evaluate the sensitivity of different methods, we first checked the distributions 

of p-values obtained from corresponding DM tests (Fig. 3). In the ovarian cancer, T2D and 

mouse liver data, Fisher’s test and exomePeak detected the most signals as the p-values are 

most dense near zero. In these three datasets, RADAR also returned a desirable shape for the 

p-values histogram in which p-values were enriched near zero while uniformly distributed 

elsewhere. MeTDiff returned a desired shape only in the ovarian cancer and mouse liver 

datasets. QNB were overconservative in the ovarian cancer and T2D dataset. All methods failed 

to return enriched p-values near zero for the mouse brain dataset, suggesting there was no or 

little signal in this dataset. This is consistent with the original publication that very few differential 

peaks were detected in this study [7].  

To ensure that well-performed methods achieved high sensitivity while maintain a low FDR, 

we further performed permutation analyses to obtain the null distribution of p-values for each 

dataset. Specifically, we shuffled the phenotype labels of samples such that the new labels were 

not associated with the true ones or any other important confounding factors. We expected the 

p-values from a permutation test to follow a uniform distribution and the enriched p-values near 

zero would be considered as false discoveries. For each dataset, we combined test statistics 

from 15 permuted copies and compared their distribution with the original tests (Fig. 4). P-values 

from Fisher’s test and exomePeak were strongly enriched near zero and only slightly lower than 

those from the original tests. This suggests the strong signals detected by these two methods 

are likely to be false discoveries, consistent with the conclusion from simulation analysis. On the 

contrary, the histograms of p-values from RADAR were close to flat in all datasets, indicating that 

strong signals detected by RADAR were more likely to be true. MeTDiff exhibited well-calibrated 

p-values in the ovarian cancer and T2D data but enriched for small p-values in the mouse liver 

data with an indicated high FDR. QNB test returned conservative p-value estimates in all 
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datasets. Taking together these analyses, we demonstrated that RADAR outperforms the 

alternatives by achieving high sensitivity and specificity simultaneously in real datasets.  

To better demonstrate that RADAR detect DM sites with better sensitivity and specificity in 

real data, we show examples of DM site that is only detected by RADAR as well as likely false 

discovery sites identified by exomePeak and Fisher’s test but not by RADAR in the T2D dataset. 

We plot sequence coverage of individual samples for the DM sites in the RNF213 gene 

(Additional file 1: Fig. S7A) and show despite of large variability in control samples, m6A 

enrichment of T2D samples are consistently lower on this locus. Conversely, in the bogus DM 

sites detected by alternative methods (Additional file 1: Fig. S7B, C), enrichment differences 

are mainly driven by one or two outlier samples in one group. 

To further demonstrate the advantage of using gene-level read counts over local read 

counts to account for RNA expression level, we repeated the above analysis using post-IP 

counts adjusted by the local read counts of INPUT. We showed that in the T2D dataset, 

gene-level adjustment not only enabled stronger signal detection, but also lowered FDR as we 

observed that the permutation analysis using local counts adjustment resulted in undesired 

stronger signals around zero in the p-value histogram (Additional file 1: Fig. S8). In the 

ovarian cancer and the mouse liver datasets, local counts adjustment achieved higher signal 

detection but at the cost of a higher FDR. This analysis suggested that using gene-level read 

counts as the estimates of pre-IP RNA expression levels could effectively reduce FDR and lead 

to more accurate DM loci detections. 

Attributed to the robust representation of pre-IP RNA expression level using gene-level read 

counts, RADAR’s performance is more robust to the sequencing depth of INPUT samples. To 

demonstrate this, we applied RADAR on data created by sub-sampling the read counts of 

INPUT samples in the T2D dataset so that the sequencing depth is half of the full dataset 

(average 17.5 million reads). We compared the DM sites detected in the reduced dataset with 

the results obtained from the full dataset (Additional file 1: Fig. S9A). Using a 10% FDR cutoff, 
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RADAR-detected DM sites in the reduced dataset showed the highest overlap with that in the 

full dataset. MeTDiff and QNB only had a few overlapping DM sites between the sub-sampled 

and full dataset. Fisher’s test and exomePeak had slightly fewer overlaps comparing to RADAR 

but had more false discoveries. We further compared the log fold change (logFC) estimates 

from reduced and full datasets to check their consistency. As a result, we found reduced 

sequencing depth had the least impact on the logFC estimated by RADAR while the estimates 

by others are much less reproducible with a shallower sequencing depth (Additional file 1: Fig. 

