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Abstract 
 
Diverse extracellular matrix patterns are observed in both normal and pathological tissue. 
However, most current tools for quantitative analysis focus on a single aspect of matrix 
patterning. Thus, an automated pipeline that simultaneously quantifies a broad range of 
metrics and enables a comprehensive description of varied matrix patterns is needed. To this 
end we have developed an ImageJ plugin called TWOMBLI, which stands for The Workflow Of 
Matrix BioLogy Informatics. TWOMBLI is designed to be quick, versatile and easy-to-use 
particularly for non-computational scientists. TWOMBLI can be downloaded from 
https://github.com/wershofe/TWOMBLI together with detailed documentation. Here we 
present an overview of the pipeline together with examples from a wide range of contexts 
where matrix patterns are generated. 
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Introduction 
 
The extracellular matrix (ECM) provides support and structure to multicellular organisms and 
also guides the migration of cells 1,2, including leukocytes engaged in immune surveillance 3. 
Changes in the ECM are central to the aging process, the ECM is re-built and remodelled in 
response to tissue damage, and it is further altered in pathologies such as cancer. The 
architecture of the ECM has lately been the subject of renewed focus 4–6, however 
standardised quantification of ECM patterns, particularly in pathological decision-making is 
lacking. The generation of metrics that describe ECM pattern could lead to insights into a wide 
range of fields, ranging from experimentalists interested in cell migration and remodelling of 
matrices to clinicians researching conditions such as cancer and fibrosis. 
 
Diverse extracellular matrix patterns are observed in both normal and pathological tissue. 
Numerous metrics have already been applied to such ECM images. These range from simple 
abundance and area measurements to more complex textural features such as grey level co-
occurrence matrices7 and fractal dimension8. One commonly used metric is matrix fibre 
alignment, which is known to be a promoter of cancer cell invasion 9–11 . A pipeline already 
exists in MATLAB for quantifying alignment of ECM 12, and a further extension of this work 
enables alignment to be related to the tumour margin13. OrientationJ is an automated ImageJ 
plugin that is able to create vector fields and perform directional analysis on fibres, but this 
does not lend itself to quantifying overall matrix patterns. A number of studies have 
attempted to quantify additional matrix metrics, but these typically require heavy manual 
intervention 14,15.  Furthermore, each tool typically only generates metrics relating to one 
aspects of ECM organisation. This makes collating a broad range of metrics for analysis both 
challenging and time-consuming. There is a need for an end-to-end pipeline for quantifying 
ECM patterns, which is automated and easy-to-use on versatile data sets. To this end, we 
have created the ImageJ macro plugin TWOMBLI, which stands for The Workflow Of Matrix 
BioLogy Informatics. The aim of TWOMBLI is to quantify matrix patterns in an ECM image by 
deriving a range of metrics, which can then be analysed in conjunction with clinical data if 
desired. 
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Results 
 
We sought to generate a tool for analysis of ECM patterns, whereby a user could enter varied 
matrix images into the pipeline and derive a meaningful quantification of a variety of matrix 
features as output (Figure 1). In particular, we were keen that a broad range of metrics would 
capture diverse features of ECM patterns. FIJI was employed as the supporting platform for 
the plugin, since it enabled us to build on many existing tools and downloads such as Ridge 
Detection16, Anamorf17, OrientationJ, and BIOP and is also familiar to many scientists and 
clinicians. 
 
