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Abstract 

Functional brain connectivity is altered in children and adults with autism spectrum 

disorder (ASD). Mapping pre-symptomatic functional disruptions in ASD could identify infants 

based on neural risk, providing a crucial opportunity to mediate outcomes before behavioral 

symptoms emerge.  

 

Here we quantify functional connectivity using scalable EEG measures of oscillatory 

phase coherence (6-12Hz). Infants at high and low familial risk for ASD (N=65) underwent an 

EEG recording at 3 months of age and were assessed for ASD symptoms at 18 months using the 

Autism Diagnostic Observation Schedule-Toddler Module. Multivariate pattern analysis was 

used to examine early functional patterns that are associated with later ASD symptoms. 

 

Support vector regression (SVR) algorithms accurately predicted observed ASD 

symptoms at 18 months from EEG data at 3 months (r=0.76, p=0.02). Specifically, lower frontal 

connectivity and higher right temporo-parietal connectivity predicted higher ASD symptoms. 

The SVR model did not predict non-verbal cognitive abilities at 18 months (r=0.15, p=0.36), 

suggesting specificity of these brain alterations to ASD.  

 

These data suggest that frontal and temporo-parietal dysconnectivity play important roles 

in the early pathophysiology of ASD. Early functional differences in ASD can be captured using 

EEG during infancy and may inform much-needed advancements in the early detection of ASD.   
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Introduction 

Autism is a disorder of early brain development that is diagnosed based on the presence 

of social-communication impairments and restricted, repetitive behaviors [1]. Interventions that 

begin early in life hold immense potential for altering neurodevelopmental trajectories and 

improving outcomes in autism spectrum disorder (ASD). However, the behavioral signs of ASD 

are typically identified after four years of age [2, 3], therefore preventing earlier attempts to 

mediate outcomes. Mapping the changes in early brain development that lead to ASD could 

inform pre-symptomatic markers of neural risk, allowing interventions to target 

neurodevelopmental trajectories while they are most mutable, and before infant development is 

substantially impacted [4, 5].  

 

Social cognition and behavior rely on higher-order brain regions that communicate 

through synchronized neuronal activity [11, 12, 13]. Neural pathology in ASD are thought to 

disrupt the brain’s ability to generate and sustain synchronous neuronal activity, therefore 

altering how distributed brain regions communicate with one another [6–10]. Postmortem studies 

report neural pathology that could disrupt large-scale brain activity in ASD, including 

differences in neuronal and axonal organization [14, 15], myelination [16], and neurotransmitter 

receptor density [17]. The large-scale oscillations that emerge from coherent neuronal activity 

can be directly studied using techniques such as EEG, or indirectly studied using fMRI. Both 

EEG and fMRI studies suggest that long-range functional connectivity is reduced in children and 

adults with ASD [18-20]. Although the majority of connectivity differences in ASD have been 

studied post-diagnosis, the neuronal and synaptic building blocks that scaffold the connectome 

are established much earlier, during very early brain development. Postmortem studies [21, 22] 
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and human neural stem cell models [23] suggest that the initial stages of neuronal maturation and 

organization are abnormal in ASD. ASD-associated genes have also been shown to converge 

upon molecular processes that govern neuronal differentiation and synaptic development [24, 

25]. The presence of cellular and synaptic differences during very early brain development could 

disrupt large-scale oscillatory activity, and therefore be directly captured in vivo using EEG.   

 

Characterizing early functional connectivity patterns in vivo relies on prospective studies 

of infants with heightened risk of developing ASD. The younger siblings of children with ASD 

(familial-risk infants) have an ASD recurrence risk of nearly 20% [26] and, as they are identified 

based on family history, can be studied from birth. MRI studies report early brain changes in 

familial-risk infants who later develop ASD. At 6 months of age, differences in structural brain 

development include atypical white matter integrity across distributed long-range tracts [27] and 

major tracts such as the corpus callosum [28, 29]. In the same sample of infants, fMRI measures 

of functional connectivity at 6 months are shown to predict later ASD diagnoses [30]. These data 

suggest that connectivity is atypical during early infancy in ASD. However, as an indirect 

measure of neuronal activity, fMRI coactivation patterns cannot assay how synchronized neural 

communication mechanisms are altered. Measuring patterns of functional connectivity using 

high temporal precision EEG will provide a unique mechanistic insight, complementary to MRI 

techniques, into neural interactions during infancy in ASD.  

 

EEG is particularly well-suited to clinical screening, as it is portable, relatively low cost, 

and involves a lower testing burden than MRI [31]. While EEG has been used to study early 

neural differences in ASD, there have been no multivariate studies that characterize cortex-wide 
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functional connectivity patterns during infancy in ASD. Here we take a data-driven approach to 

address this gap, mapping differences in functional connectivity at 3 months of age that are 

associated with later ASD symptoms. Multivariate pattern analysis leverages the rich information 

provided by neural time series data and represents a powerful way to uncover brain-wide patterns 

of functional disruptions that lead to ASD. Functional connectivity is quantified through the 

phase coherence of alpha oscillations (6-12Hz), as alpha coherence is highly sensitive to early 

neural changes that occur in the context of both typical [32] and atypical brain development [33]. 

