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Translation of messenger RNAs into proteins by the ribosome is the most im-
portant step of protein biosynthesis. Accordingly, translation is tightly con-
trolled and heavily regulated to maintain cellular homeostasis. Ribosome pro-
filing (Ribo-seq) has revolutionized the study of translation by revealing many
of its underlying mechanisms. However, equally many aspects of translation
remain mysterious, in part also due to persisting challenges in the interpreta-
tion of data obtained from Ribo-seq experiments. Here, we show that some
of the variability observed in Ribo-seq data has biological origins and re-
flects programmed heterogeneity of translation. To systematically identify se-
quences that are differentially translated (DT) across mRNAs beyond what can
be attributed to experimental variability, we performed a comparative analysis
of Ribo-seq data from Saccharomyces cerevisiae and derived a consensus ribo-
some density profile that reflects consistent signals in individual experiments.
Remarkably, the thus identified DT sequences link to mechanisms known to
regulate translation elongation and are enriched in genes important for pro-
tein and organelle biosynthesis. Our results thus highlight examples of trans-
lational heterogeneity that are encoded in the genomic sequences and tuned
to optimizing cellular homeostasis. More generally, our work highlights the
power of Ribo-seq to understand the complexities of translation regulation.
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INTRODUCTION
Translation of messenger RNA (mRNA) into protein sequences by the ribosome is the central
step of protein biosynthesis and the energetically most expensive process in the cell (1). Accord-
ingly, translation is tightly controlled and heavily regulated to sustain cellular homeostasis (2).
In turn, the dysregulation of translation is associated with many severe human diseases includ-
ing cancer and neurodegeneration (3,4). The kinetics of translation initiation exert the strongest
influence on final protein synthesis rates (5). However, translation elongation, the speed and
dynamics at which ribosomes move along mRNAs, is equally heavily regulated and emerging
as an important aspect to defining the fate of the encoded nascent polypeptides (6–8).

Ribosome profiling (Ribo-seq), the experimental high-resolution measurement of trans-
lation kinetics through deep-sequencing of ribosome-protected footprints, has revolutionized
the study of translation (9–11). Next to the accurate identification of translated sequences in
genomes (12), many fundamental insights into the determinants of translation elongation ki-
netics could so far be derived from Ribo-seq data. For instance, codon translation rates on
average correlate with cellular tRNA abundances (13–15). Positively charged amino acids can
slow down translation through interaction with the negatively charged interior of the ribosome
exit tunnel (16, 17), as can upstream RNA secondary structures that hinder ribosome translo-
cation (18). Specific sequence motifs can stall translating ribosomes such as select codon pair-
ings (19), or successive proline residues that require the specialized translation factor EF-P for
their translation (20). Morever, these determinants of translation elongation kinetics (21–23)
are selectively placed along mRNA and protein sequences to prevent ribosome traffic jams and
overall optimize translation (24–26).

Equally importantly, the kinetics of translation elongation directly coordinate downstream
processes on the ribosome important for determining the fate of newly synthesized proteins (6).
This includes cotranslational protein folding (27–29), interaction of nascent chains with chap-
erones or ribosome-associated targeting factors (30–32), protein complex assembly (33), and
even cotranslational protein degradation (34). Accordingly, the tuning of translation elongation
is coupled to powerful feedback systems of cellular regulation (35), for instance in response to
stress (36–38).

Yet, despite tremendous progress made possible through the emergence of Ribo-seq (9),
many aspects of translation remain mysterious. In part this must be due to the complexity of
the underlying biology that awaits to be further uncovered at rapid pace. However, in part
this may also stem from persisting challenges in the interpretation of Ribo-seq data that are
often characterized by high intrinsic variability. For instance, the inference of individual codon
translation rates from Ribo-seq data commonly results in wide distributions rather then narrowly
defined individual values (39–42). This renders the mechanistic modelling of translation, even
though strong progress could be made (25, 41, 43–45), challenging. Some uncertainty in Ribo-
seq data could be directly attributed to technical difficulties and experimental biases (14,46–48).
However, Ribo-seq experiments have been continuously improved (49–51) and technical noise
alone cannot explain all the variability observed in Ribo-seq data.
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To this end, the process of translation itself is known to exhibit substantial heterogene-
ity (52). Eukaryotic cells contain up to 108 ribosomes (53), and variation in composition, mod-
ification, interaction, and localization can specialize their functionality (54–56). Such special-
ized ribosomes have been found for instance to prioritize the efficient translation of proteins des-
tined for export to mitochondria (57). Similarly, ER-targeted proteins are preferentially trans-
lated by a select pool of translocation competent ribosomes (58). Heterogeneity equally exists
at the level of translation elongation. The cellular abundances of tRNAs affect the effiency of
diffusion to the ribosome, thus codon-specific translation rates (59). Long considered stable in
their expression, the principles and functional implications of regulating tRNA abundances are
only starting to emerge (37). Another mechanism that directly affects the decoding efficiency
is achieved through RNA modifications at or near the tRNA stem loop (60, 61). Of note, tRNA
modifications are well characterized biochemically but their physiological roles in most cases
remain poorly understood (60,61). An example of a universally conserved tRNA modification is
the modification of the anticodon wobble uridine (U34) in the tRNA genes tEUUC , tKUUU , and
tQUUG that increases the efficiency of translating AAA, CAA, and GAA codons (40,62). Taken
together, a plethora of processes within the cell exists that can render translation heterogeneous,
which should be reflected in Ribo-seq data.