Development of the TWOMBLI pipeline 
 
TWOMBLI exists as a user-friendly ImageJ plugin that can be downloaded with detailed 
documentation from https://github.com/wershofe/TWOMBLI. TWOMBLI relies heavily on 
existing ImageJ plugins Ridge Detection 16 and AnaMorf 17 , providing an end-to-end pipeline 
for users. The user can input tissue samples stained for ECM components and is then guided 
through image pre-processing before finally being given a comprehensive output of ECM 
metrics in a single csv file with accompanying processed images. Central to this process is the 
generation of mask files of the matrix network using the Ridge Detection tool.  Ridges and 
ravines in the image are detected from the spatial derivatives of the image.  The algorithm 
carries out simple local searches of the spatial derivative information in order to construct 
lines, making the algorithm far more computationally efficient than alternative approaches. 
The algorithm also allows for subpixel detection of lines and is robust to an asymmetric 
contrast gradient on either lateral edge of the line allowing for good line extraction even in 
low resolution images. The mask files are generated as outputs of the pipeline to enable visual 
verification of correct thresholding. Furthermore, an additional script is included in the 
TWOMBLI repository for optional cropping down of images to regions of interest. The 
principal stages of TWOMBLI are: Prechecking, pre-processing and processing. The prechecks 
(steps 0-3) are carried out manually by the user to check the eligibility of potential input 
images following prompts. An image needs to be in focus, have high enough resolution and 
not contain too many artefacts or regions that are not pertinent for the analysis. In pre-
processing (steps 4-10), the user is guided through selecting a subset of test images and then 
choosing appropriate parameters for thresholding these test images. In addition to contrast 
saturation, which relates obtaining the appropriate contrast between areas of matrix and no 
matrix for subsequent steps, a line width parameter is requested. This value sets the thickness 
of matrix fibres that will be identified. These parameters are saved so that in future runs, the 
user can skip directly to the processing stage. In processing (steps 11-14), all of the images 
are analysed in batch using the parameters generated in the pre-processing stage. An input 
image of 1MB in size takes approximately 30 seconds to process on a computer with 2.2 GHz 
Intel Core i7 and 16GB of memory. For tips on handling larger files and other troubleshooting 
see Documentation.   
 
Metrics for matrix quantification 
 
We selected that covered different aspects of ECM pattern (a schematic of some key metrics 
is shown in Figure 2). These metrics can be split between those describing individual fibres 
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and those describing general ECM pattern: number of fibre end points, number of fibre 
branchpoints, total length of fibres, fibre curvature, alignment, proportion of high-density 
matrix,  ECM fractal dimension, hyphal growth unit (a measure of the number of end points 
per unit length), matrix gaps, and lacunarity (a measure of how the ECM fills the space) 17. 
These metrics together could characterise different matrix properties. Apart from high 
density matrix, all metrics were calculated from the mask images generated within the 
TWOMBLI pipeline. 
 
Quantification of individual fibres: 
 
Number of endpoints is an intuitive count of the number of ends of the fibres or filaments in 
the mask image. Number of branchpoints is the number of intersections of mask fibres in the 
image. Total length is the sum of the length of all mask fibres in the image. This quantity can 
be useful in normalising the number of branchpoints and endpoints. The hyphal growth unit 
(HGU) corresponds to the number of end points per unit length. Curvature was measured as 
the mean change in angle moving incrementally along individual mask fibres by user-specified 
windows.  
 
Quantification of global pattern: 
 
High-density matrix (HDM) is a measure of the proportion of pixels in an image corresponding 
to matrix, as defined by the user-specified contrast saturation parameter and subsequent 
thresholding. The alignment metric captures the extent to which fibres within the field of view 
are oriented in a similar direction15,18. It is calculated from the global gradient structure tensor 
defined as 
 

J = #
< 𝑓&	, 𝑓& >* < 𝑓&	, 𝑓+ >,
< 𝑓&	, 𝑓- >, < 𝑓+	, 𝑓- >,

. 

 
where  𝑓&  and 𝑓-  are partial spatial derivatives of the image, f(x, y), and  

< 	𝑔, ℎ >,	= 	6w(x, y)g(x, y)h(x, y) 𝑑𝑥 𝑑𝑦.
	

>!

 

 
The function, 𝑤(𝑥, 𝑦) is a normalized weighting window centred on the region of interest. 
Alignment is then determined from the coherency metric 
 

a =
λBCD − λBFG
λBCD + λBFG

 

 
where λBFG	is the smallest eigenvalue (minor axis) and λBCD is the largest eigenvalue (major 
axis) of the tensor, yielding a value in the range [0,1], where zero represents complete 
isotropy and one represents perfect alignment. Fractal dimension is an indicator of the self-
similarity and complexity of the ECM and is bound between in the range [1,2] for a single 2D 
image slice. Specifically, the metric used is the box-counting dimension 19. A grid with squares 
of side length 𝜖 is overlaid over the image. The number of squares 𝑁(𝜖) which are occupied 
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by the non-background part of the image N is recorded. As	𝜖	gets smaller, 𝑁(𝜖) increases. 
Fractal dimension is then computed as the limit of the following equation: 
 

𝑓𝑟𝑎𝑐 = lim
Q→S

𝑙𝑜𝑔𝑁(𝜖)
log	(1/𝜖) . 