Furthermore, alpha oscillations are specifically associated with the structural [34] and functional 

[35] properties of long-range connections and may therefore capture earlier markers of the long-

range connectivity differences described in children and adults with ASD. Based on previous 

findings implicating structural differences throughout the corpus callosum during infancy in 

ASD [28, 29], we hypothesized that atypical interhemispheric coherence would predict a higher 

level of ASD symptomatology at 18 months.  
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Methods and Materials 

Sample 

Participants in the present analyses were part of a larger ongoing study examining the 

development of infants with and without familial risk for ASD across the first 3 years of life. 

Familial-risk infants had at least one older sibling with a confirmed ASD diagnosis. Initial parent 

reports of sibling diagnoses were confirmed by a review of documented evidence. Low-risk 

infants had no reported family history of ASD or other neurodevelopmental disorders within first 

degree relatives. Infants were recruited from the community through the UCLA Center for 

Autism Research and Treatment (CART). Sixty-five infants completed an EEG recording session 

at 3 months and underwent behavioral assessment at 18 months. Demographic details for the 

sample are provided in Table 1. The study received ethical approval from the relevant 

institutional review board, and parents provided informed written consent on behalf of all infants 

in accordance with the Declaration of Helsinki.  

 

ASD Assessment 

A trained clinician administered the Toddler Module of the Autism Diagnostic 

Observation Schedule-Second Edition (ADOS-T) at 18 months of age [36, 37]. The ADOS-T is a 

gold-standard tool used by clinicians and researchers to assess social-communication and 

repetitive behaviors in children under 30 months of age. ASD symptoms were quantified using 

dimensional ADOS-T algorithm scores (total score ranging from 0-18). ADOS-T scores ≥ 10 are 

highly indicative of a clinically relevant level of symptoms at 18 months and of ASD symptoms 

at later ages (measured using the ADOS) [38].  
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Cognitive Assessment  

A trained clinician administered the Mullen Scales of Early Learning (MSEL) [39] at 18 

months of age. The MSEL is a standardized measure of developmental abilities for children 

ranging in age from birth to 68 months of age. Verbal development (VDQ) was calculated from 

averaged receptive language and expressive language subscale t-scores, and non-verbal 

development (NVDQ) from averaged visual reception and fine motor subscale t-scores [40].  

 

Table 1. Demographic participant details. While group comparisons were not carried out as part 

of the present study, sample descriptions are provided according to both familial risk status 

groupings, and for infants who did (ASD+), and did not (ASD-), meet the cut-off for clinical 

symptoms on the ADOS-T at 18 months (ADOS-T ≥ 10). 

 

 Familial Risk  
(N=36) 

Low Risk 
(N=29) p  ASD+ 

(N=14) 
ASD- 

(N=51) p 

Sex 
n female (% 

female) 

13 f 
(36.1%) 

11 f 
(37.9%) .54  2  

(14.3%) 
22  

(43.1%) .060 

Precise 3 Month 
EEG age 

Mean (SD), Range 

3.18 (0.35), 
2.57-3.90 

3.17 (0.32), 
2.63-4.13 .87  3.05 (.23), 

2.57-3.43 
3.21 (.36),  
2.63-4.13 .117 

18 Month VDQ 
Mean (SD), Range 

43.39 (9.61), 
21-63.5 

49.07 
(10.63), 
25-66 

.030*  31.75 (5.82), 
21-40.50 

49.95 (7.43), 
35.5-66 <.001* 

18 Month NVDQ 
Mean (SD), Range 

46.07 (7.51), 
24.5-64 

 

51.54 (9.08), 
25-66 

 
.011*  40.96 (9.70), 

24.5-59.5 
50.65 (7.02), 

34-66 <.001* 

18 Month ADOS-
T Total Score  

Mean (SD), Range 

7.17 (5.12), 
1-18 

5.21 (4.44),  
0-18 .11  14.28 (2.67), 

10-18 
4.09 (2.46),  

0-9 <.001* 
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EEG Acquisition  

Four electrodes close to the eyes (positioned to record electrooculogram (EOG)) were 

removed from the net to increase comfort for infants. Net Station 4.4.5 software was used to 

record from a Net Amps 300 amplifier with a low-pass analog filter cutoff frequency of 6 KHz. 

EEG data were acquired for at least 3 minutes. Data were sampled at 500 Hz and referenced to 

vertex (Cz) at the time of recording. Electrode impedances were kept below 100 KΩ. Infants 

were held in a caregiver’s lap throughout the recording while bubbles were blown by an unseen 

experimenter, consistent with widely used spontaneous recording conditions in infant 

populations [41, 42].  