Here, we have performed a comparative analysis of Ribo-seq data from S. cerevisiae to sys-
tematically detect principles of translational heterogeneity from data obtained by bulk Ribo-seq
experiments. By systematically identifying subsequences whose differential translation cannot
be explained solely by variability between experiments, we present cases of biological hetero-
geneity of translation that are encoded in the genomic sequences and likely tuned to optimizing
protein and organellar biogenesis. Our results suggest that some variability commonly observed
in Ribo-seq data actually represents fascinating functional biology.

RESULTS
Ribo-seq experiments afford to probe the dynamics of translation at very high resolution through
the selective sequencing of ribosome protected footprints. Nonetheless, due to the complexities
of the experiment and underlying biology, Ribo-seq data published so far often contain a high
degree of intrinsic variability (48). This was equally apparent from our comparative analysis of
data from 20 independent Ribo-seq experiments comprising both biological replicas from the
same laboratories as well as data obtained by different research groups (see Methods; Table 1).
Illustrated for the exemplary yeast gene LTV1, we found at first sight substantial variability be-
tween the corresponding ribosome density (RD) profiles of individual experiments (Figure 1A).
At the same time, many characteristic peaks of high RD that indicate regions of slow translation
were strongly preserved across experiments (Figure 1A). Thus, while there was variability in
these data, strong translational attenuation could clearly be detected by Ribo-seq systematically.
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Consensus RD profiles represent individual experiments
To identify a representative RD signal that is supported by independent individual experiments,
we sought to derive a consensus RD profile along transcripts. Specifically, regions of high RD
along mRNAs that are present in all or most individual profiles should be clearly reflected in a
consensus profile as they likely represent strong signatures of translation attenuation. Due to the
sensitivity of arresting translation during Ribo-seq experiments without use of cycloheximide,
RD peaks in individual experiments may not be found at exactly the same positions but very
slightly shifted. To account for this, we chose to derive a consensus profile upon applying a
peak-synchronization algorithm (63) (see Methods). Importantly, the resulting consensus RD
profile visibly reflected the main features of the individual profiles for the gene LTV1 (Figure
1B).

To test whether our consensus generally represented the individual experiments, we com-
puted the per-gene average of the correlation coefficients between the individual profiles and
the consensus. As a control, we calculated a consensus and average correlation for sets of in-
dividual profiles randomly chosen from different genes (see Methods). We found much higher
correlation coefficients for the true data compared to the random control, suggesting that our
consensus profiles indeed well reflected the individual experiments (Figure 1C).

The obtained consensus scores ranged by definition from [0, 1], but high consensus scores
were found to be very rare. Across all genes the vast majority of positions exhibited consensus
scores of or just above 0, while only few positions had relatively high consensus scores (Figure
1D). As a result, peaks in the consensus profile were generally sparse and very clearly separated
from the background signal (Figure 1B).

Moreover, we found that how well the consensus represented the individual profiles de-
pended, as expected, strongly on the sequencing coverage. Genes with higher read-depth of
ribosome protected footprints were clearly found with higher correlations between individual
experiments and the consensus (Figure 1E). Our analyses thus suggested that a current lim-
iting factor of Ribo-seq may be foremost insufficient sequencing depth. Taken together, the
derived RD consensus profiles clearly represented individual experiments and highlighted re-
gions whose slow translation was detected systematically by independent experiments with a
strong consensus signal that clearly separated from the background.

Consensus profiles are biologically meaningful
We next sought to evaluate whether the derived consensus profiles were also carrying biolog-
ical meaning. To test this, we compared the different RD profiles to known determinants of
translation elongation. Characteristic values for codon-specific ribosome densities are com-
monly interpreted as dwell times and used to infer codon translation rates (64). Accordingly,
the median of the distributions of the RD values for the 61 sense codons was computed for
the individual experiments, the consensus, and as a control for a simple average (mean) profile
of the individual experiments (see Methods). More slowly translated, or nonoptimal codons
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usually correspond to those that have a low tRNA adaptation index (tAI) (59). To test whether
the consensus profile was as good or better than individual profiles at identifying nonoptimal
codons, we defined the bottom 25% of the sense codons with the lowest tAI as nonoptimal and
evaluated the discriminative power of the inferred codon median RDs to correctly classify them.

As previously reported, individual codon RDs distributed broadly, but nonoptimal codons
were found on average with higher codon consensus RDs (Figure 2A). Reciever Operating
Characteristic (ROC) curves for the individual experiments, the mean profile and the consen-
sus quantified that the consensus was indeed as good or even slightly better at classifying the
nonoptimal codons (Figure 2B). Foremost, this observation validated that the consensus pro-
files did not introduce artificial peaks without biological meaning, but it was nice to see that
they performed very well at identifying nonoptimal codons. These results were found quali-
tatively independent of the definition of the nonoptimal codons. Some individual experiments
performed as well or even very slightly better than the consensus, suggesting variability also
between the experimental data sets. Notably, the consensus method was found very powerful to
condense heterogeneous data to a strong and meaningful signal.

Similarly, experimental work has established that select codon duplets act as very strong
stalling sequences (19). Here, the codon duplet consensus RDs of these ’inhibitory’ codon
pairs (19) were almost all found to be much higher than average (Figure 2C). Of note, we
found inhibitory codon pairs strongly selected against in the set of analyzed genes, reflected
by only very few occurrences in yeast mRNA sequences compared to the numbers of other
codon pairs. Codon duplet RDs derived from both the consensus and the mean profiles ranked
generally higher than in the individual experiments when sorting all codon duplet scores in
ascending order (Figure 2D). These observations further underlined the power of a joint analysis
of multiple ribosome profiling datasets through a consensus profile to filter out a consistent
signal from heterogenous data sources.

