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ABSTRACT 

 

Functional network connectivity (FNC) obtained from 

resting-state functional magnetic resonance imaging (fMRI) 

data have been commonly used to study mental disorders in 

neuroimaging applications. Likewise, generative adversarial 

networks (GANs) have performed well in multiple 

classification benchmark tasks. However, the application of 

GANs to fMRI is relatively rare. In this work, we proposed 

an FNC-based GAN for classifying brain disorders from 

healthy controls (HCs), in which FNC matrices were 

calculated by correlation of time courses derived from non-

artefactual fMRI independent components (ICs). The 

proposed GAN model consisted of one discriminator (real 

FNCs) and one generator (fake FNCs), each has four fully-

connected layers, and feature matching was implemented 

between each other to improve classification performance. 

An average accuracy of 70.1% with 10-fold cross-validation 

was achieved for classifying 269 major depressive disorder 

(MDD) patients from 286 HCs, at least 5.9% higher 

compared to other 6 popular classification approaches (54.5-

64.2%). In another application to discriminating between 558 

schizophrenia patients and 542 HCs from 7 sites, the 

proposed GAN model achieved 80.7% accuracy in leave-one-

site-out prediction, outperforming support vector machine 

(SVM) and deep neural net (DNN) by 3-6%. To the best of 

our knowledge, this is the first attempt to apply GAN model 

based on fMRI data for mental disorder classification. Such a 

framework promises wide utility and great potential in 

neuroimaging biomarker identification. 

Index Terms—Resting-state fMRI, Generative 

Adversarial Networks (GAN), Deep learning, Classification, 

Major depressive disorders, Schizophrenia. 

 

1. INTRODUCTION 

 

Functional connectivity (FC) has been commonly utilized 

to study mental disorders, which can reflect the organization 

and interrelationship of spatially separated brain regions. FC 

is widely applied in neuroimaging to identify potential 

biomarkers for predicting or classifying mental disorders. 

Mental disorders cause high socioeconomic burdens and 

many disease exhibit comorbidity between each other (1). 

However, diagnosis of mental disorders mainly depends on 

symptom scores from clinical interview, such as the Hamilton 

depressive rating scale (HDRS) and the positive and negative 

syndrome scale (PANSS), which lack reliable and objective 

biomarkers. There are no existing gold standards that can be 

used for definitive validation. FC has shown great potential 

to differentiate mental disorders such as schizophrenia and 

major depressive disorder (2, 3). 

Many machine learning methods based on FC have been 

applied in the classification of mental disorder. For instance, 

support vector machine (SVM), linear discriminant analysis 

(LDA), and nearest neighbors (NN) methods have been 

successfully applied to discriminate mental disorders (2). 

However, traditional machine learning algorithms has been 

criticized for its poor performance on raw data because it 

requires expert experience to apply feature selection to 

acquire less redundant and more informative features. 

Recently, deep learning has achieved remarkable results in 

many research field (4-6). Deep learning is able to 

automatically learns from the pattern of data without feature 

selection and the accuracy of classification using deep 

learning on neuroimaging data is higher than traditional 

machine learning algorithms. For instance, (7) adopted 

stacked autoencoder to initialize its own weight based on pre-

training to increase schizophrenia classification accuracy. (8) 

investigated the discriminant autoencoder network for multi-

site classification of schizophrenia with fMRI. Therefore, the 

deep learning methods have demonstrated powerful 

diagnostic ability for mental disorder classification and 

provide better analysis of pathophysiology. 

In particular, generative adversarial networks (GANs) 

have drawn increasing attention due to their capability to 

perform data generation and have been widely used in many 

fields, including image synthesis, reconstruction, 

segmentation, and classification(9). GANs have been 
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recently proven successful on standard classification 

benchmark tasks (10, 11). The generated samples promote the 

discriminator's classification ability through adversarial 

learning, especially in the case of small samples size. For 

instance, (11) proposed multiclass spatial–spectral GAN 

(MSGAN), the discriminator enhances classification 

performance by extracting the joint features of spatial and 

spectral information generated by two generators. The 

features for these problems are high-dimensional but the 

small sample size problem in medical imaging makes it 

challenging for the classifiers to learn a good decision 

boundary. 