 

EEG Processing  

All offline data processing and analyses were performed using EEGLAB [43] and in-

house MATLAB scripts. The experimenter was blind to participant details (including risk status) 

throughout the data cleaning process. Data were high pass filtered to remove frequencies below 1 

Hz and low pass filtered to remove frequencies above 90 Hz, using a finite impulse response 

filter. Continuous data were then visually inspected, and any sections including excessive 

electromyogram or other non-stereotyped artifacts were removed. Artifact subspace 

reconstruction (ASR), a data cleaning method that uses sliding window principal component 

analysis, was then used to remove high amplitude artifacts relative to artifact-free reference data 

[44]. ASR is especially useful for retaining maximum data in infants (where the length of EEG 

recordings is limited), as it allows artifacts to be removed while retaining the co-occurring EEG 

data that represents neural activity. The eeglab function clean_RawData was used to implement 

ASR, with default parameters and rejection threshold k=8 [44].  
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Following interpolation to the international 10–20 system 25 channel montage [45], 

independent component analysis (ICA) was used to decompose data into maximally independent 

components (IC), and the power spectral distribution (PSD), scalp topography and time course of 

each IC were visually examined. IC’s that represented non-neural activity (including EMG, 

EOG, heart artifact and line noise) were removed from the data.  

 

Alpha Phase Coherence  

Cleaned data were transformed to current source density (CSD) estimates, in order to 

mitigate the effects of volume conduction [46]. Spherical spline Laplacian transforms were 

conducted using realistic head geometry, with head radius set at 7cm (representing the average 

head radius of 3-month-old infants), and flexibility constant m = 3. CSD data were separated into 

3-second epochs to obtain coherence metrics. To retain consistent data length across all 

participants, the first 75 seconds of data were used in all further analyses (representing the 

minimum data length available across the sample). The newcrossf function provided by eeglab 

[43] was used to compute phase coherence (ERPCOH) from the aforementioned resting state 

epochs (for each frequency bin): 

ERPCOH',)(f, t) = 	
1
𝑛
2

𝐹4'(𝑓, 𝑡)𝐹4)(𝑓, 𝑡)∗

8𝐹4'(𝑓, 𝑡)𝐹4)(𝑓, 𝑡)8

9

4:;

 

 

where 𝐹4'(𝑓, 𝑡) represents the spectral estimate of channel 𝑎 in epoch 𝑘 at frequency 𝑓 and time 

𝑡. 𝐹4)(𝑓, 𝑡)∗ is the complex conjugate of 𝐹4)(𝑓, 𝑡) [43]. For each channel pair, ERPCOH was 

averaged across all frequency bins encompassed by the alpha band (6-12Hz), resulting in 300 

values that represented alpha phase coherence between every possible electrode pair.  
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Model Fitting 

Prediction models were used to assess the relationship between 3-month coherence and 

18-month ASD symptoms (ADOS-T total score), with all 300 alpha phase coherence values 

serving as the initial feature set. A “nested” leave-one-out cross validation (LOOCV) procedure 

was used whereby one participant was left out of both training and testing samples entirely. A 

LOOCV regularized regression approach with an elastic net penalty was used to select a subset 

of functional connections within each fold. Selecting features for each fold while the data of the 

test subject remained entirely unseen ensured that feature model performance was not falsely 

inflated through circularity bias [47]. 

 

Elastic net regularization is a hybrid approach combining both the ℓ1 penalty of lasso and 

the ℓ2 penalty of ridge regression [48, 49], and it is well suited to removing redundant variables 

and preventing model overfitting for high dimensional data [50]. There are two parameters that 

impact penalized regression, α and λ. α regulates the degree of mixing between ℓ1 and ℓ2 

penalties, effectively determining the compromise between lasso (least absolute shrinkage and 

selection operator) and ridge regression techniques. Here we implemented α=0.5 to represent an 

equal balance between ℓ1 and ℓ2 penalties. λ is the penalty term and defines the strength of 

regularization. A geometric sequence of λ values were trialed to determine the λ value that 

minimized model deviance (mean squared error; MSE), with the final values across all folds 

averaged to provide a consistent value (λ=1). The lasso function in MATLAB was used to 

implement the regression procedure, and all predictor variables were centered and standardized. 
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After conducting feature selection within each inner fold, predictor data were centered 

and scaled, and linear-kernel support vector regression (SVR) models were trained using the 

default parameters of the fitrsvm function in MATLAB. In addition to the advantages of binary 

classification offered by traditional SVM, support vector machines for regression (SVR) offer an 

opportunity to assess the value of functional connections for predicting ASD behaviors 

dimensionally [51]. The resulting model was used to estimate the ADOS-T score of the N=1 

participant who defined the validation sample. The procedure was then repeated N times, so that 

the symptom score for every participant was predicted from a model to which they had not 

contributed.  

 

Predictive capabilities were examined through the relationship between observed and 

predicted ADOS-T score. The statistical significance of all LOOCV results was determined 

using a permutation testing approach [52, 53]. The null distribution of R2 was estimated by 

repeating the entire model fitting procedure (including feature selection within each fold) using 

1000 surrogate datasets that were generated under the null hypothesis that there is no relation 

between 3-month EEG and 18-month ADOS. The final statistical significance of the model was 

determined by calculating the percentage of null-models that yielded symptom estimates better 

than the final model. The reported permutation p values therefore represent the probability of 

observing the reported R2 values by chance. 