S9A). 

Unlike earlier pipelines that perform DM tests only on peaks identified from peak calling, 

RADAR directly tests on all filtered bins and reports DM sites. To check if the DM sites reported 

by RADAR are consistent with known characteristics of m6A, we performed de-novo motif 

search on these sites and found DM sites detected in ovarian cancer, mouse liver and T2D 

datasets are enriched for known m6A consensus motif (Additional file 1: Fig. S10A) [18], 

suggesting DM sites reported by RADAR are mostly true. We also examined the topological 

distribution of these DM sites by metagene analysis (Additional file 1: Fig. S10B). The 

distributions in ovarian cancer and mouse liver datasets are consistent with the topological 

distribution of common m6A sites, indicating methylation changes occurred in these two 

datasets were not spatially biased. Interestingly, DM sites detected in T2D dataset are strongly 

enriched at 5’UTR, suggesting T2D related m6A alteration are more likely to occur at 5’ UTR. 

RADAR analyses of m6A-seq data connect phenotype with m6A-modulated molecular 

mechanisms 

Finally, we investigated whether DM test results obtained from RADAR would lead to better 

downstream interpretation. In the ovarian cancer dataset, we performed KEGG pathway 

enrichment analysis on the differential methylated genes (DMGs) detected by RADAR (Fig. 5A). 

We found the detected DMGs were enriched with molecular markers related to ovarian cancer 

dissemination [19, 20]. For instance, we identified key regulators of the PI3K (enrichment 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867903doi: bioRxiv preprint 

https://doi.org/10.1101/867903
http://creativecommons.org/licenses/by-nc-nd/4.0/


p-value 7.8x10-5) and MAPK pathways (enrichment p-value 1.1x10-4), including 

hypo-methylated PTEN and hyper-methylated BCL2 (Additional file 1: Fig. S11). Other notable 

DMGs include key markers of ovarian cancer such as MUC16 (CA-125) and PAX8, as well as 

genes that play key roles in ovarian cancer biology such as CCNE1 and MTHFR. Conversely, 

DMGs detected by MeTDiff were only enriched in three KEGG pathways (Fig. 5B), most likely 

due to its inadequate power. We showed through permutation analysis that exomePeak and 

Fisher’s test results included a significant portion of false positives and could lead to biased 

downstream interpretations.  

In the T2D dataset, DMGs identified by RADAR were enriched in related pathways including 

insulin signaling pathways, type II diabetes mellitus, mTOR pathways and AKT pathways 

(Additional file 1: Table S1), indicating a role that m6A might play in T2D. We further analyzed 

these DMGs in related pathways and found the methylome of insulin/IGF1-AKT-PDX1 signaling 

pathway been mostly hypomethylated in T2D islets (Additional file 1: Fig. S12). Impairment of 

this pathway resulting in down-regulation of PDX1 has been recognized as a mechanism 

associated with T2D where PDX1 is a critical gene regulating β-cells identity, cell cycle, and 

promote insulin secretion [21-24]. Indeed, follow-up experiment on a cell line model validated 

the role of m6A in tuning cell cycle and insulin secretion in β-cells and animal model lacking 

methyltransferase Mettl14 in β-cells recapitulated key T2D phenotypes (results presented in a 

separate manuscript, [25]). To summarize, RADAR-identified DMGs enabled us to pursue an 

in-depth analysis of the role that m6A methylation plays in T2D. On the contrary, due to the 

incapability to take sample acquisition batches as covariates, the alternative methods were 

underpowered to detect DM sites in T2D dataset and could not lead to any in-depth discovery of 

m6A biology in T2D islets. These examples suggest that MeRIP-seq followed by RADAR 

analysis could further advance functional studies of RNA modifications. 