 
The lacunarity metric reflects number and size of gaps in the matrix. Briefly, the variation in 
pixel intensity is sampled in different directions and in different size grids and a single average 
value is returned, with larger values indicated larger space in the matrix pattern. Formally, 
lacunarity is quantified as  

Λ = Z
𝑠\

𝜇\ − 1
Z 

Where 	𝜇	and	𝑠  are respectively the mean and standard deviation of grey level enclosed 
within a region 20.  In addition, an optional step in the plugin allows the user to perform gap 
analysis on matrix patterns using the Max Inscribed Circle function available from the BIOP 
plugin in FIJI. The algorithm analyses spaces between objects (in this case, the fibres in the 
masks derived by TWOMBLI) by fitting circles of decreasing radius to fill in the gaps 21. This 
information is reported in individual .csv files containing the size of all gaps identified, which 
allows for individual researchers to choose whether to focus the average size of gaps, the 
shape of the distribution, or even the size of gaps in the tails of the distribution. Depending 
on the tissue and context, these different metrics of gap sizes provide additional insight into 
the structure of the matrix patterns.  
 
Use of the TWOMBLI pipeline 
 
Figure 3A shows an example of user input together with the different outputs from the 
TWOMBLI pipeline. The example shown involves Picrosirius Red staining of fibrillar collagen 
in a breast cancer biopsy, with the matrix filaments identified shown in the right-hand image.  
Importantly, the pipeline can be used to analyse images of ECM acquired via a wide variety 
of imaging techniques and of varying file types. Figure 3B shows its application to cell-derived 
matrix assays (both isotropic and anisotropic), second-harmonic imaging of mouse tissues, 
and synthetic matrix patterns generated via computer simulations 5. In all examples, the 
algorithm is able to correctly identify matrix filaments. 
 
The utility of quantification tools is crucially dependent upon their robustness to variations in 
the exact details of data acquisition. To explore this, we captured images of regions of two 
cell-derived matrices with different features: one was largely isotropic with finer fibres 
(hereafter referred to as isotropic, Supplementary Figure 1A) and the other more anisotropic 
with thicker, sparser, fibres (hereafter referred to as anisotropic, Supplementary Figure 1A). 
Images of these two matrices were acquired using different microscope objectives, gain 
settings, pixel sizes, and focal planes (different images were generated from either single 
confocal sections of a CDM taken a different focal planes, a single confocal section with a wide 
pinhole setting, or a z projection of a stack of confocal sections). These images were then 
analysed using two different line width settings in TWOMBLI. In addition, we electronically 
degraded the quality of some images using Gaussian blur functions of either 2 or 3 pixels 
radius or the standard noise function in ImageJ. This set of images were then run through 
TWOMBLI. Table S1 shows the output metrics and Supplementary Figure 1B shows a subset 
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of the mask images for the more isotropic matrix. The absolute metrics for filament length, 
endpoints and branchpoints scaled with the size of the input image in pixels – this is also 
clearly visible in the masks that are generated, with reduced matrix network complexity 
apparent as the number of pixels is reduced. Normalisation of the filament length to the 
image size and the endpoints and branchpoints to the total filament length eliminated the 
relationship between image size (in pixels) and length, endpoints or branchpoints (Table S1 
and Supplementary Figure 2). It should be noted that the normalised endpoint metric is the 
inverse of the HGU metric. Therefore, we use normalised versions of these metrics in 
subsequent analyses and would recommend that other users do the same. 
 
Having determined which metrics required normalisation and which did not, we then asked 
whether TWOMBLI could reliably quantify differences between the isotropic and anisotropic 
CDMs. To obtain a broad overview of the data, we generated a PCA plot using the normalised 
and scale-free metrics, with the exception of curvature that exhibited high variability. Figure 
4A shows that the quantification of the isotropic CDM and anisotropic CDM largely fall into 
two distinct clusters; however, there are some outliers and the separation is not perfect. 
Further inspection revealed that the most marked outliers were under-exposed images or 
those with added Gaussian blur or noise (Table S1). If the analysis was restricted to images 
captured using the same 20x objective, with appropriate exposure, the same pixel size, and 
same line width value, then TWOMBLI generated two well-segregated clusters in PCA analysis 
corresponding to the isotropic and anisotropic matrices (Figure 4B). Analysis of individual 
variables revealed that many were remarkably robust to the image acquisition settings, with 
alignment, fractal dimension, and lacunarity being particularly insensitive to variation in 
microscope settings and even the use of a 10x or 20x objective (Figure 4C and Table S1). 
Curvature was the one parameter that exhibited a high degree of variation. Closer inspection 
of the details of pixel size and line width selected revealed that the normalised endpoint 
metric was sensitive to the choice of line width, with more nuanced variation in other metrics 
depending on the pixel size and line width choice. For optimal robustness, we would 
recommend that users select a single line width for their analysis and do not vary this. Overall, 
these data indicate that the metrics generated TWOMBLI are robust to the precise choice of 
microscope objective, pixel size, and line width. The biggest factor leading to variation in 
output metrics was incorrect image exposure. The precise choice of focal plane for imaging 
and its thickness had relatively little effect. Minimal variation in metrics was achieved with a 
consistent image resolution and line width choice. 
 
