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Abstract 

Phosphorylation sites are hyper-abundant in the disordered proteins of eukaryotes, suggesting that 
conformational dynamics (or heterogeneity) may play a major role in determining to what extent a kinase 
interacts with a particular substrate. In biophysical terms, substrate selectivity may be determined not just by the 
structural and chemical complementarity between the kinase and its protein substrates, but also by the free 

energy difference between the conformational ensembles that are recognized by the kinase and those that are 
not. To test this hypothesis, we developed an informatics framework based on statistical thermodynamics, which 
allows us to probe for dynamic contributions to phosphorylation, as evaluated by the ability to predict Ser/Thr/
Tyr phosphorylation sites in the disordered proteome. Essential to this framework is a decomposition of 
substrate sequence information into two types: vertical information encoding conserved kinase specificity 

motifs and horizontal (distributed) information encoding substrate conformational dynamics that are 
embedded, but often not apparent, within position specific conservation patterns. We find not only that 
conformational dynamics play a major role, but that they are the dominant contribution to substrate selectivity. 
In fact, the main substrate classifier distinguishing selectivity is the magnitude of change in compaction of the 
disordered chain upon phosphorylation. Thus, in addition to providing fundamental insights into the underlying 

mechanistic consequences of phosphorylation across the entire proteome, our approach provides a novel 
statistical thermodynamic strategy for partitioning any sequence-based search into contributions from direct 
chemical and structural complementarity and those from changes in conformational dynamics. Using this 
framework, we developed a high-performance open-source phosphorylation site predictor, PHOSforUS, which is 
freely available at https://github.com/bxlab/PHOSforUS. 
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1. Introduction 

Phosphorylation is the most common post-translational modification in eukaryotic proteomes (1, 2), and has 
been demonstrated to mediate key biological functions, including signaling (3), nutrient sensing (4), and protein 
conformational change (5). In spite of the universal recognition of its importance, a significant gap in our 
knowledge has prevented a general mechanistic understanding of how phosphorylation mediates these 

processes. Specifically, many phosphorylation sites are contained within intrinsically disordered regions (IDRs) of 
proteins, which due to their high sequence divergence, make it a challenge to identify phosphorylatable sites 
based on sequence comparisons with known sites. This knowledge gap is exacerbated by the fact that 
phosphorylation is both transient and reversible, producing a surprisingly low degree of consensus (6) between 
experimentally determined phosphorylation sites in several major databases: PhosphoELM (7), UniProt (8), and 

PhosphoSitePlus (9), resulting, understandably, in a concomitant degree of disagreement between 
phosphorylation site predictors (10-16) developed from these databases (6, 17). 

Attempts to address this knowledge gap have typically involved the development of heuristics to augment the 
limited amount of experimentally annotated sequence sites. For example, the myriad substrates of cyclin-
dependent protein kinases only appear to share a single Proline (Pro) residue immediately C-terminal to the 

phosphorylated site (18). However, it was recognized early on that certain hydrophobic, acidic, or basic amino 
acid patterns were often found in the sequence neighborhood of a phosphorylation site (1, 10, 11). As a result, 
position specific weight matrices were developed to identify motifs predictive of kinase-specific sites, achieving 
a moderate degree of success when leveraged with neural network algorithms (6, 19). However, the consensus 
pattern approach produced significant variability, precluding practical prediction tools (6, 19). 

Seminal work by Dunker and colleagues (11) revealed that phosphorylation correlates with surrounding intrinsic 
disorder, and explicit consideration of disorder resulted in an improved phosphorylation site predictor. Similarly, 
such a conformational energetic contribution was demonstrated by Elam, et al. (20) to also involve conserved 
polyproline II (PII) propensity of the sequence elements surrounding the phosphorylation site. Both of these 
observations are suggestive of a distinct role for the conformational equilibrium of the potential substrate, not 

only in determining the overall function of the phosphorylated protein, but also possibly in determining kinase 
specificity.  