Last, while both the consensus and the simple average of the individual profiles gave an im-
provement with respect to the prediction and classification of nonoptimal codons and inhibitory
codon pairs, they clearly differed in how they distributed. The distribution of mean RD val-
ues followed a initially concave upper tail while the distribution of consensus RDs showed a
strongly convex upper tail (Figure 2E). As a result, the high RD peaks in the consensus profile
in general better separated from the background signal of low RD values.

Differentially translated (DT) sequences are rare
Individual codon RDs obtained from the consensus profiles displayed broad distributions similar
to what had been reported previously (39–42). This observation suggested substantial variation
of the speeds at which individual codons are translated. Some of these differences may simply
be due to intrinsic noise in the complex sequencing experiment. However, if the same codons, or
subsequences of codons, could be found differentially translated beyond what can be accredited
to experimental variability, then the observed differences may also have biological origins that
reflect cases of translational heterogeneity.
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To identify such differentially translated (DT) sequences, we first devised a randomization
procedure that accounted for the gene-specific biases in coverage. Specifically, the number of
peaks in the consensus profile strongly depended on the overall coverage and number of stalling
sites in the individual profiles. Therefore, we computed the consensus of shuffled individual
profiles for each gene to estimate expected background distributions of consensus scores (see
Methods). At the lower end, the representative 5, 10, and 20 percentiles of expected consensus
scores across genes fell into narrow distributions around very low values. This matched the
observation that most positions along transcripts did not have a pronounced consensus signal
and that stalling sites in general were sparse. In contrast, the representative 80, 90, and 95
percentiles of the expected consensus scores formed broad distributions, highlighting a strong
dependency on gene-specific profiles (Figure 3A).

Next, we set out to systematically identify DT sequences in the S.cerevisiae genome. Fo-
cussing on subsequences of length 3 codons, we defined DT sequences as those that could be
found at least 10 times at or below the lower gene-specific 10% threshold and at least 10 times
above the gene-specific 90% threshold (Figure 3B). Of note, the analyzed 2443 S.cerevisiae
mRNA sequences contained 5525 subsequences of 3 codons with a general redundancy of more
than 20 occurrences. The median number of occurrences of these 5525 sequences was 27, and
only the top 10% were found to have a redundancy of over 44 counts. Our definition of DT
sequences was therefore sufficiently stringent and selective. Importantly, of these 5525 codon
triplets, 451 fulfilled our definition as DT sequences (Figure 3C). While overall the number
of subsequences outside the chosen significance thresholds correlated with their overall redun-
dancy, the observed number of DT sequences was sparse, leaving the possibility that they serve
specific functions. For comparison, only 159 sequences were found as translated consistently
fast (nDTlo), and only 17 as translated consistently slowly (nDThi) (see Methods).

We next asked whether the DT sequences were enriched in specific codons. Strikingly, the
codons the most over-represented in the DT sequences were those recognized by tRNAs whose
known modifications at the wobble-uridine position modulate the speed of translation, primar-
ily sequences containing GAA codons (Figure 3D). Equally importantly, absent were codons
encoding Prolines that are known to elicit strong stalling and likely leave little room for con-
textual modulation of translation speeds. In contrast, nDTlo sequence were enriched in CAA
codons, another codon linked to the U34 tRNA modification, while nDThi sequence showed a
high frequency of the Proline codons CCA and CCT that act as known strong stalling signals.
Equally remarkably, when normalizing amino acid usage by transcript abundance, i.e. how of-
ten the corresponding codons are translated by the ribosome, Glutamine residues become one
of the most heavily used amino acid (27). As such, choice between CAA and CAG codons
encoding Gln residues may strongly impact overall translation efficiency. Accordingly, we ob-
served a clear preference for the optimal codon CAA, whose decoding efficiency is equally
further increased by tRNA modification, in the nDTlo sequence, and of the nonoptimal codon
CAG in the nDThi sequences. In addition to distinct codon preferences, low RD DT sequences
were on average found later along mRNA sequences and thus may also reflect know biases
in decreasing coverage along transcripts. Taken together, our analysis suggested that DT se-
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quences exhibited distinct codon usage patterns that strongly linked to known determinants of
modulating translation elongation kinetics.

DT sequences may be important for protein biogenesis
Having identified select sequences that are translated differentially in systematic fashion beyond
what can readily be attributed to variability between experiments, we next sought to better un-
derstand what characterizes whether the same subsequence is translated slowly or fast. Clusters
of several adjacent positions of low, and especially of high RD can have a more pronounced
impact on translation elongation compared to individual positions. Regions of low RD can
be under selection for fast translation, but can also result from limited sequencing coverage in
the Ribo-seq experiments. In contrast, high RD regions generally exert a stronger influence
on translation elongation and coupled processes. We therefore focused on regions of high RD
and first asked whether high RD DT sequence preferentially occur in clusters of other high
RD positions or not. Across the set of analyzed mRNA sequence positions of high consensus
RD generally did not show a preference for being in clusters, here defined as at least 3 sites
with RDs above the gene-specific upper threshold in a window of 7 positions (Figure 4A). In
contrast, the vast majority of DT sequences were found to occur in clusters (Figure 4A). This
observation suggested that DT sequences may contribute to the selective and potentially func-
tional attenuation of translation.