 

Predictive Functional Features  

A major benefit of multivariate pattern analysis is the ability to examine features that 

drive the predictive capability of the SVR algorithm. We analyzed the final consensus feature set 
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that consisted of 22 functional connections that had non-zero coefficients in 100% of folds [52], 

extracting the weight value assigned to each feature. Interpreting the weights from linear models 

in terms of neural activity patterns can be misleading [54, 55]. To allow neurophysiological 

interpretation of individual features in the model, SVR weights were transformed into activation 

patterns using the method described by Haufe and colleagues [55]. Specifically, the activations 

are derived by, 

𝐴 =2 𝑊2 	
A;

BCD
 

 

where Σx denotes the covariance of the data, W represents the regression weights, and Σs
-1 is the 

inverse covariance of the latent factor.  
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Results 
Model Performance  

Alpha phase coherence at 3 months predicted ADOS-T scores. Specifically, the SVR 

model estimated ADOS-T total scores that significantly correlated with actual ADOS-T scores 

measured at 18 months (r = 0.76; R2 = 0.58; p = 0.02; see Figure 1). Reported significance values 

were corrected to represent permutation testing (described under methods).  

 

To determine its specificity, we assessed the ability of the model to estimate cognitive 

function. Consistent with the large overlap between measures of VDQ and ASD symptoms at 

younger ages [56], ADOS-T scores were more highly correlated with VDQ (r = -0.74, p <.001) 

than NVDQ in the present sample (r = -0.40, p = <.001). We therefore focused on the prediction 

of NVDQ. Trained on the same input features, the SVR model was unable to predict 18-month 

NVDQ scores (r = 0.15; p =0.36). Prediction errors did not vary according to familial-risk group 

(p = 0.20) or sex (p = 0.16).  

 

Figure 1. Correlation between actual ADOS-score (X axis), and the predicted ADOS 

score (Y axis) for each participant, with 95% confidence intervals.  
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Feature Activations  

As described above, the contribution of individual functional connections to the SVR 

model was quantified using activation patterns. Activation patterns represent transformed SVR 

weights that allow neurophysiological interpretation, but do not represent activation patterns as 

conventionally described in MRI work. Functional connections that contributed to the SVR 

model represented a mix of positive and negative features (See Figure 2 & 3).  

 

 

Figure 2. Mean feature activations for each of the 22 predictive function connections that 

defined the consensus feature set. Red lines represent a positive activation value (higher alpha 
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phase coherence = higher ADOS-T score), and blue lines represent a negative activation value 

(lower alpha phase coherence = higher ADOS-T score). Wider lines indicating a larger 

contribution to the model (greater absolute activation strength). Graphical representations 

indicate the location of each measurement channel. 
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Figure 3. (A) Mean alpha phase coherence for each of the 22 predictive function 

connections that defined the consensus feature set for ASD+ (red) and ASD- (blue) groups. 

Shaded regions represent SD. (B) Individual alpha phase coherence values (z scores) for each 

participant (arranged from low to high ADOS score) for each predictive function connection 

(with activation patterns arranged from negative to positive).  
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Discussion 

The present study characterizes functional connectivity patterns during early infancy that predict 

individual differences in later ASD symptoms. Early connectivity differences that predicted ASD 

were multivariate, highlighting the importance of studying patterns rather than specific 

functional connections. The regional distribution of predictive connections shows that decreased 

connectivity across frontal connections and increased connectivity across temporo-parietal areas 

are associated with a higher level of ASD symptoms at 18 months. Notably, due to the limited 

spatial resolution of EEG, the precise cerebral structures driving these results cannot be 

determined. However, guided by an infant EEG-MRI localization study, we can consider general 

structures that underlie electrode locations [57]. 

 

Decreased frontal alpha phase coherence 

Decreased alpha phase coherence across fronto-frontal, fronto-temporal and fronto-

parietal connections predicted higher ASD symptoms. Early disruptions in frontal connectivity 

are particularly relevant, given the extensive previous literature that implicates frontal 

neuropathology in ASD. At a cellular level, postmortem studies show disruptions in neuronal 

[15, 21, 58], axonal [16], laminar [22], and minicolumn [59, 60] organization in the frontal 

cortex of individuals with ASD. Differences in large scale frontal connectivity (often fronto-

posterior hypoconnectivity) are also highly supported by EEG and fMRI studies of children and 

adults with ASD [20, 61]. We extend these findings to show that frontal disruptions occur prior 

to behavioral symptoms, suggesting that they represent the core pathophysiology of the disorder, 

and not simply a consequence of ASD symptoms. 
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The frontal cortex may be particularly vulnerable to connectivity disruptions in ASD for 

several reasons, especially given its protracted development [62]. For instance, ASD-associated 

risk genes are shown to converge upon co-expression networks in the frontal cortex during fetal 

brain development [24]. By disrupting key neurobiological processes (such as neuronal 

migration, synaptogenesis, and myelination) in the frontal cortex, genes associated with ASD 

risk may particularly impact frontal functional connectivity [63]. Further evidence linking these 

genes to specific frontal disruptions comes from copy number variations and single gene 

disorders that confer susceptibility for ASD and are also associated with decreased fronto-

temporal and fronto-parietal connectivity [64]. The present data suggest that, in addition to the 

changes seen in syndromic ASD [64], early frontal dysconnectivity due to familial risk may also 

predispose infants to the emergence of ASD.  