Validation of RADAR-detected DM sites by the SELECT method 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867903doi: bioRxiv preprint 

https://doi.org/10.1101/867903
http://creativecommons.org/licenses/by-nc-nd/4.0/


Recently, Xiao et al. developed an elongation and ligation-based qPCR amplification method 

(termed SELECT) for single nucleotide-specific detection of m6A [26]. This method relies on 

mechanism different from antibody pulldown-based MeRIP-seq to detect m6A, making it a 

suitable method for validating DM sites discovered by RADAR analysis. We selected 6 DM sites 

(Additional file 1: Table S2) including 2 sites only detected by RADAR and 4 sites in genes 

important in β-cell for experimental validation using the SELECT method. Among 6 validated 

sites, the β-cells regulator PDX1 and RADAR-specific DM sites showed significant m6A level 

alteration with p-value 0.009 and 0.017, respectively (Fig. 6). Three other sites: IGF1R in the 

insulin/IGF1-AKT-PDX1 signaling pathway, MAFA—another important regulator of β-cells 

function and RADAR-specific DM site in CPEB2 showed m6A changes consistent with RADAR 

result despite of not reaching statistical significance. The sites in the TRIB3 gene are similarly 

methylated in control and T2D samples as measured by SELECT. Overall, five out of six 

experimentally validated sites were supported by orthogonal evidence by SELECT, confirming 

the reliability of RADAR-detected differential methylation sites.  

 

Discussion 

Sample size is an important parameter of the study design that directly affects the power and 

reproducibility of an inferential test [27]. DM analyses based on less than 3 biological replicates 

are still common practice in the RNA epigenetics field and have been shown to exhibit poor 

reproducibility [28]. To explore the influence of sample size on the power and reproducibility of 

DM detection, we ran tests on 10 copies of simulated data with effect size equal to 0.75 (roughly 

two-fold enrichment difference) from two replicates (commonly used) to eight replicates 

(up-to-date highest). We show that at an FDR cutoff of 10% to select DM loci, FDR increases 

rapidly as the sample size gets smaller and less than 5 (Fig. 7). When the sample size is 

greater than 6, improvement of FDR is slow while sensitivity climbs rapidly. Our simulation 

results show the number of replicates greatly influences sensitivity and reproducibility of DM 
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detection as each additional replicate can bring significant gain of area under ROC curve 

(Additional file 1: Fig. S13). To ensure adequate power and reliable DM analysis, we strongly 

suggest using no less than 5 biological replicates when surveying the alterations in the 

epitranscriptome of human samples with commonly sequenced library sizes (�20 million 

mappable reads). 

The choice of bin size in the RADAR analysis concerns the tradeoff between resolution and 

accuracy. At a given sequencing depth, the smaller the bin, the higher resolution achieved. 

However, a smaller bin size also implies fewer reads in a bin, resulting in increased sampling 

noise. At common library size of 20 million mappable reads or above, the default bin size (50-bp) 

should enable sufficient coverage for most enriched regions in the IP library. We recommend to 

use larger bin size (e.g. 100-bp) for data with smaller library sizes (< 15 million mappable reads) 

to include enough reads in each bin for DM tests.  

A potential caveat of using gene-level instead of local read count to represent pre-IP 

expression level is that exon-specific expression variation in alternative splicing scenarios 

would be under-represented. Filtering out DM sites that co-localize with alternative spliced 

exons in post-processing could help avoid false signals due to this caveat.  

 

Conclusion 

Using simulation and real m6A-seq datasets, we demonstrated that RADAR can achieve higher 

sensitivity with lower FDR than existing methods in the DM analysis. Taking advantage of newly 

developed SELECT method for experimental validation, we verified that RADAR analysis can 

uncover true differentially methylated sites. RADAR is a general framework that can be 

applicable to comparative profiling by MeRIP-seq of various types of RNA modifications 

including but not limited to N6-methyladenosine, N1-methyladenosine and 5-methylcytosine. It 

also offers great flexibility to adopt to a wide range of mean-variance relationships in the data 

and accommodate different study designs. We believe RADAR will greatly advance our 
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knowledge of the functions of post-transcriptional modifications.  

 

Material and Methods 

Ovarian cancer samples. All human tissue samples were collected with informed consent 

under approved University of Chicago Institutional Review Board protocols and in accordance 

with the Declaration of Helsinki. All experiments were conducted in accordance with approved 

protocol guidelines and regulations. Six omental tumor tissues were collected from newly 

diagnosed patients with advanced, metastatic high-grade serous ovarian cancer during primary 

debulking surgery at the University of Chicago. Seven normal fallopian tube tissues were 

collected from patients with benign gynecological conditions at the time of surgery.   