Moreover, we found a bias of DT sequences in clusters to be positioned earlier in sequence
than those not in clusters, and in contrast to the background signal of all high consensus RD
positions (Figure 4B). If translation elongation influenced protein synthesis, folding, and home-
ostasis, any cues to optimize translation or promote downstream processes would be expected
earlier in sequence. Guiding the formation of a folding nucleus, coordinate chaperone binding,
or, equally importantly, regulating ribosome spacing to prevent ribosome traffic jams, thus fa-
cilitating efficient overall translation, are all decisive events for the fate of a nascent polypeptide
that usually occur early on during translation. Our result of a positional bias thus left open the
possibility that DT sequences may play a role in regulating protein biogenesis.

To better understand how the sequence context may determine whether instances of the
same sequence were sometimes translated fast and sometimes slowly, we analyzed a puta-
tive link to three known stalling signals, clusters of positively charged amino acids, high RNA
folding strength, and clusters of nonoptimal codons. In comparison to the DT sequences that
were defined as sequences with at least 10 occurrences each below and above the significance
thresholds, we analyzed sequences that were consistently translated fast or slowly, i.e. non-
differentially translated sequences of consistently high RD (nDThi) and low RD (nDTlo) re-
spectively (see Methods). Positively charged amino acids can slow down translation through
interaction with the interior of the ribosome exit tunnel. Our analysis suggested that high RD
DT sequences were significantly (p = 0.007 by Fisher’s Exact test) enriched in downstream
clusters of positive charges (Figure 4C). Similarly, high RD DT sequences were significantly
enriched in high RNA folding strength upstream (p = 0.002 by Fisher’s Exact test), which may
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hinder ribosome translocation along the mRNA, thus slowing down translation (Figure 4C).
Remarkably, nDThi squences, i.e. those that are consistently translated more slowly, linked to a
very strong enrichment of high RNA folding strength (p = 0.03 by Fisher’s Exact test) (Figure
4C). In all cases we observed a higher number of clusters of nonoptimal codons just upstream of
the translated position of high RD, albeit without significance. Taken together, these results sug-
gested that known stalling signals play a clear role in the observed heterogeneity of translating
the same sequences.

No systematic role of DT sequences in protein folding
Based on the findings that the rhythm of translation elongation can coordinate protein folding
events at the ribosome (27–29), we next asked whether DT sequences may systematically link
to two major events in cotranslational protein folding, the binding of the main cytosolic Hsp70
chaperone SSB, and the folding of protein domains. It has been previously shown that a lo-
cal slowdown of translation can coordinate the binding of chaperones or targeting factors to
nascent polypeptides at the ribosome (30, 32). Once bound to an elongating nascent chain, a
chaperone can fundamentally change the folding landscape of the protein. Therefore, a coor-
dinated attenuation of translation may increase the likelihood of chaperone binding to promote
correct folding. We similarly observed, on average, a distinct and localized higher consensus
RD downstream of Hsp70 binding sites just when they are exposed outside the ribosome exit
tunnel (Figure 5A). Notably, this signal is much more pronounced when only considering the
first binding site per protein rather than all of them. However, we could not observe any local-
ized enrichment of DT sequences within the same distance of Hsp70 binding sites (Figure 5A).
This result reinforced that local translation kinetics may contribute to coordinating the binding
of cotranslationally acting chaperones, but suggested that this is independent of DT sequences.

Similarly, it had been previously observed that a local attenuation of translation is linked
to protein domain boundaries, leaving additional time for a completely translated and exposed
domain to fold outside the ribosome before translation continues at high speed (65). However,
this could so far only be observed for individual proteins, not systematically (66). Similarly, we
could not detect any systematic local slowdown of translation that may link to internal protein
domain boundaries (Figure 5B). Accordingly, we found no enrichment of DT sequences that
may coordinate protein domain folding (Figure 5B).

Thus, DT sequences appeared to be neither coordinating Hsp70 binding or domain folding
in a systematic fashion. Because these are pivotal events in de novo protein folding, any pro-
grammed translation slowdown may not be encoded through DT sequences but rather through
other, more unambiguous stalling signals. Our results leave open the possibility that DT se-
quences are involved in the dynamically regulated coordination of such protein folding events
in individual cases that however will have to be understood at much higher resolution.
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DT sequences link to protein and organelle biogenesis
Our findings that DT sequences preferentially occurred in clusters and early in sequence in-
dicated the potential for a functional role in coordinating early protein folding events at the
ribosome. However, we could not find any systematic link between DT sequences and the bind-
ing of the main cytosolic Hsp70 SSB or the folding of protein domains. Next to the direct
coordination of protein folding, which will have to be understood at higher resolution of the
individual folding contexts, clusters of slowly or fast translated sequence regions can also have
a strong cumulative impact on the overall translational efficiency, thus final protein levels. In
addition to just more efficient overall translation, clusters of slowly translated codons early in
sequence can contribute to the careful spacing of ribosomes along mRNA sequences to prevent
ribosome traffic jams (24–26).