To test this hypothesis, we have developed a statistical thermodynamic framework that considers contributions 
to kinase selectivity driven either by direct recognition of sequence elements that are conserved at a particular 
sequence position (which we term “vertical information”) or by ensemble-averaged properties that are 

conserved along a sequence stretch (which we term “horizontal information”). Accounting explicitly for both 
types of information, “vertical” and “horizontal”, results in a predictor that exceeds performance relative to 
existing phosphorylation prediction methods. Indeed, our results show that the ensemble-averaged properties 
— equilibrium fluctuations that are encoded in horizontal information — dominate the contribution.  

Furthermore, our results indicate that the sequence neighborhoods of many Serine (Ser) and Threonine (Thr) 

phosphorylation sites, specifically those containing Pro immediately C-terminal to the phosphorylated site (i.e. 
the +1 Pro sequence motif ), are “energetically poised” to undergo a phosphorylation-induced change in the 
dimensions of the disordered ensemble, suggestive of a direct link between the conformational dimensions of 
the disordered substrate and its ability to be recognized and phosphorylated. 
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2. Results 

2.1. Phosphorylation equilibria can be reflected by two types of sequence information 

Enrichment of disorder around phosphorylation sites has been noted previously (11), suggesting the necessity 
for widespread coupled folding-binding of the disordered substrate in order to become phosphorylated (Fig. 1, 
top). If this is the case, it would be desirable to develop a strategy that accounts for the free energy change 

associated with narrowing or expanding the conformational ensemble (Fig. 1, blue box). This would involve 
selecting, from among the entire conformational ensemble, the sub-ensemble wherein the residues that are 
recognized by the kinase are in the proper orientation for kinase recognition. For that sub-ensemble, recognition 
and binding would then be based on classic notions of shape and chemical complementarity (Fig. 1, red box). 
Thus, the recognition of conformationally heterogeneous substrates by kinases can be viewed as being due to 

two distinct physical processes: a contribution arising from the energy difference between the substrate sub-
ensemble that can be phosphorylated and the sub-ensemble that cannot, and a contribution from the intrinsic 
ability of the kinase to recognize the substrate, a scenario that is captured by the equilibrium: 

   .   (1) 

In Expression (1), E is the kinase, S is the unphosphorylated substrate, and the subscripts BI and BC denote 
binding-incompetent and binding-competent conformations of the substrate. These equilibria are schematically 
depicted in Figure 1. Importantly, the binding-competent and binding-incompetent thermodynamic states are 

agnostic as to the degree of structure present, only that a free energy barrier exists between the sub-ensemble 
that can bind and be phosphorylated and the sub-ensemble that cannot. 

Expression (1) defines two free energy contributions to protein phosphorylation: one from the organization of 
the intrinsically disordered substrate ensemble (Kconf) and one from binding of the organized substrate to the 
kinase active site (Kint). We hypothesize that these two contributions can be usefully separated and accessed in 

terms of quantifiable bioinformatics information (Fig. 1, red and blue circles). 

In this scenario, both the substrate conformational ensemble and conserved recognition motif would encode 
the kinase specificity information, but the presence of two coupled equilibria might suggest two separate 
sources for this information. We define the ensemble based information as “horizontal”, meaning regionally 
distributed across a sequence fragment (Fig. 1, blue circle), while the conserved motif is “vertical”, meaning that 

the residue positions are largely independent (Figure 1, red circle). Importantly, the nature of these two types of 
information would suggest that horizontal information can be conserved even in the absence of significant 
vertical conservation. 

2.2. Horizontal sequence information encodes conserved conformational dynamics 

Our approach to accessing the residue–specific contributions to Kconf encoded in the horizontal information is 

predicated on previous results from our group showing that proteins can be represented as sequences of 
thermodynamic environments (21-23) that capture the experimental conformational fluctuations (24) in both 
ordered (25) and disordered (26) ensembles. We also showed that the propensities of amino acids in these 
thermodynamic environments provide sufficient information to match unknown sequences to their 

SBI 
Kconf

 SBC  +  E 
Kint

ESBC
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environmental profiles (23), and that these profiles are conserved (25, 27, 28) (see Supplemental Figure S10). The 

importance of these earlier findings is that they directly demonstrate that hidden information about the stability 
of a chain (reported at each position) is nonetheless embedded within the sequence, and can be accessed by 
comparing this horizontal information for diverse sequences, as schematically depicted in Figure 1 (Left). 