T2D samples. A minimum of 20,000 human islets equivalents (IEQs)/patient were obtained 

from the Integrated Islet Distribution Program (IIIDP) and Prodo Laboratories. Upon receipt, 

islets were cultured overnight in Miami Media #1A (Cellgro, USA) and then handpicked, washed 

twice by self-sedimentation with ice-cold DPBS and pelleted for RNA isolation. All studies and 

protocols used were approved by the Joslin Diabetes Center’s Committee on Human Studies 

(CHS#5-05). Samples from eight T2D patients and seven non-diabetic controls were collected 

for analyses in this study. 

Mouse liver samples. Mouse liver tissues were collected from wild type Albumin-Cre;Mettl14+/+ 

and Albumin-Cre;Mettl14flox/flox;Cre liver specific conditional knockout mice [29]. Four wide-type 

and four Mettl14 cKO mice on 42% high fat diet for three months were sequenced and 

analyzed. 

RNA extraction and m6A-MeRIP-seq. Total RNA was extracted from tissues using TRIzol 

(Invitrogen) according to the manufacturer’s instruction. For T2D and mouse liver samples, 

mRNA was further purified with Dynabeads mRNA DIRECT purification kit (Thermo Fisher, cat. 

61011). mRNA was adjusted to 15ng/ul in 100ul and fragmented 

using Bioruptor ultrasonicator (Diagenode) with 30s on/off for 30 cycles. 
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m6A-immunoprecipitation (m6A-IP) was performed using EpiMark N6-Methyladenosine 

enrichment kit (NEB cat. E1610S). RNA eluted from m6A-IP was cleaned using RNA Clean and 

Concentrator (Zymo Research, cat. R1013). Input and IP samples were then used to prepare 

library with KAPA mRNA Hyper Kit (Roche, Cat. KK8541). For fallopian tube and omental tumor 

tissues, total RNA was fragmented and directly subjected to m6A-IP. Takara Pico-Input 

Strand-Specific Total RNA-seq for Illumina (Takara, Cat. 634413) was used to construct 

libraries from total RNA where ribosome-derived cDNA was removed before final library 

amplification. T2D and mouse liver libraries were sequenced by the HiSeq4000 platform at 

SE50 mode. The ovarian cancer libraries were sequenced by the NextSeq 500 platform at 

PE37 mode.  

Data preparation. For each dataset, the raw sequencing data were mapped to the 

corresponding reference genome (hg38 for human, and mm10 for mouse) by Hisat2 [30] with 

parameter -x 1. The BAM files obtained from alignment are used as an input file for RADAR. 

Read count pre-processing RADAR takes a GTF file as an input for gene annotation and 

obtains a gene model using the R package GenomicFeatures [31]. Exons of a gene are 

concatenated to form the “longest isoform” transcript, which is then divided into bins of user 

defined size. The R package Rsamtools [32] is used to extract and quantify aligned reads from 

BAM files in each bin. The gene-level counts of INPUT library are obtained by summing up 

bin-level read counts of each gene. 

Normalization. Unlike previous methods [8-11] that scale read counts to library sizes as a way 

of normalization, which can be strongly skewed by highly expressed genes [16] (Additional file 

1: Fig. S1) RADAR considers INPUT and IP samples separately. The INPUT sample is 

essentially an RNA-seq library; therefore, we directly apply the median-of-ratios method 

implemented in DESeq2, which is robust to outliers, to estimate a sample-wise size factor for 

each sample from INPUT gene-level counts. In regard to the IP sample, the abundance of read 

counts ��,� depends on the abundance of RNA in the pre-IP RNA pool, the overall IP efficiency 
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of that sample, the total sequencing depth of that IP library, and the methylation level of that 

locus. To normalize the variation due to sample-wise IP efficiency difference and sequencing 

depth variations of IP libraries, we estimate a sample-wise size factor from the fold enrichment 

��,� � ��,�

������,�
 of the top 1% bins ranked by IP read counts where ��,� is IP read counts and 

������,� is the normalized geneSum (gene-level) read count at corresponding gene. The reason 

that only top bins are used to estimate the overall IP efficiency is to exclude the regions where 

IP read counts are mainly attributed to non-specific binding.  