To test whether genes enriched in DT sequences linked to specific functions within the cell,
we performed Gene Ontology (GO) analyses (Figure 6). Specifically, we compared the func-
tional annotations of the set of ’redundant’ genes, i.e. mRNAs with the overall highest density
of redundant subsequences, to five categories of genes enriched in DT sequences. Herein, we
considered ’DT’ genes as the mRNAs with the highest density of DT sequences outside the
gene-specific thresholds (see Methods); in comparison, ’DTmod hi’ and ’DTmod lo’ were de-
fined as the sets of genes with the largest difference between high and low RD DT sequences that
contain GAA codons, i.e. the most overrepresented codon that is recognized by a tRNA subject
to wobble-uridine modification; similarly, we considered ’DTnmod hi’ and ’DTnmod lo’ as the
set of genes with the largest difference between high and low RD DT sequences not containing
GAA codons (Figure 3D). These four additional lists of genes thus reflected mRNAs that con-
tained DT sequence with strong bias towards consistently fast or slowly translated, and stratified
by a possible effect of the wobble-uridine tRNA modification.

Several important observations could be made. First, each category corresponded to clearly
defined GO categories. This suggested that these sets of genes not only shared distinct sequence
characteristics, but also functional roles (Figure 6). A general correlation between the ’redun-
dant’ and ’DT’ categories was expected as a higher level of redundancy on average and by our
definition also leads to higher counts of DT sequences outside the significance thresholds. Both
categories were strongly enriched in genes involved in nuclear biology, RNA processing, and
ribosome biogenesis. The main difference between these two categories was that the set of
’redundant’ genes was also strongly enriched in GO categories linked to stress granule forma-
tion. Redundant or repetitive sequences are known to link to phase transition and stress granule
formation (67, 68). In contrast, the ’DT’ genes showed a stronger enrichment in GO categories
linked to nucleus, nucleolus, and ribosome biogenesis biology (Figure 6), i.e. categories directly
linked to protein biosynthesis.

Remarkably, the remaining lists of genes representing mRNAs with DT sequences that were
almost only fast (low RD) or slowly (high RD) translated associated with an orthogonal set of
GO terms, namely mitochondrial and endoplasmic reticulum (ER) biology (Figure 6). These
included severel GO terms describing processes of organelle biosynthesis, from ’endoplasmic
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reticulum membrane network’ to ’mitochondrial matrix’ to ’mitochondrial ribosome’ (Figure
6). In general, more functional categories associated to the low than the high RD categories.
The main difference between DT sequences that included codons whose translation can be mod-
ulated by wobble-uridine tRNA modification (40,62) was found to be an additional enrichment
in the ’mitochondrial ribosome’ and ’organellar ribosome’ GO categories, as well as a link to
’mitochondial matrix’ and ’mitochondrial protein complex’ GO terms. Strikingly, of the genes
with consistently high consensus RD, DT sequences that depended on the tRNA modification
were found predominantly in mRNAs important for endoplasmic reticulum biogensis, while
genes with consistently low consensus RD of their DT sequences subject to tRNA modifica-
tion associated with mitochondrial biology. Similar results could be obtained by considering
all three codons (AAA, CAA, and GAA) whose translation is modulated by this tRNA mod-
ification (40, 62). Moreover, while this tRNA modification is normally pervasive and applied
to most corresponding cytoplasmic tRNAs (60), it may be less present in cases of localized
translation known to facilitate the synthesis of proteins destined to the major organelles. Of
note, mitochondrial proteins often fold in the cytosol and their export to the mitochondria often
share components of the cytoplasmic protein quality control network (69–71), in S.cerevisiae
for instance the Hsp70 chaperone SSA1 (72). In contrast, translocation to the ER is directly cou-
pled to translation as ER-destined proteins usually cannot fold inside the cytoplasm. Moreover,
ER-destined proteins are often translated by a specialized pool of translocation-competent ribo-
somes near the ER membrane (58). Our results thus suggest that the translational heterogeneity
observed may be directly coupled to the organization of proteins to the major organelles, and
indicate that tRNA modifications could play a role in this.

DISCUSSION
Data from Ribo-seq experiments have lead to many fundamental discoveries of mechanisms that
govern the kinetics of translation. However, challenges persist in the analysis and interpretation
of Ribo-seq data that are often characterized by intrinsic variability. Here, we show that some
of this variability represents cases of biological heterogeneity of translation rather than experi-
mental biases or noise. Through a comparative analysis of published S.cerevisiae Ribo-seq data
sets we have systematically identified short subsequences that exhibit substantial variation in
how they are translated. Importantly, whether the same sequence was translated slowly or fast
associated with known stalling signatures of translation elongation, including high RNA folding
strength and positively charged amino acids, or linked to mechanisms that can dynamically reg-
ulation translation kinetics such as tRNA modifications. Moreover, these DT sequences were
found selectively enriched in genes central to protein and organelle biosynthesis. Our results
thus indicate how translational heterogeneity that is directly encoded in the genomic sequences
may serve to optimize overall protein biosynthesis and cellular homeostasis.

Many aspects of translational heterogeneity, especially of localized translation or transla-
tion on specialized ribosomes, have been under increasingly intense investigation. A spectacu-
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lar example illustrating the importance and immediate functional consequences of local protein
biosynthesis is given by neurons where efficient protein production in distal axons is required to
control synaptic transmission (73, 74). Similarly, the importance of localized translation in the
production of proteins that constitute the major organelles is generally well established (58,69).
Interestingly, while the translation of ER-destined proteins is almost completely separated from
the production of cytosolic proteins, substantial overlap exists between the protein biosynthesis
and quality control pathways for mitochondrial and cytoplasmic proteins. Accordingly, cytoso-
lic and mitochondrial translation are tightly coordinated (75). The use of DT sequences, i.e.
sequences that are differentially translated in a context-dependent manner, open an intriguing
window into additional mechanisms that may contribute to cellular organization through trans-
lation regulation.