Output metrics are able to distinguish between different matrix patterns 
 
Having determined that TWOMBLI is able to generate reliable metrics, so long as simple 
principles of consistency in image acquisition and analysis parameters were followed, we 
tested whether TWOMBLI could provide a quantitative framework for discriminating between 
different ECM architectures. To this end, images of cell-derived matrices (CDM) generated by 
seven different isolates of fibroblasts were analysed, with multiple images for each example. 
Figure 5A shows that TWOMBLI could effectively identify matrix fibres. Furthermore, the 
alignment metric accurately separated the CDMs which had previously been classified as 
either isotropic and anisotropic using a more complex MATLAB tool12. TWOMBLI also revealed 
notable differences in addition to alignment, the larger gaps in the MAF2 matrix were 
reflected in the lower fractal dimension and higher lacunarity (Figure 5B and Table S2). As 
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might be expected, isotropic matrix patterns generally had lower levels of normalised 
branchpoints. PCA analysis of the different CDMs is presented in Supplementary Figure 3. 
 
Quantification of matrix from the breast cancer biopsies presented in Figure 2 shows how 
some metrics such as high-density matrix (HDM) are intuitively different, whilst other metrics 
such as curvature and branchpoints are more nuanced (Figure 5C). This suggests that, in 
addition to quantifying readily discernible pattern features, TWOMBLI could be particularly 
helpful in identifying patterning properties that are difficult to ascertain by eye. The 
application of TWOMBLI to prostate biopsies is demonstrated in Supplementary Figure 4A, 
with quantitative differences in high density matrix, fractal dimension, and lacunarity 
collectively distinguishing tumour regions from both normal glandular and normal stromal 
regions of prostate tissue (Supplementary Figure 4B and Table S3). Taken together with the 
robustness results, these analyses suggest that TWOMBLI is able to distinguish between 
clearly different matrix patterns. 
 
Finally, we sought to test whether our pipeline might have utility beyond the analysis of 
extracellular matrix fibres. Dynamic filamentous polymers, including F-actin and microtubules, 
within cells collectively make up the intracellular cytoskeleton. Supplementary Figure 5 shows 
images of the F-actin network within the NF2 and CAF1 fibroblasts used to generate the CDMs 
that we analysed in Figure 5. We have previously reported increased F-actin stress fibres in 
CAF1 and, consistent with this, the TWOMBLI pipeline correctly identifies an increased length 
of filamentous structures. This demonstrates that our analysis tool could analyse diverse 
imaging data spanning sub-cellular filamentous networks through to the extracellular matrix 
in pathological samples. 
 

Discussion 
 
Much work has focused on identifying patterns of cells in tissues 22–24. However, ECM 
organisation, which plays a crucial part in tissue architecture, has been somewhat neglected. 
We have developed TWOMBLI to quantify a wide range of matrix features, enabling further 
understanding into the relevance of ECM organisation in a wide range of contexts, from tissue 
damage 25–27 to ageing 28, development 29 to fibrotic disease and cancer. This tool is designed 
to be a ‘one stop shop’ that generates a wide range of metrics that capture diverse aspects 
of matrix pattern in the same pipeline, thereby saving researchers from having to run multiple 
analytical tools in parallel on the same images. FIJI was chosen as the platform because it is 
freely available, well known and widely used by the biological and medical sciences 
community 4,30 
 
Our analysis indicates that the metrics generated are relatively robust to both the precise 
region of matrix selected and to the exact microscope settings (Figure 4). Sub-optimal 
exposure of images was the most detrimental factor in terms of the robustness of the output 
metrics generated and we would advise researchers to ensure appropriate exposure settings. 
The objective used and pixel size should be kept constant for optimal results. Slight variations 
in focal plane or the thickness of the optical section had only minor effects on the output 
metrics (Figure 4B). Attention should be paid to the ridge detection width because this 
parameter dictates whether the algorithm identifies fine or thick matrix fibres. Analysis of the 
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same images using two different line widths revealed that the identification of endpoints and 
branchpoints was sensitive to the choice of line width. However, many parameters were 
relatively insensitive to this setting, which should enable comparison of metrics between 
different studies conducted using slightly different analysis settings. The only parameter that 
we would advise extra caution to be taken over is curvature, which showed a high degree of 
variation. In some cases, it may be advantageous to run the same images with two different 
ridge detection widths so that both fine and coarse features can be captured. 
 