Adjust IP read count for pre-IP RNA expression level. To account for the pre-IP gene 

expression level variation in IP read counts, we compute a gene-wise size factor by centering 

normalized gene-level counts to 1. For each bin, we divide the normalized IP read counts by the 

gene-wise size factor of the corresponding gene. The resulting IP read counts now reflect the 

methylation level as other factors have all been accounted for. The adjusted IP read counts 

representing methylation levels are further used for DM tests. 

Data filtering. We apply two filters to remove unwanted bins in the data: 1) We remove bins in 

which reads are depleted in IP libraries because read counts in these bins are likely attributed 

to non-specific binding during the immunoprecipitation; 2) We remove bins in which raw IP read 

counts are smaller than 15 (this cutoff can be defined by the user) because signals in regions 

without sufficient coverage will be too noisy and unreliable. Low IP read count also implies that 

the bin is likely a non-methylated region. 

 
Model for DM test. For each bin, we model the processed IP read counts ��  

in the �-th sample 
as follows:  

�� � 	
����
log��� � � � �� � �� �  � �  �	 �	 � � ��  ��




���

 � �� ,          �1 

where �� is the mean of a Poisson distribution, µ is a bin specific intercept, X is the design 

matrix including the indicator of the groups of interest  �	 and covariates ��  �� � 1, … , �, 

� represent associated coefficients and ��  is a random effect following a log gamma 
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distribution with a scale parameter   and mean equal to 1 , i.e., �� ! log"#$$#� ,   ,. 

Introducing a new variable %� ! "#$$#� ,  , we have �� � �µ���%�. The differential analysis 

is equivalent to test against the null hypothesis �	 � 0.  

After integrating out %�, the likelihood of observing the data given all other parameters ' is:  

	�Y|', *%� � + �����
µ	
� �%��µ�����

��!
 �%�

��������

-�  .%�

�  �

��!
-��� �  

-� 
��µ�����

��µ��� �  ����
 

The marginal log likelihood of observing / can be written as: 

log0�/ � �1
�

�

���µ � 2� �  log � log-��� �   * log��! * log-�  * ��� �  log��µ��� �  3 

We use the gradient ascent algorithm to calculate maximum likelihood estimators of all the 

parameters, which involves the calculation of first derivatives. 

4log0�/
4�
 � �  

�

�

1�� * ��� �   �µ���
�µ��� �  3��


4log0�/
4 � �1

�

�

log � 1 * �� �  
�µ��� �  * log��µ��� �  

�.�5#$$#��� �   * .�5#$$#� 3
4log0�/

4� � �1
�

�

�� * ��� �   �µ���
�µ��� �  3

 

In each iteration, the parameters are updated through 6����� � 6��� � ������ ��������� |�����

. The 

step size ������ is determined by a line search algorithm. Finally, a Wald test is derived to test 

against �	 � 0, i.e., the test statistics is �	7 /sd(�	7) where �	7  is the MLE and sd(�	7 ) is 

estimated using observed Fisher information. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867903doi: bioRxiv preprint 

https://doi.org/10.1101/867903
http://creativecommons.org/licenses/by-nc-nd/4.0/


Post-processing Since the DM tests are performed on consecutive bins on the mRNA, 

post-processing is needed to merge connected bins that contain reads derived from the same 

methylation site and report their genome coordinates instead of mRNA coordinates. Specifically, 

we filter all the bins under user-defined FDR cutoffs and merge adjacent significant bins to a 

single peak. To represent the mRNA peaks using the genome coordinate, we report the final 

result in BED12 format, which can specify exon blocks for an intron-spanning interval. 