One such central regulatory mechanism that remains under dynamic cellular control is given
by tRNA modifications, which, for instance, have been shown to play an important role in the
global regulation of protein levels in response to stress (76–79). We found that consistently
slowly translated DT sequences containing codons decoded by tRNAs subject to wobble-uridine
modification, i.e. suggesting an absence of the modification, are linked to the ER. In con-
trast, consistently fast translated sequences containing codons recognized by tRNAs amenable
by wobble-uridine modification, which is normally present in cytosolic translation, associated
with genes invo lved in mitochondrial biology. Remarkably, this overall link between the biased
translation of DT sequences and organellar biology is directly following the established differ-
ences in the biosynthesis of mitochondrial and ER proteins. While an intriguing observation,
our work cannot currently resolve whether our result is cause or consequence: does localized
translation in a different cellular milieu merely differentially predispose to the availability of
this tRNA modification? Or does the differential translation regulated through absence or pres-
ence of a tRNA modification aid in the targeting of the elongating nascent chains to their correct
destination? While these questions warrant further investigation, our results already highlight a
fundamental conundrum: biological sequences are initially invariant, but the cellular system is
highly dynamic. Robust control could easily be achieved by using unique sequences decoding
slow or fast translation. Given the complexity of the cell as a system, it is most likely that
the combinatorics achieved through hierarchical layers of regulation are needed to ultimately
sustain homeostasis. Herein, the use of redundant sequences can pose several distinct advan-
tages. A synchronization of the dependency on cellular resources, e.g. specific amino acids that
need to be attached to the elongating nascent chain, also render these sets of genes susceptible
to shared regulatory pathways. Moreover, shared sequences at both the RNA and protein lev-
els can serve as recognition and binding sites. A well characterized example that is supported
by our results is given by stress granules which are known to depend on low complexity and
repetitive sequences for their formation (67, 68, 80, 81). Similarly, the strong enrichment of DT
sequences in genes involved in ribosome biogenesis may be strongly tied to an autocatalytic
control of ribosome biogenesis (82). Taken together, our results suggest a use of DT sequences
that may enable selective feedback in regulating and optimizing protein biosynthesis.

Extensively discussed in the context of gene expression (83), our results also highlight a per-
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vasive stochastic character of translation. Many of the steps required for translation elongation
are stochastic, foremost the diffusion of charged tRNA-ternary complexes to the ribosome that
can strongly influence decoding efficiencies. Next to the randomness of biomolecular interac-
tions, some stochasticity may actually be built into the system. The cell has to operate efficiently
under many different conditions, and this is especially true for translation as the energetically
most expensive process. Translation under non-stress conditions may be not completely opti-
mized for overall protein production efficiency, but rather to maintain agility and rapidly adapt to
changing and more challenging conditions. This has been directly observed for instance under
conditions of amino acid starvation that rapidly affect codon-specific translation rates (84, 85).
More generally, the suppression of stochasticity in biological systems is very expansive and
subject to cost-benefit trade-offs that usually tolerate some level of stochasticity (86). Thus,
for modeling translation as well as predicting the effect of translation elongation kinetics on
cellular processes, it may become equally important to explicitly consider a stochastic character
of translation than to improve on more narrowly defined estimates of codon-specific translation
rates.

Finally, our results foremost underline the power of Ribo-seq to discover fundamental as-
pects of translation. A main limiting factor in current Ribo-seq studies may simply be too
shallow sequencing depth. While it has been suggested that inference from individual experi-
ments may be limited (87), our work of deriving and analyzing a consensus signal demonstrates
that a comparative meta-analysis of several datasets can yield important additional insights.
Many details of programmed translational heterogeneity result from the complex interplay of
many different contributions and await to be characterized at much higher resolution. Next to a
better understanding of the sequence determinants of translational heterogeneity, this includes
better understanding the functional roles of central tRNA modifications (88), rRNA modifi-
cations (89), and the interplay between tRNA and epigenetic mRNA modifications (90). Our
results on identifying principles of translational heterogeneity from bulk Ribo-seq data suggest
a shift in the interpretation of variability in these data and open a fascinating window into fur-
ther understanding the intricacies of translation, one of the most central and energetically the
most costly process in the cell. What has been considered unwanted variability in Ribo-seq data
in part actually reflects exciting biology.
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MATERIALS AND METHODS

Code and data availability
Computer code and data to reproduce all presented results is available at
www.github.com/pechmannlab/riboconsensus

Data sources and processing
We analyzed the ribosome profiling datasets from the experiments performed without use of
the translation inhibitor cyclohexamide (91, 92) that are listed in Table 1. Sequencing adapters
were removed with Cutadapt (93). Reads that subsequently did not align to yeast ribosomal
RNA or transfer RNA sequences were mapped to the S.cerevisiae reference genome R64-1-
1 (94) with STAR (95). Ribosome density (RD) profiles of unambiguously mapped reads were
computed with Scikit-ribo (96). Genes with an average coverage of less than 1 read per position
across datasets, or with more than 30% multi-mapping, i.e. the fraction of mRNA sequences
that yields ambiguous read mapping (97), were omitted. This resulted in a final dataset of 2443
yeast genes. Furthermore, the first and last 20 codons from each gene were excluded from our
analyses of translation elongation as they reflect known biases that link to translation initiation
and termination (45).