The tool that we describe here is designed to be simple to use and generate a wide range of 
metrics. It is not designed to be highly specialised in its handling of particular matrix features. 
Excellent specialist tools exist for researchers who may wish to dig deeper into particular 
features of the ECM; in particular, the Eliceiri group has developed a suite of tools to 
interrogate matrix alignment using MATLAB13, including analysis of matrix fibre orientation 
relative to tumour cells. Our group has also generated more bespoke tools for measuring 
matrix alignment over a range of length scales and this may be of use to researchers wishing 
to compare short-range and long-range matrix alignment 4,5. The alignment metric in 
TWOMBLI is not capable of this level of sophistication and simply generates a global 
alignment score for the whole field of view. MATLAB tools for the analysis of matrix gaps have 
also been generated 30. Haralick features have also been used to measure ECM organisation7; 
however, we did not include it because textural analysis is not well-suited to our filament-
based approach. Nonetheless, Haralick analysis may be a useful addition to future iterations 
of matrix analysis platforms, especially if performed on images prior to filament tracing. 
 
The tool that we describe has been developed with the purpose of quantifying ECM fibres, it 
can also be applied to other classes of biological images, such as networks of F-actin or 
microtubules or even vascular networks. Its broad applicability is evidenced by its ability to 
analyse the F-actin cytoskeleton of the fibroblasts (Supplementary Figure 5). Furthermore, 
the ability of this tool to segregate normal prostate images from tumour regions suggests that 
it could be exploited in the analysis of clinical samples. It is our sincere hope that this versatile 
tool will be of use to cell biologists, tissue biologists, and pathologists, enabling these 
communities to study the consequences of different matrix architectures in disease. 
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Methods 
Computational analysis 
All computational methods are described in detail in the TWOMBLI documentation which can 
be found at https://github.com/wershofe/TWOMBLI. 
Picrosirius red staining 
Samples were stained using ABCAM ab150681 Picrosirius Red Kit. Briefly, slides were 
deparaffinised and hydrated, before applying Picro-Sirius Red Solution for 60 minutes, rinsing 
twice in acetic acid, then alcohol dehydration, and finally mounting. Slides were then scanned 
at 10x using Zeiss Axio Scan.Z1. 
Cell-derived matrix assay 
The CDM assay and the fibroblasts used are described in Park et al 4. Briefly, glass-bottom 
dishes (MatTek, P35-1.5-14-C) were pre-prepared with 0.2% gelatin solution (1h, 37 °C), then 
1% glutaraldehyde for 30 min at room temperature (RT). After PBS buffer solution wash, the 
plate was incubated with 1 M ethanolamine for 30 min (RT). After two washes with PBS we 
seeded 7 × 104 cells in media with 100 μg ml−1 ascorbic acid ((+)-sodium L-ascorbate, Sigma, 
A4034). Cells were kept for 6 days and media changed every 2 days. We used extraction buffer 
and washed several times with PBS before immunofluorescence for ECM using anti-
fibronectin-FITC (1:50 dilution; Abcam, ab72686). Samples were imaged using a Zeiss LSM 780 
microscope using either a 20x 0.75NA objective or 10x 0.45NA objective. 
Collagen Imaging 
Second harmonic generation imaging for collagen was performed as described in Park et al 
using a Zeiss LSM 780 microscope with Mai Tai multi-photon laser. Fresh post-mortem tissue 
from PDGFRA::H2B-eGFP mice was used. 
 