 

Simulation analysis. To assess the sensitivity and specificity of each methods on detecting 

true DM sites, we simulated dataset of 8 replicates with and without covariate. Since RADAR 

make inferential test on fold enrichment (pre-processed IP read counts adjusted for input RNA 

level variation), we first simulated this enrichment data (pre-processed IP read counts) using 

Model (1). We draw the distribution of gene-specific intercept parameter � (equivalent to 

baseline sequencing depth of control samples), random effect parameter   from real data 

(T2D) to better reflect the property of real data. For each dataset, we simulated 26,324 sites 

where 20% of them were predefined as true DM sites with effect sizes of 0.5, 0.75 or 1. At 

pre-defined true DM sites, we simulated read counts with � � 0.5 (or 0.75 or 1) while � � 0 at 

null sites. Other alternative methods take INPUT and IP read counts as input data for DM tests. 

To convert our simulated enrichment data into paired INPUT and IP read counts, we used 

INPUT read counts from the real T2D dataset and generated corresponding IP read counts by 

rescaling simulated IP counts to match the IP/INPUT ratio in the real data.  

 We then applied RADAR, MeTPeak (version 1.1) [8], QNB (version 1.1.11) [10], Fisher’s 

exact test, exomePeak (version 2.17.0) [11] to the simulated data. We used the 

Benjamini-Hochberg method to adjust for multiple comparisons. Using an FDR cutoff at 10% (or 

1%, 5% … in sliding threshold analysis), we obtained a set of predicted DM sites for each 

method. We then checked whether pre-defined true DM sites were predicted to be DM site. To 

evaluate the performance, we computed sensitivity by dividing the number of overlaps between 
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predicted DM sites and true sites by the number of true sites. We also computed the empirical 

FDR by dividing the number of predicted sites that is not in the true sites by the number of 

predicted sites. To evaluate effect of covariates on the performance, we repeated the above 

analysis using Model (1) with an additional binary categorical (such as gender) variable with an 

effect size of 2. There are 3 covariates included in the T2D data analysis. The covariate with the 

largest effect size ranges from 0 to 4. We chose an intermediate effect size of 2 to represent a 

moderately challenging scenario in real data. 

 Next, we repeated the simulation analysis with an alternative model as described in the 

QNB manuscript [10], termed as the “QNB model”. Unlike Model (1) that directly simulates the 

enrichment as pre-processed IP-read counts, the QNB model simulates the paired INPUT and 

IP read counts separately, each following a negative binomial distribution. The original QNB 

model sets equal variance for both INPUT and IP data. However, we observe that in the 

MeRIP-seq, the IP read counts usually have higher variability than the INPUT read counts due 

to extra variation introduced during the IP process (Fig. 1C and Additional file 1: Fig. S4). 

Therefore, we modified the QNB model so that the variance parameter for IP is a magnitude 

higher than INPUT. Similarly, we generated data for the simple case as well as the difficult case 

with one confounding factor using the QNB model and applied each method to test for DM loci.  

 

Coverage sub-sampling analysis. To demonstrate that the robust measurement of pre-IP 

RNA level implemented in RADAR improves the robustness to varying INPUT sequencing 

depth, we used T2D dataset as an example and performed sequencing depth sub-sampling 

analysis. We used the Sambamba [33] with parameters “view -h -t 20 -s 0.5 -f bam 

–subsampling-seed=1231” to sub-sample half of the reads from BAM files of INPUT samples. 

To count the overlap between results from sub-sampled and full data, we first obtained filtered 

bins that are shared in both datasets, then count the bin if it reached significant threshold in 

both datasets. To compare the log fold change (logFC) estimates, we plotted the logFC 
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estimated from the sub-sampled data against that estimated from the full data by each method. 

 

De novo motif discovery and metagene analysis. To examine if the putative DM sites 

detected by RADAR are consistent with known characteristics of m6A sites, performed de novo 

motif discovery analysis using the findMotifs function of homer2 [34] with parameter “-len 5,6 

-rna -p 20 -S 5 -noknown”. A background sequence of randomly sampled peaks on 

transcriptome was used in the motif analysis. 

 Topological distribution of putative DM sites were plotted on a metagene using R package 

Guitar [35]. 

 

Pathway enrichment analysis. A pathway enrichment analysis was performed on the DMGs 

identified from the ovarian cancer dataset using KEGG pathways [36] using the enrichKEGG 

function in R package ClusterProfiler [37]. 