 

Increased temporo-parietal alpha phase coherence 

Positively weighted predictors mainly bridged temporal and parietal areas in the right 

hemisphere, above brain structures that subserve social information processing [13]: the superior 

temporal sulcus, as well as postcentral, supramarginal, temporal and angular gyri [57]. These 

results implicate the right temporoparietal junction (rTPJ) [65], a social hub that coordinates 

social information processing [66] and shows atypical function in ASD [67]. Alpha phase 

coherence differences in these regions may reflect the network inefficiencies [27] and structural 

differences in temporal and parietal white matter tracts that have been identified at 6 months of 

age in ASD [28], especially considering that white matter integrity is associated with alpha phase 

coherence [68].  
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In addition to revealing early connectivity differences during infancy, increased alpha 

phase coherence in temporal parietal areas may shed mechanistic insight into reports of 

hypoconnectivity following infancy in ASD. The deleterious effects of increased regional 

connectivity are well-described in neurocognitive disorders, where periods of increased 

connectivity are shown to precede decreased connectivity, a pathological process described as 

hub-overload [69]. Increased alpha phase coherence may lead to hub-overload in ASD and could 

underlie the transition from over- to under-connectivity seen in both alpha phase coherence and 

white matter integrity beginning around 2 years of age in ASD [28, 41], as well as widely 

described reductions in rTPJ activation and connectivity [70]. 

 

Scalability 

EEG measures of neural function could serve as scalable and clinically actionable 

predictors of ASD in early infancy at a time when behavioral signs of atypical development 

remain unclear. The portability, relatively low cost and low testing burden of EEG renders it 

practical for community screening in large populations [31]. To translate laboratory-based EEG 

studies to community settings, neural markers need to be measured accurately under task-free 

conditions in less controlled environments. Alpha phase coherence, in particular, represents a 

highly scalable metric. Alpha oscillations are dominant in spontaneous brain activity and are less 

susceptible to biological and environmental artifacts, thus facilitating measurement in larger 

clinical or community samples.  
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Early Identification & Intervention  

Behavioral features that can consistently predict later ASD diagnosis have not been 

identified in the first year of life and predominantly emerge after 12 months of age [71]. 

Although EEG is not intended to replace behavioral assessment of ASD, EEG markers are 

uniquely positioned to elucidate individual differences that confer neural risk for ASD. By 

examining dimensional risk (rather than binary diagnostic labels), the present study highlights 

that early network disruptions in ASD occur along a continuum. This approach will facilitate the 

identification of neural risk associated with milder/borderline ASD symptoms, a clinical group 

that eludes early behavioral identification [3] but may be particularly responsive to prompt 

intervention [72]. 

 

Early disruptions in brain activity may also impact how an infant responds to their 

environment, causing a cascading brain-behavior-environment interaction that further impacts 

brain development [73]. Identifying individuals using objective EEG markers would facilitate a 

shift from reactionary interventions that focus on modifying established behaviors towards 

preemptive interventions that may mitigate the effects of early disruptions [74].  

 

Strengths, Limitations & Future Directions  

The present study leveraged the benefits of machine learning to model multivariate data. 

However, in order to retain interpretable links between neurobiology and behavior, we employed 

a hypothesis-driven modelling approach that reflects our prioritization of interpretability over 

prediction. For instance, although the inclusion of additional EEG features may capture 

interactions leading to better model prediction, focusing on one neurobiologically- and clinically 
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relevant EEG metric (alpha phase coherence) retained our ability to map predictive model 

features back onto EEG data. These links were also preserved through the use of linear 

modelling as well as forward modelling transformations [55]. These steps allow us to understand 

very early brain differences that precede ASD, and ultimately optimize the translatable clinical 

utility of machine learning methods in ASD. 

 

As with many prior EEG studies of familial-risk infants, a relatively small sample size 

and lack of independent validation limits the generalizability of this study. To determine if alpha 

phase coherence patterns can provide a clinically applicable biological marker of risk, we need 

studies in diverse participant samples representing wider etiological factors beyond familial risk, 

such as infants with known genetic syndromes or preterm infants as well as a community 

screened cohort. Another limitation lies in the focus on only one measurement technique. EEG 

and fMRI provide complementary information about brain function and should be integrated in 

the future to examine how the timing of structural and functional brain changes relate to one 

another during the first year of life in ASD. Finally, longitudinal monitoring of behavior, 

environment, and brain development will broaden our understanding of the dynamic changes in 

early development in ASD and inform decisions around the exact timing and targets of 

preventative interventions to ultimately improve developmental outcomes.  

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 
 

Funding 

This work was supported by the National Institute of Child Health and Human Development 

(2P50HD055784-08), and the UCLA Brain Research Institute (Postdoctoral Award to A.D). 