Inspired by this, in this work, we proposed an FNC-based 

GAN for classifying brain disorders from healthy controls 

(HCs), in which FNC matrices were calculated by correlation 

of time courses derived from non-artefactual fMRI 

independent components (ICs). Functional network 

connectivity (FNC) is able to reflect functional interactions 

among structurally segregated brain regions, known as brain 

networks (12). While FC is widely computed based on the 

predefined regions of interest (ROI), FNC estimated by group 

independent component analysis (group-ICA) demonstrates 

more reliable and sensitive in biomarker detection for 

psychosis (13).  

To the best of our knowledge, this is the first attempt to 

apply GAN based on FNC to discriminate MDD vs HC (555 

subjects, 269 MDD patients and 286 HCs from 4 sites) and 

SZ vs HC (1100 subjects, 558 SZ patients and 542 HCs from 

7 sites). The proposed GAN model shows a GAN-based end-

to-end classification and it combines FNC generation sample 

and classification into a unified optimization framework. In 

addition, the proposed GAN model defines adversarial 

objections between the generators and discriminator and uses 

adversarial learning to further improve classification 

performance of the discriminator. Our model alleviates the 

small size problem of FNC images by making full use of 

generated FNC samples and adversarial learning. Results 

showed that the GAN model achieved an average 70.1% 

accuracy with 10-fold cross-validation in MDD vs HC, at 

least 5.98% higher than five conventional methods and deep 

neural net (DNN) (54.5-64.2%). To validate the effectiveness 

of GAN model, we further applied it to a large-scale multi-

site schizophrenia (SZ) dataset including 558 patients and 

542 HCs from seven sites, achieving 80.73% accuracy in 

leave-one-site prediction, outperforming SVM and DNN by 

3-6%, further demonstrating efficacy of the GAN approach.  

 

2. MATERIALS AND METHODS 

 

2.1. Participants 

In this study, we used the 555 Chinese Han samples 

including 269 MDD patients and 286 HCs and these samples 

were derived from 4 sites, including the Henan Mental 

Hospital of Xinxiang(Site 1), the West China Hospital of 

Sichuan(Site 2), the Anding Hospital of Beijing(Site 3), and 

the First Affiliated Hospital of Zhejiang(Site 4). No 

significant group difference between HC and MDD was 

obtained in age or gender (age: p = 0.22; gender: p = 0.18). 

The DSM-IV based on SCID-P interviews was used to 

diagnose patients. HCs were interviewed using SCID-I/NP, 

and the first-degree relatives with any mental illness were 

excluded.  

In this study, we also used 1100 Chinese subjects to test 

our method, including 542 HCs and 558 SZ patients from 

seven sites. Table 2 provides a more detailed statistical 

information. 

2.2. Data Preprocessing and FNC Measure 

 

The fMRI data for all subjects were preprocessed using SPM8 

software (https://www.fil.ion.ucl.ac.uk/spm/), including the 

removal of the first 10 volumes, slice timing correction, 

motion correction, spatially normalized into standard MNI 

space, reslicing to 3 × 3 × 3 mm3 voxels, and spatially 

smoothing with a 6 mm full width half max (FWHM) 

Gaussian kernel.  

For MDD patients and HCs, the fMRI data were 

decomposed into subject-specific spatial independent 

components (ICs) and its corresponding time courses using a 

spatially contrained ICA back-reconstruction approach called 

group ICA (group-ICA) implemented in the GIFT software 

(http://trendscenter.org/software/gift) which is robust to 

artifacts(18), resulting in 29 selected intrinsic connectivity 

networks (ICNs) from 100 group independent components, 

please see more details in (19). The time courses of selected 

ICNs were post-processed by detrending linear, quadratic and 

cubic trends, regressing out 6 realignment parameters and 

their temporal derivatives, despiking, and bandpass filtering 

between 0.01~0.15 Hz using a 5th order Butterworth filter. 

FNC was computed as the pairwise correlation between any 

two ICN time courses for each subject, which was further 

used as input feature of the GAN model. 