 

Experimental validation by SELECT method. SELECT is an elongation and ligation-based 

method that can distinguish single m6A site from A site [26]. Briefly, we design two oligos 

flanking the target m6A/A site that leave a gap on the m6A/A site. Then Bst DNA polymerase and 

SplintR ligase are used to fill the gap where m6A hinders the elongation of the complementary 

oligo and thus prevent the gap to be filled. Finally, qPCR targeting the ligated oligo is used to 

quantify the abundance of the non-methylated RNA molecules. qPCR quantification targeting a 

nearby region on the target gene is used to normalize the gene expression variation. Since 

readout of SELECT method reflects relative abundance of non-methylated molecules, we 

expect the SELECT result to be inversely correlated to the m6A levels. 

 Since SELECT method involves many steps for each site and is not feasible for high 

throughput analysis, we selected 6 sites including 2 DM sites that were only detected by 

RADAR and 4 DM sites that were implicated in T2D biology for experimental validation. We first 
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matched RRACH motif in the putative DM peak and designed complementary oligos of 30 nt 

flanking the putative m6A site. An additional 21 nt sequence at 5’ of the up-probe and 20 nt 

sequence 3’ of the down-probe were added to the oligos as universal primer sequence. For 

each DM site, we also designed a pair of primer targeting the gene harboring the DM site (see 

Additional file 1: Table S3 for oligo and primer sequences). 

 We applied the SELECT method to 4 control and T2D samples that have enough RNA 

material leftover from sequencing experiment. For each sample, 50 ng of total RNA was mixed 

with 0.8ul up-probe and down-probe oligo (1uM) of each target m6A site, 1 ul dTTP (100uM), 

and 2ul 10X CutSmart buffer (NEB) supplemented with H2O to 17ul total volume. The mix was 

incubated at a temperature gradient: 90ºC for 1min, 80ºC for 1 min, 70ºC for 1 min, 60ºC for 1 

min, 50ºC for 1 min and then 40ºC for 6 min. Subsequently, a 3ul of enzyme mixture containing 

0.5ul Bst 2.0 DNA polymerase (0.02 U/ul) (NEB M0275S), 0.5 ul SplintR ligase (1U/ul) (NEB 

M0375S) and 2 ul ATP (5mM) was added in the former mixture to the final volume of 20 ul. The 

final reaction mixture was incubated at 40ºC for 20 min then denatured at 80ºC for 20 min. Then, 

qPCR reaction to quantify the “read through” oligos was assembled by 10ul 2X qPCR master 

mix, 0.8ul universal primer as designed in the oligo probes (10uM), 2ul reaction from previous 

step and 7.2 ul H2O. To quantify the RNA expression level of each gene harboring the m6A site, 

we first prepared the cDNA from 50ng of total RNA using SuperScript VILO Master Mix (Thermo 

Fisher 11755050). Then 2ul of cDNA were used for qPCR quantification of each gene. Finally, 

the gene expression level quantification was used to normalize the “read through” oligo probe 

quantification to obtain “relative read through” level for each site. Note the “relative read through” 

level reflect the non-methylated level, which is inversely correlated with m6A site.  

 

Sample size analysis. To investigate the effect of sample size on the power of detecting DM 

sites, we simulated datasets of varying sample sizes from N = 2 to N = 8 using Model (1) 
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without covariates. We assessed the performance by plotting the sensitivity of each method 

against its FDR using DM loci obtained at an FDR cutoff of 10%. Additionally, we also made the 

ROC curve for each sample size by varying the FDR cutoffs when selecting predicted sites (Fig. 

S13). 

 

Availability of Data and Materials  

Software Availability.  

Our method is implemented as a C++/R package and is freely available at: 

https://github.com/scottzijiezhang/RADAR under GNU General Public License (GPL-v3.0). 

Reproducible documents with all the analysis presented in the paper are available at: 

https://scottzijiezhang.github.io/RADARmanual/Reproducible.html .  

Source code of the software can be found at Zenodo repository: 

https://doi.org/10.5281/zenodo.3561035 

Data Availability 

All MeRIP-seq datasets sequenced and analyzed in this manuscript have been deposited in 

GEO repository: GSE 119168 (ovarian cancer), GSE 120024 (T2D) and GSE 119490 (mice 

liver). The mouse brain dataset was downloaded from GSE 113781 [7]. 
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Figure legends 

Figure 1. 