Consensus RD profiles
Consensus ribosome density profiles were computed with a peak synchronization algorithm
initially developed for the analysis of EEG data (63). Herein, peaks in individual profiles were
detected by segmentation above a threshold of profile mean+1SD (standard deviation). Peaks
across individual profiles were then averaged upon applying a Gaussian weight relative to their
distances from the current position; in this way peaks that were systematically present at the
same position yielded a maximum consensus signal, while peaks that were shifted made a
reduced contribution according with their weight reflecting their distance. Gaussian weights
were inferred based on a probability density function with threshold th = 0.0001 after which
tails were considered insignificant and omitted, a central coefficient ca = 0.5 describing the
bin width at which the maximum weight was applied, and SD = 1. The resulting consensus
profiles were found very robust to the choice of these parameters as previously reported (63).
Multi-mapping positions in sequences were excluded from computing the consensus profile.
The average correlation to consensus was computed as the per-gene average of the pairwise
Spearman correlation coefficients between individual experiments and the corresponding con-
sensus profile. The randomized control was generated by computing a consensus profile of
individual experiments randomly drawn from different genes with a minimum length of 100
codons. Similarly, per-gene background percentiles were derived from computing the consen-
sus from shuffled individual profiles of the same gene 100 times and analyzing the distribution
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of the resulting consensus values. In both cases multi-mapping positions were omitted. For
comparison, a simple average profile was computed as the per-position average of the individ-
ual profiles normalized to mean = 1.

Validation of consensus profiles
To validate that the consensus RD profiles carried biological meaning, we sought to evaluate
their predictive power for known stalling signals, notably nonoptimal codons and inhibitory
codon pairs. The RDs of individual codons are commonly interpreted as ribosome dwell times
and used to infer codon specific translation rates. Because Scikit-ribo accurately maps the trans-
lated codon in the ribosome A-site (96), we used the Scikit-ribo output to infer characteristic
codon RDs as the median of the distribution of RDs of all occurrences for each sense codon
or codon pair. The first and last 20 codons from each gene and multi-mapping positions were
omitted. Individual profiles were normalized to mean = 1. Reciever Operating Characteris-
tic (ROC) curves for the classification of nonoptimal codons defined as the bottom 25% of the
tRNA adaptation index (tAI) (59) were computed with the R package pROC. Inhibitory codon
pairs were defined as those in (19). For the comparison of consensus and mean RDs, their
distributions were normalized to mean = 1 and SD = 1.

Identification of differentially translated (DT) sequences
We focused on subsequences of length 3 codons as longer sequences rapidly drop in redundancy
across the transcriptome thus limiting occurrences for further analysis. Differentially translated
(DT) sequences were defined as sequences of 3 codons that had both at least 10 occurances
above gene-specific 90% and at least 10 occurances below gene-specific 10% thresholds in
their consensus profiles across all mRNAs. Thresholds were chosed as good trade-off between
sufficient selectivity and data set size; subsequent results were found qualiatively very robust
to these choices. For comparison, we extracted all sequences of length 3 codons with at least
20 occurences throughout the yeast mRNAs. Sequences that were characterized by consistently
high RD in the consensus (nDThi) were defined as those with at least 16 occurences above
the 90% threshold and at most 4 occurences below the 10% threshold. Sequences that were
characterized by consistently low RD in the consensus (nDTlo) were defined as those with at
most 4 occurences above the 90% threshold and at least 16 occurences below the 10% threshold.
Codon frequencies were compared to the background frequency of the mRNAs with sufficient
coverage that passed our quality control (see above).

Analysis of DT sequences
To test whether known sequence features of translation attenuation contribute to DT sequences,
we analyzed a link to nonoptimal codon clusters, RNA folding strength, and clusters of posi-
tively charged amino acids. Nonoptimal codon clusters were defined as at least 2 nonoptimal