For SZ patients and HCs, the fMRI data were 

decomposed into subject-specific spatial independent 

components (ICs) and its time courses by performing group-

ICA within the GIFT software(18), resulting in 50 selected 

intrinsic connectivity networks (ICNs) from 100 group 

independent components. The time courses (TCs) of selected 

ICNs are post-processed by detrending, regressing out head 

motion, despiking and lowpass filtering (<0.15 Hz) and the 

FNC matrices are calculated as the Pearson’s correlation in 

each pair of ICs, which was further used as input feature of 

the GAN model.  

 

Table 1. Demographic information of the HC/MDD database 
 MDD HC P-value 

Number of scans 269 286 NA 

Age (mean±std, yrs) 32.8±10.6 31.7±10.4 0.22 
Gender (M/F) 105/164 105/181 0.18 

 

 

Table 2. Demographic information of the SZ/HC database 
 HC SZ 

Number of scans 542 558 

Age (mean±std, yrs) 28.0±7.2 27.6±7.1 
Gender (M/F) 276/266 292/266 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867168doi: bioRxiv preprint 

https://doi.org/10.1101/867168
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3. GAN Based on Feature Matching Classifier. 

As shown in Fig 1, a GAN architecture was applied for 

classification. Compared to unsupervised GAN model, the 

proposed GAN incorporated both labeled and generated data 

into the loss function that can be divided into three parts. The 

discriminator’s output layer has K + 1 classes, where K = 2 

for the real class from data x and K + 1 class for the generated 

image. The loss function L is defined for each type of data 

(Llabeled, Lunlabeled, Lgenerated), and the total loss is used to 

optimize the GAN model. The loss of Lunlabeled 

and Lgenerated made up the Lunsupervised loss that was trained 

without using the label information, while the GAN model 

used the label information to minimize Lsupervised loss. All 

loss function is defined as below: 

 
𝐿 = 𝐿𝑙𝑎𝑏𝑒𝑙𝑒𝑑 + 𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 + 𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = 𝐿𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 + 𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 (1) 

          
𝐿𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =  −𝐸𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎

𝑙𝑜𝑔𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥, 𝑦 < 𝐾 + 1) (2)

  
𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 = 𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 + 𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = (5) 

 
 {𝐸𝑥~𝑝𝑑𝑎𝑡𝑎

𝑙𝑜𝑔(1 − 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 = 𝐾 + 1|𝑥))

+ 𝐸𝑥~𝐺𝑙𝑜𝑔𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 = 𝐾 + 1|𝑥)} 
   

𝐷(𝑥) = 1 − 𝑃𝑚𝑜𝑑𝑒𝑙(𝑦 = 𝐾 + 1|𝑥) (6) 
   

𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 =  − 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑙𝑜𝑔 𝐷(𝑥) − 𝐸𝑧~𝑛𝑜𝑖𝑠𝑒 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) (7) 

 
𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =  −𝐸𝑥~𝐺𝑙𝑜𝑔𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 = 𝑘 + 1 | 𝑥) (8) 

 

Where, x: input data; y: the label of the input data;  Pdata: the 

distribution of the input data; G: the generated data; 

Pmodel(. |. ): the output probability of discriminator. 

Feature matching can generate fake samples within the 

high-density region in feature space, which can split the 

bounds of different classes because of its continuity to further 

enhance classification performance (14). The generator was 

trained to match the feature value in intermediate layers of the 

discriminator.  

Activations in an intermediate layer of the discriminator 

were denoted as f(x),  our new objective for the generator can 

be defined as follows: 

‖𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
𝑓(𝑥) − 𝐸𝑧~𝑝𝑧(𝑧)𝑓(𝐺(𝑧))‖

2

2
 (3) 

Previous studies revealed that the generated samples 

promote the discriminator's classification ability through 

adversarial learning, especially in the case of small samples 

size (10, 11, 15) and feature matching is able to improve 

classification performance(10). Thus, we attempt to apply 

Feature Matching GAN based on FNC to discriminate MDD 

vs HC and SZ vs HC.  