Unique features of m6A-seq (MeRIP-seq) data. RADAR divides concatenated exons of a 

gene into consecutive bins and models the immunoprecipitation (IP)-enriched read counts in 

such bins. (a) depicts a pair of read counts in the INPUT and the IP library in the �-th bin as :� 
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and �� . In the RADAR workflow, the gene-level read count of the input library �������� 

substitutes the bin-level read count :� as the representation of the pre-IP RNA levels of the �-th 

bin. (b) compares the relative variation of gene-level and bin-level (local) read counts of 

different bin sizes in four m6A-seq datasets, suggesting that unwanted variation can be reduced 

using gene-level counts as the estimates of pre-IP RNA levels. Panel (c) compares the 

cross-sample mean and variance of regular RNA-seq (pre-IP counts) and m6A-seq (post-IP 

read counts adjusted for pre-IP RNA level variation) data in four m6A-seq datasets. The fitted 

curvature of m6A-seq can differ from that of RNA-seq, indicating that m6A-seq may have a 

different mean-variance relationship from RNA-seq. Biological and experimental confounding 

factors are often encountered in patient samples. (d) shows the first two principal components 

(PCs) of m6A enrichment in each dataset, where the samples are colored by covariates that 

need to be accounted for. m6A enrichment was represented by IP sample read counts adjusted 

for pre-IP (INPUT) RNA level variation. (e) shows the first two PCs after regressing out known 

covariates — age in the ovarian cancer dataset and batch in the T2D dataset. After regressing 

out the covariate, samples are separated by disease conditions on the PCA plot. 

 

Figure 2. 

Benchmarking RADAR on two simulation models. We benchmarked RADAR and other 

alternative methods on simulated data. Using two simulation models — a random effect 

(RADAR) model and a quad-negative-binomial (QNB) model, we simulated dataset of 8 

replicates of varying true effect size (0.5, 0.75 and 1) with and without covariates. We tested 

different methods on simulated dataset and compared the results at an FDR cutoff of 0.1 with 

simulated true sites. We show the sensitivity (fraction of true sites detected by the method at an 

FDR cutoff of 0.1) and false discovery rate (fraction of detected differential sites that are not true 

sites) of each method applied on data simulated by the random effect model without covariates 

(a) and with covariates (b),  the quad-negative-binomial model without covariates (c) with 
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covariates (d), respectively. The FDR cutoff used to select DM sites is labeled by a dashed line.  

 

Figure 3. 

Sensitivity of benchmarked methods on real m6A-seq data. We benchmarked RADAR and 

other alternative methods on four m6A-seq data with different characteristics. Each panel shows 

the histogram of p-values obtained from DM tests using RADAR, MeTDiff, QNB, Fisher’s exact 

test and exomePeak on each dataset, respectively.  

 

Figure 4. 

Benchmarking false positive signals using permutation analysis on real m6A-seq data. 

To assess empirical FDR of the test, we permuted the phenotype labels of samples so that the 

new labels were not associated with true ones. Each panel shows the histograms of p-values 

obtained from DM tests on 15 permuted copies (blue) and those from the tests on the original 

dataset (red). 

 

Figure 5. 

Pathways enriched in differential methylated genes identified in ovarian cancer and T2D 

datasets. We performed KEGG pathway enrichment analysis using ClusterProfiler [37] on 

DMGs identified in the ovarian cancer dataset by RADAR (a) and MeTDiff (b), respectively. The 

enrichment maps represent identified pathways as a network with edges weighted by the ratio 

of overlapping gene sets.  

 

Figure 6. 

Experimental validation of RADAR-detected DM sites using SELECT method. We applied 

antibody independent method SELECT on T2D samples (N=4). Shown are SELECT results of 6 

putative DM sites for validation. SELECT measures the relative abundance of non-methylated 
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RNA molecules of target locus as represented by the elongation and ligation “read through” of 

olilgo probes. Thus, SELECT results—“relative read through”—are inversely correlated with 

m6A level. 

 

Figure 7. 

The influence of sample size on the statistical power of differential methylation analysis. 

Sensitivity vs. empirical FDR for each method on simulated data with different number of 

replicates (2 to 8) at 10% FDR. Each data point represents the results on one of ten simulated 

copies. Sample sizes are labeled by colors. 
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