14

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866582doi: bioRxiv preprint 

https://doi.org/10.1101/866582
http://creativecommons.org/licenses/by-nc/4.0/


codons in a stretch of length 5 translated within 2 codons, i.e. just before the current subse-
quence. Clusters of positively charged amino acids were defined as polypeptide stretches of
length 8 amino acids containing at least 3 positive charges (Arg, Lys, His) with no negatively
charged amino acids in between, and placed up to 35 sequence positions before, i.e. concur-
rently present in the ribosome exit tunnel. High RNA folding strength that can hamper ribosome
translocation was tested by evaluating positive PARS scores (107) 4 codons downstream (18).
Fisher’s exact test was used to test for statistical associations between the presence of one of
these features and the category of fast and slowly translated subsequences. Domain boundaries
of all yeast proteins were retrieved from (108), and binding sites of the yeast Hsp70 SSB were
downloaded from (20). Average profiles of the 70 codons upstream regions of SSB binding sites
or domain boundaries were computed as per-position averages of the consensus RD profiles and
compared to averages of shuffled profiles of the same upstream regions. Gene ontology (GO)
analyses were performed with the g:Profiler webserver (109,110) through their Python API. All
GO terms with an enrichment at p < 0.001 for at least one input gene list were reported.
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Figure 1 Consensus ribosome density profiles. (A) Ribosome density (RD) profiles from in-
dependent experiments for the exemplary yeast gene LTV1. (B) Consensus ribosome density
profile for the gene LTV1 derived from the individual experiments shown in (A). (C) Consensus
profiles are representative of individual experiments. Shown are the distributions for the average
correlation coefficient between individual experiments and the corresponding consensus com-
pared to a randomized control (see Methods). (D) High consensus values are rare. Distribution
of RD consensus scores across all genes analyzed. (E) Sequencing depth limits the resolution of
ribosome profiling data. Higher sequencing coverage on average results in stronger correlations
between individual experiments and their consensus.
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Figure 2 Consensus profiles identify nonoptimal codons and stalling sequences. (A) Distri-
butions of consensus codon RDs for the 61 sense codons are represented by their median values
(squares) and their 25 and 75 percentiles (solid lines). Nonoptimal codons (in red) correspond
on average to higher consensus codon RDs. (B) The consensus profiles can identify nonop-
timal codons. ROC curves for the classification of nonoptimal codons from codon RDs are
shown for the consensus, mean, and individual profiles. The consensus has more discriminative
power than the mean or average of the individual profiles. (C) Inhibitory codon pairs have high
consensus RD scores. Distribution of the consensus RDs of all codon pairs. Codon pairs that
have been reported as strong stalling sequences are highlighted and are predominantly found
in the tail of the distribution. (D) Rank order of inhibitory codon pairs. Both consensus and
mean profiles identify inhibitory codon pairs as those with especially high RD scores. (E) The
distribution of consensus RD scores follows a strongly convex upper tail in contrast to an ini-
tially concave upper tail for the mean RD scores. As a result, high RD signals in the consensus
separate better from the background of low RD scores.
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Figure 3 Identification of differentially translated (DT) subsequences. (A) Characteristic per-
centiles of the distributions of expected consensus scores obtained from randomization. Dis-
tributions of expected consensus scores are strongly gene-specific as apparent from broad dis-
tributions, especially at high percentiles. (B) DT sequences are rare. Shown are the counts of
occurrences above and below gene-specific thresholds of all codon triples with a general redun-
dancy of at least 20. DT sequences are highlighted in color. (C) Of 5525 sequences found with
more than 20 occurrences and a median redundancy of 27, only 451 qualified as DT based on
our definition, only 159 as non-differentially translated with systematically low RD (nDTlo),
and only 17 as non-differentially translated with systematically high RD (nDThi). (D) Codon
frequencies in DT sequences. The observed enrichment of individual codons in DT sequences
directly links to mechanisms known to modulate translation elongation kinetics.
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Figure 4 Characteristics of DT sequences. (A) DT sequences are preferentially found in
clusters. While only a small fraction of non-redundant high consensus RD regions (BG for
background) cluster, the vast majority of DT sequences with high consensus RD appear in
clusters. (B) Preference for DT sequences in clusters early in sequence. DT sequences in
clusters (DT c) are found on average closer to the protein N-terminus compared to BG, and in
contrast to BG earlier in sequence compared to DT sequences not in clusters (DT n). (C) Known
stalling signals contribute to DT sequences. Illustrated are statistical associations between high
consensus RD occurences of DT sequences and RNA folding strength, nonoptimal codons, and
clusters of positively charged amino acids. Significant relationships (p < 0.05) are indicated by
solid color and black border around the bars indicating the log2 odds-ratio (OR).
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Figure 5 DT sequences are not systematically coordinating protein folding on the ribosome.
(A) Meta-gene analysis Hsp70 SSB binding sites. Reported are per-position average consensus
RD profiles of the downstream regions of the first Hsp70 binding site in each substrate pro-
tein (red line) and all Hsp70 binding sites (orange line) relative to a randomized background
indicating mean ± SD (grey ribbon). On average, translation slows down when the Hsp70
binding site (indicated by yellow area) has emerged from the ribosome exit tunnel (indicated by
grey area). The density of high (light grey dashed line) and low (dark grey dashed line) DT se-
quences shows no elevated occurrence that could contribute to local translation attenuation. (B)
Meta-gene analysis of protein domain boundaries. Reported are per-position average profiles
consensus RD downstream of of the first domain boundary per multi-domain protein (red line),
and for only domain boundaries that precede any Hsp70 chaperone binding (blue line). No
systematic translation attenuation linked to domain folding could be observed for the consensus
RD values. The density of high (light grey dashed line) and low (dark grey dashed line) DT
sequences shows no elevated occurrence that could contribute to local translation attenuation.
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Figure 6 Gene Ontology (GO) analysis of DT sequences suggests DT sequences link to pro-
tein and organelle biosynthesis. Enrichment of GO categories color-coded base on adjusted
p-value as provided by the g:Profiler webserver. ’Redundant’ denotes the top 5% of genes
with the highest density of sequences of 3 codons that have at least 20 occurrences across the
analyzed mRNAs; ’DT’ are the top 5% of genes with the highest density of DT sequences. ’DT-
mod hi’ and ’DTmod lo’ are the top 5% genes with the largest difference between theirs counts
of DT sequences of high and low consensus RD respectively and that contain GAA codons rec-
ognized by tRNAs subject to modification of the anticodon wobble uridine; ’DTnmod hi’, and
’DTnmod lo’ are similarly defined for sequences that do not contain GAA codons.
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Table 1: Ribosome profiling datasets analyzed in this study.
Publication SRA accession Reference
Gardin (2014) SRR1002819 (98)
Gerashchenko (2014) SRR1520311 (91)
Guydosh (2014) SRR1042855 (99)
Pop (2014) SRR1688545 (100)
Nedialkova (2015) SRR1944981-3 (40)
Young (2015) SRR2046309,10 (101)
Lecanda (2016) SRR3945926,8 (50)
Radhakrishnan (2016) SRR3493886,7 (102)
Beaupere (2017) SRR4000288,9 (103)
Gerashchenko (2017) SRR363557,8 (104)
Schuller (2017) SRR5008134,5 (105)
Zou (2017) SRR5090936 (106)
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