 

Acknowledgements 

The authors wish to thank all of the infants and families who generously participated in this 

study. The authors are also grateful to Rujuta B. Wilson for her helpful comments on the 

manuscript.  

Conflicts of Interest 

S.S.J. serves as a consultant for Roche Pharmaceuticals. The remaining authors (A.D, M.D, A.M, 

B.G, M.D, & N.M.M) do not have any conflicts of interest associated with this study.  

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 
 

References 
 

1.  American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 

5th ed. American Psychiatric Association; 2013. 

2.  Hall-Lande J, Esler AN, Hewitt A, Gunty AL. Age of Initial Identification of Autism 

Spectrum Disorder in a Diverse Urban Sample. J Autism Dev Disord. 2018. 9 October 

2018. https://doi.org/10.1007/s10803-018-3763-y. 

3.  Sheldrick RC, Maye MP, Carter AS. Age at First Identification of Autism Spectrum 

Disorder: An Analysis of Two US Surveys. J Am Acad Child Adolesc Psychiatry. 

2017;56:313–320. 

4.  Webb SJ, Jones EJH, Kelly J, Dawson G. The motivation for very early intervention for 

infants at high risk for autism spectrum disorders. International Journal of Speech-

Language Pathology. 2014;16:36–42. 

5.  Zwaigenbaum L, Bauman ML, Choueiri R, Kasari C, Carter A, Granpeesheh D, et al. Early 

Intervention for Children With Autism Spectrum Disorder Under 3 Years of Age: 

Recommendations for Practice and Research. Pediatrics. 2015;136:S60–S81. 

6.  Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. 

Autism and Abnormal Development of Brain Connectivity. Journal of Neuroscience. 

2004;24:9228–9231. 

7.  Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum 

disorder. Nature Reviews Neuroscience. 2015;16:551–563. 

8.  Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection 

syndromes. Current Opinion in Neurobiology. 2007;17:103–111. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 
 

9.  Parikshak NN, Gandal MJ, Geschwind DH. Systems biology and gene networks in 

neurodevelopmental and neurodegenerative disorders. Nature Reviews Genetics. 

2015;16:441–458. 

10.  Port RG, Gandal MJ, Roberts TPL, Siegel SJ, Carlson GC. Convergence of circuit 

dysfunction in ASD: a common bridge between diverse genetic and environmental risk 

factors and common clinical electrophysiology. Frontiers in Cellular Neuroscience. 

2014;8:414. 

11.  Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal 

coherence. Trends in Cognitive Sciences. 2005. 2005. 

12.  Varela F, Lachaux J-P, Rodriguez E, Martinerie J. The brainweb: Phase synchronization 

and large-scale integration. Nature Reviews Neuroscience. 2001;2:229–239. 

13.  Adolphs R. The Social Brain: Neural Basis of Social Knowledge. Annu Rev Psychol. 

2009;60:693–716. 

14.  Casanova MF. Neuropathological and genetic findings in autism: the significance of a 

putative minicolumnopathy. Neuroscientist. 2006;12:435–441. 

15.  Morgan JT, Chana G, Abramson I, Semendeferi K, Courchesne E, Everall IP. Abnormal 

microglial–neuronal spatial organization in the dorsolateral prefrontal cortex in autism. 

Brain Research. 2012;1456:72–81. 

16.  Zikopoulos B, Barbas H. Changes in prefrontal axons may disrupt the network in autism. J 

Neurosci. 2010;30:14595–14609. 

17.  Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD. GABAA receptor downregulation in 

brains of subjects with autism. Journal of Autism and Developmental Disorders. 

2009;39:223–230. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 
 

18.  O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A 

systematic review of EEG and MEG studies. PLOS ONE. 2017;12:e0175870. 

19.  Wass S. Distortions and disconnections: Disrupted brain connectivity in autism. Brain and 

Cognition. 2011;75:18–28. 

20.  Rane P, Cochran D, Hodge SM, Haselgrove C, Kennedy D, Frazier JA. Connectivity in 

autism: a review of MRI connectivity studies. Harvard Review of Psychiatry. 2015;23:223. 

21.  Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et 

al. Neuron number and size in prefrontal cortex of children with autism. Jama. 

2011;306:2001–2010. 

22.  Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of 

Disorganization in the Neocortex of Children with Autism. New England Journal of 

Medicine. 2014;370:1209–1219. 

23.  Schafer ST, Paquola ACM, Stern S, Gosselin D, Ku M, Pena M, et al. Pathological priming 

causes developmental gene network heterochronicity in autistic subject-derived neurons. 

Nature Neuroscience. 2019;22:243. 

24.  Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. Coexpression 

networks implicate human midfetal deep cortical projection neurons in the pathogenesis of 

autism. Cell. 2013;155:997–1007. 

25.  Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative 

functional genomic analyses implicate specific molecular pathways and circuits in autism. 

Cell. 2013;155:1008–1021. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26 
 

26.  Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, et al. 

Recurrence Risk for Autism Spectrum Disorders: A Baby Siblings Research Consortium 

Study. Pediatrics. 2011;128. 