 

2.4. GAN model implementation 

The GAN model was trained and evaluated by using Theano 

and Scikit-learn (https://scikit-learn.org/). The GAN model 

consisted of one discriminator and one generator that had four 

layers respectively. The output layer of the discriminator has 

K+1 classes, where K = 2 for the input pattern from HC and 

patient group, and the [K+1]th class is for generating fake 

images. The high-dimensional features of each subject may 

lead to overfitting on the training set. In order to reduce the 

overfitting susceptibility, L2 normalization and batch 

normalization were added to the generator to improve modal 

generalization. In addition, weight normalization was used to 

the output of each layer of the discriminator to prevent 

overfitting. The loss function of the GAN for the fine-tuning 

step is defined in 2.3. 

The adam optimizer was adopted as minimizing the loss of 

the GAN model and a standard error back-propagation 

algorithm was used by training the GAN model with multiple 

layers. The batch size was set as 120 in the training process. 

In addition, to overcome overfitting, the weights were 

controlled with weight norm regularization. Different layers 

were attempted to the constructed architecture of the GAN 

model and results revealed that using four layers could obtain 

the optimal classification performance. The learning rate was 

set as 0.003. All trainings and experiments were completed 

on a standard workstation (Intel(R) Xeon(R) CPU E5-1650 

v4 @ 3.60GHz, 6 CPU cores, 12GB NVIDIA GTX TITAN). 

 

3. EXPERIMENT AND RESULTS  

 

3.1. Ten-fold and leave-one-site-out Classification in 

MDD  

To demonstrate the performance of the proposed method, we 

compared the proposed method with other state-of-art 

methods, including five conventional methods SVM, NN, 

Gaussian Process, Naive Bayes, and AdaBoost and a deep 

learning method DNN. 10-fold cross-validation strategy was 

used for estimating the generalization ability of the classifiers. 

In order to test the generalization of the model, we train the 

different models with the leave-one-site-out method. The 

classification results of the GAN model compared with the 

other six methods were summarized in Table 3 and Table 4. 

The result suggested that the proposed GAN method 

 

Fig. 1.  Overview of the GAN model for MDD vs HC and SZ vs HC 

classification. The GAN model was composed of a discriminator and a 

generator with four fully-connected layers.  

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867168doi: bioRxiv preprint 

https://doi.org/10.1101/867168
http://creativecommons.org/licenses/by-nc-nd/4.0/


significantly outperformed other methods in terms of ACC, 

SEN, SPE, F1, and AUC measures. The t-distributed 

stochastic neighbor embedding (t-SNE) was used to visualize 

the GAN classification performance. 

 

3.2. The Classification of Ten-fold and leave-one-site-out 

in SZ 

 

To validate the effectiveness of the GAN model, we 

evaluated the proposed GAN method on the task of SZ 

classification (542 HCs and 558 SZ). The proposed method 

was compared with six state-of-art methods using 10-fold 

cross-validation and leave-one-site-out method. Results were 

summarized in Table 5 and Table 6, demonstrating that the 

classification performance of GAN was significantly better 

than other methods. The proposed GAN model can be 

generalized to classify new site. 

3.3. Ablation experiment 

 

Furthermore, adversarial training (AD) and FM in GAN 

could directly influence the learning capacity of the GAN 

method. Therefore, we had a comparison for the GAN models 

performance with adversarial training vs no adversarial 

training (No-AD) and feature matching vs no feature 

matching (No-FM). As shown in Fig. 5, the GAN model with 

adversarial training has increased performance from all 

evaluation criteria, compared to the GAN model with No-AD. 

The GAN model with FM has better classification 

performance compared to the GAN model with No-FM. 

4. CONCLUSION 

 

In summary, as far as we know, this is the first attempt to 

apply GAN based on FNC to discriminate MDD vs HC and 

SZ vs HC. We proposed a deep learning framework with 

GAN model, combined with adversarial training and feature 

matching, for brain disease diagnosis using the FNC, which 

can be directly used to classify new individual patients. 

Compared with 5 traditional methods and DNN approach, the 

GAN model achieved 5.9% higher in MDD classification and 

1.8% higher in SZ classification, suggesting its utility as a 

potentially powerful tool to aid in discriminative diagnosis. 
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