Supplementary Information 
Supplementary Text 1 = TWOMBLI Documentation 
Supplementary Video = TWOMBLI Tutorial 
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Figure 1: Workflow diagram of quantification of matrix patterns. End-to-end pipeline from obtaining 
the samples through matrix quantification to survival analysis based on this matrix metrology. A list of 
metrics is given in the right-most box. 
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Figure 2: Schematics and example tissue biopsies of ECM metrics. (A)-(J) Images show picrosirius red 
staining breast cancer biopsies. Each biopsy is 600 microns in diameter, scale bar is 100 microns. 
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Figure 3: Input and outputs of TWOMBLI pipeline. (A) User inputs an image of a sample stained for 
ECM components (in this case, collagen is stained with picrosirius red). Outputs consist of a mask, a 
csv file containing matrix metrics based on the mask and a processed image thresholded for HDM. (B) 
Example input images can be acquired from a range of sources: for example (from left to right), 
fibronectin-stained CDM in vitro (images are 500 microns x 500 microns, fibronectin in blue), second 
harmonic imaging in vivo (images are 400 microns x 400 microns, collagen in orange and fibroblast 
nuclei in blue), and in silico ECM. Scale bars are 100 microns. 
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Figure 4: Robustness of matrix metrics. (A) Image shows a PCA plot of both experimental and artificial 
variations in images of the same region of isotropic cell-derived matrix (purple dots) and anisotropic 
cell-derived matrix (green dots). (B) Image shows a PCA plot of metrics derived from images captured 
with a 20x objective of uniform pixel size, exposure, and line width of the same region of isotropic cell-
derived matrix (purple dots) and anisotropic cell-derived matrix (green dots). (C) Plots show the values 
of the indicated metrics with isotropic CDM indicated in purple and anisotropic CDM labelled in green. 
As in (B) only images with the same pixel size and appropriate exposure are included, but images 
captured with a 10x objective and more divergent focal planes are also included. Furthermore, two 
different line width settings are shown: triangles denote use of line width 4 and circles use of line width 
8.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2020. ; https://doi.org/10.1101/867507doi: bioRxiv preprint 

https://doi.org/10.1101/867507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5: Using TWOMBLI for quantification of ECM patterns (A) CDM imaging of fibronectin produced 
by seven different fibroblast lines in vitro 4. Four patterns are isotropic (left) and three patterns are 
anisotropic (right). Images are 500 microns x 500 microns, scale bar is 100 microns. Corresponding 
masks derived in TWOMBLI are displayed underneath. (B) Quantification of matrix patterns from (A) 
across a number of metrics. Normalisation is performed by dividing the raw value by the total length 
of fibres in the masks. (C) Output metrics for the corresponding tumour biopsies shown in Figure 2. 
Pairs (A, B), (C, D) etc. show contrasting biopsies with low and high values of each metric as indicated 
in the table in blue/orange respectively. For endpoints and branchpoints, normalised values are given 
in brackets below the raw value. The normalised value is computed by dividing the raw value by the 
total length of the fibres in the mask. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2020. ; https://doi.org/10.1101/867507doi: bioRxiv preprint 

https://doi.org/10.1101/867507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Figure 1. (A) Examples of the images of the isotropic and anisotropic matrices used for 
robustness testing. Images are a single confocal section captured with a 20x 0.75 NA objective 
containing 2048 x 2048 pixels, corresponding to 850 microns x 850 microns. Scale bar is 100 microns. 
(B) Masks are shown for the filament network generated from images captured with varying focal 
plane, objective (10x or 20x), pixel sizes, and exposure. Downward arrow indicates that the image was 
downsized to the indicated number of pixels after acquisition, but prior to generating the mask. 
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Supplementary Figure 2. Effect of normalisation. (A) Shows quantification of endpoints from two 
images with 2048 pixels spanning 850 microns and two images with 1024 pixels spanning the same 
distance. Purple indicates Isotropic CDM and green indicates Anisotropic CDM. (B) Shows 
quantification of endpoints/length from two images with 2048 pixels spanning 850 microns and two 
images with 1024 pixels spanning the same distance. Purple indicates Isotropic CDM and green 
indicates Anisotropic CDM. 
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Supplementary Figure 3: Discrimination of different cell-derived matrices. Image shows a PCA plot of 
the metrics of CDMs generated by seven different fibroblasts.   
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Supplementary Figure 4. Quantifying prostate cancer images. (A) Normal prostate and tumour biopsies 
stained with picrosirius red are shown above their corresponding mask. Scale bar is 250 microns. 
Normal prostate images are sub-divided into glandular or stromal regions. (B) Three-dimensional plot 
showing the separation of normal glands (yellow), normal stroma (red), and tumour (blue) based on 
normalised HDM, fractal dimension, and lacunarity metrics. 
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Supplementary Figure 5: Applications of TWOMBLI to actin cytoskeleton. Images show the F-actin 
cytoskeleton from NF2.1 (fourth images from left) and CAF1 (left-hand panel) growing on 12kPa 
fibronectin coated substrate (images adapted from Calvo et al Cell Reports 2015 31). Scale bar is 10 
microns.  
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