27.  Lewis JD, Evans AC, Pruett JR, Botteron KN, McKinstry RC, Zwaigenbaum L, et al. The 

Emergence of Network Inefficiencies in Infants With Autism Spectrum Disorder. Biol 

Psychiatry. 2017;82:176–185. 

28.  Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, et al. Differences in White 

Matter Fiber Tract Development Present From 6 to 24 Months in Infants With Autism. 

American Journal of Psychiatry. 2012;169:589–600. 

29.  Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, et al. Altered corpus callosum 

morphology associated with autism over the first 2 years of life. Brain. 2015;138:2046–

2058. 

30.  Emerson R, Adams C, Nishino T. Functional neuroimaging of high-risk 6-month-old 

infants predicts a diagnosis of autism at 24 months of age. Science. 2017. 2017. 

31.  Debener S, Minow F, Emkes R, Gandras K, Vos M de. How about taking a low-cost, small, 

and wireless EEG for a walk? Psychophysiology. 2012;49:1617–1621. 

32.  Smit DJA, Boersma M, Schnack HG, Micheloyannis S, Boomsma DI, Hulshoff Pol HE, et 

al. The Brain Matures with Stronger Functional Connectivity and Decreased Randomness 

of Its Network. PLoS ONE. 2012;7:e36896–e36896. 

33.  Hinkley LBN, Vinogradov S, Guggisberg AG, Fisher M, Findlay AM, Nagarajan SS. 

Clinical Symptoms and Alpha Band Resting-State Functional Connectivity Imaging in 

Patients With Schizophrenia: Implications for Novel Approaches to Treatment. Biological 

Psychiatry. 2011;70:1134–1142. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 
 

34.  Bells S, Lefebvre J, Prescott SA, Dockstader C, Bouffet E, Skocic J, et al. Changes in 

White Matter Microstructure Impact Cognition by Disrupting the Ability of Neural 

Assemblies to Synchronize. J Neurosci. 2017;37:8227–8238. 

35.  von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: 

from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 

2000;38:301–313. 

36.  Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, et al. The autism 

diagnostic observation schedule-generic: a standard measure of social and communication 

deficits associated with the spectrum of autism. Journal of Autism and Developmental 

Disorders. 2000;30:205–223. 

37.  Luyster R, Gotham K, Guthrie W, Coffing M, Petrak R, Pierce K, et al. The Autism 

Diagnostic Observation Schedule – Toddler Module: A new module of a standardized 

diagnostic measure for autism spectrum disorders. J Autism Dev Disord. 2009;39:1305–

1320. 

38.  Guthrie W, Swineford LB, Nottke C, Wetherby AM. Early diagnosis of autism spectrum 

disorder: stability and change in clinical diagnosis and symptom presentation. Journal of 

Child Psychology and Psychiatry, and Allied Disciplines. 2013;54:582–590. 

39.  Mullen EM. Mullen scales of early learning. 1995. 

40.  Akshoomoff N. Use of the Mullen Scales of Early Learning for the assessment of young 

children with Autism Spectrum Disorders. Child Neuropsychology : A Journal on Normal 

and Abnormal Development in Childhood and Adolescence. 2006;12:269–277. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 
 

41.  Dickinson A, DiStefano C, Lin YY, Scheffler AW, Senturk D, Jeste SS. Interhemispheric 

alpha-band hypoconnectivity in children with autism spectrum disorder. Behav Brain Res. 

2018;348:227–234. 

42.  Levin AR, Varcin KJ, O’Leary HM, Tager-Flusberg H, Nelson CA. EEG power at 

3 months in infants at high familial risk for autism. J Neurodev Disord. 2017;9. 

43.  Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG 

dynamics including independent component analysis. Journal of Neuroscience Methods. 

2004;134:9–21. 

44.  Chang C, Hsu S, Pion-Tonachini L, Jung T. Evaluation of Artifact Subspace Reconstruction 

for Automatic EEG Artifact Removal. 2018 40th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC), 2018. p. 1242–1245. 

45.  Jasper H. The ten twenty electrode system of the international federation. 

Electroencephalography and Clinical Neuroph Siology. 1958;10:371–375. 

46.  Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, et al. 

EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical 

imaging, and interpretation at multiple scales. Electroencephalography and Clinical 

Neurophysiology. 1997;103:499–515. 

47.  Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial 

overview. Neuroimage. 2009;45:S199-209. 

48.  De Mol C, Mosci S, Traskine M, Verri A. A regularized method for selecting nested groups 

of relevant genes from microarray data. Journal of Computational Biology. 2009;16:677–

690. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 
 

49.  Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the 

Royal Statistical Society: Series B (Statistical Methodology). 2005;67:301–320. 

50.  Teipel SJ, Kurth J, Krause B, Grothe MJ. The relative importance of imaging markers for 

the prediction of Alzheimer’s disease dementia in mild cognitive impairment — Beyond 

classical regression. Neuroimage Clin. 2015;8:583–593. 

51.  Vapnik V, Golowich SE, Smola AJ. Support Vector Method for Function Approximation, 

Regression Estimation and Signal Processing. In: Mozer MC, Jordan MI, Petsche T, 

editors. Advances in Neural Information Processing Systems 9, MIT Press; 1997. p. 281–

287. 

52.  Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of 

individual brain maturity using fMRI. Science. 2010;329:1358–1361. 

53.  Golland P, Fischl B. Permutation Tests for Classification: Towards Statistical Significance 

in Image-Based Studies. In: Taylor C, Noble JA, editors. Information Processing in Medical 

Imaging, Springer Berlin Heidelberg; 2003. p. 330–341. 

54.  Gaonkar B, Davatzikos C. Analytic estimation of statistical significance maps for support 

vector machine based multi-variate image analysis and classification. Neuroimage. 

2013;78:270–283. 

55.  Haufe S, Meinecke F, Görgen K, Dähne S, Haynes J-D, Blankertz B, et al. On the 

interpretation of weight vectors of linear models in multivariate neuroimaging. 

NeuroImage. 2014;87:96–110. 

56.  Joseph RM, Tager-Flusberg H, Lord C. Cognitive profiles and social-communicative 

functioning in children with autism spectrum disorder. J Child Psychol Psychiatry. 

2002;43:807–821. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 
 

57.  Kabdebon C, Leroy F, Simmonet H, Perrot M, Dubois J, Dehaene-Lambertz G. Anatomical 

correlations of the international 10–20 sensor placement system in infants. NeuroImage. 

2014;99:342–356. 

58.  Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: 

local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology. 

2005;15:225–230. 

59.  Buxhoeveden DP, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E. 

Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and 

Applied Neurobiology. 2006;32:483–491. 

60.  Casanova MF, Van Kooten I, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, 

et al. Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic 

patients. Clinical Neuroscience Research. 2006;6:127–133. 

61.  Just MA, Keller TA, Malave VL, Kana RK, Varma S. Autism as a neural systems disorder: 

a theory of frontal-posterior underconnectivity. Neuroscience & Biobehavioral Reviews. 

2012;36:1292–1313. 

62.  Rapoport JL, Gogtay N. Brain neuroplasticity in healthy, hyperactive and psychotic 

children: insights from neuroimaging. Neuropsychopharmacology. 2008;33:181. 

63.  Sestan N, State MW. Lost in translation: traversing the complex path from genomics to 

therapeutics in autism spectrum disorder. Neuron. 2018;100:406–423. 

64.  Rowley PA, Guerrero-Gonzalez J, Alexander AL, John-Paul JY. Convergent 

microstructural brain changes across genetic models of autism spectrum disorder—A pilot 

study. Psychiatry Research: Neuroimaging. 2019;283:83–91. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 
 

65.  Geng JJ, Vossel S. Re-evaluating the role of TPJ in attentional control: contextual 

updating? Neuroscience & Biobehavioral Reviews. 2013;37:2608–2620. 

66.  Deen B, Koldewyn K, Kanwisher N, Saxe R. Functional organization of social perception 

and cognition in the superior temporal sulcus. Cerebral Cortex. 2015;25:4596–4609. 

67.  Lombardo MV, Chakrabarti B, Bullmore ET, MRC AIMS Consortium, Baron-Cohen S. 

Specialization of right temporo-parietal junction for mentalizing and its relation to social 

impairments in autism. Neuroimage. 2011;56:1832–1838. 

68.  Teipel SJ, Pogarell O, Meindl T, Dietrich O, Sydykova D, Hunklinger U, et al. Regional 

networks underlying interhemispheric connectivity: an EEG and DTI study in healthy 

ageing and amnestic mild cognitive impairment. Hum Brain Mapp. 2009;30:2098–2119. 

69.  de Haan W, Mott K, van Straaten EC, Scheltens P, Stam CJ. Activity dependent 

degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Computational 

Biology. 2012;8:e1002582. 

70.  von dem Hagen EAH, Stoyanova RS, Baron-Cohen S, Calder AJ. Reduced functional 

connectivity within and between ‘social’ resting state networks in autism spectrum 

conditions. Soc Cogn Affect Neurosci. 2013;8:694–701. 

71.  Jones EJ, Gliga T, Bedford R, Charman T, Johnson MH. Developmental pathways to 

autism: A review of prospective studies of infants at risk. Neuroscience and Biobehavioral 

Reviews. 2014;39:1–33. 

72.  Ben Itzchak E, Zachor DA. Who benefits from early intervention in autism spectrum 

disorders? Research in Autism Spectrum Disorders. 2011;5:345–350. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 
 

73.  Karmiloff-Smith A, D’Souza D, Dekker TM, Herwegen JV, Xu F, Rodic M, et al. Genetic 

and environmental vulnerabilities in children with neurodevelopmental disorders. PNAS. 

2012;109:17261–17265. 

74.  Green J, Charman T, Pickles A, Wan MW, Elsabbagh M, Slonims V, et al. Parent-mediated 

intervention versus no intervention for infants at high risk of autism: a parallel, single-blind, 

randomised trial. The Lancet Psychiatry. 2015;2:133–140. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866939doi: bioRxiv preprint 

https://doi.org/10.1101/866939
http://creativecommons.org/licenses/by-nc-nd/4.0/