Indeed, conservation of horizontal information may be even stronger than sequence conservation for some 
biological contexts, further motivating the combination of horizontal and vertical information. For example (Fig. 

2A), conservation of the position-specific stability (31) among the members of the intrinsically disordered N-
terminal domain of the glucocorticoid receptor family is high, while the amino acid conservation within the 
same domain is low (58). That such behavior seems to be a general feature of protein families (Fig. 2B) suggests 
that horizontal information is conserved to some degree even in the absence of amino acid conservation. 

2.3. Vertical sequence information from eukaryotic phosphorylation sites is distinguished primarily by 

the presence of +1 Pro 

The classic approach to identifying phosphorylatable substrates has been to use independent position-
conserved information (i.e. vertical information). To characterize the vertical information component, we 
investigated amino acid sequence fragments of 29 residues centered on known Ser, Thr, and Tyrosine (Tyr) 
eukaryotic phosphorylation sites (Fig. 3A). Immediately apparent from statistics of the human phosphoproteome 

is the abundance of Pro residues directly C-terminal to the annotated Ser or Thr phosphorylation site (Fig. 3A-B). 
Using the presence or absence of +1 Pro to separate phosphorylated and non-phosphorylated sequences into 
four subclasses reveals substantial differences in amino acid conservation patterns. 

Focusing on Ser sites as examples, all subclasses are generally depleted in hydrophobic and aliphatic residues 
(Fig. 3B). All subclasses except for phosphorylated non-(+1 Pro) sites are enriched with Ser and Pro, implying 

enrichment of intrinsic disorder (Supplementary Figure S1). In contrast, phosphorylated non-(+1 Pro) sites 
exhibit enrichment of positively charged amino acids Arginine (Arg) and Lysine (Lys) at positions N-terminal to 
the phosphorylation site, and enrichment of negatively charged amino acids Aspartate (Asp) and Glutamate 
(Glu) at positions C-terminal to the site (Fig. 3B, top left), distinguishing the sequence neighborhoods of 
phosphorylated and non-phosphorylated sites. Sites with +1 Pro are more difficult to distinguish based on 

sequence conservation alone, although the phosphorylated sites appear to tolerate a certain amount of Glu (Fig. 
3B, top right) while the non-phosphorylated sites are depleted in all negatively charged side chains (Figure 3B, 
bottom right). 

Surprisingly, when the presence of the +1 Pro is ignored, the sequence neighborhoods of Ser phosphorylated +1 
Pro sites (Fig. 3B, top right) are similar to those of non-phosphorylated non-(+1 Pro) sites (Figure 3B, bottom left), 

with both subclasses enriched in Pro, Ser, and Glu. This indicates that there is little conserved sequence 
information to locally distinguish a phosphorylated site from a non-phosphorylated one. Indeed, inspection of 
the logos suggests that Ser phosphorylation sites, for example, are especially depleted in aromatic amino acids 
(Figure 3B, top) relative to non-phosphorylated sites (Figure 3B, bottom). Simple positional conservation would 
report the absence of aromatics at all sites, but experimental results demonstrate that even single aromatic 

substitutions in an otherwise identical background could have large effects on denatured state properties (29). 
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Many classic examples of vertical information used in phosphorylation site prediction have been previously 

reported (10, 13, 14, 16), but we focus here on the special case of Ser and Thr sites with +1 Pro (noting Tyr shows 
no +1 sites), and demonstrate that this sequence motif, although not diagnostic by itself, is particularly useful in 
site prediction. Testing several residue types and locations in the neighborhood of known phosphorylation sites, 
the presence of +1 Pro is the single most informative position in differentiating subgroups from the complete 
dataset (Supplementary Figure S2B). Thus, we can partition sites into five subclasses based on the presence or 

absence of the +1 Pro at Ser and Thr phosphorylatable sites: Ser +1 Pro (S-P), Thr +1 Pro (T-P), Ser non-(+1 Pro) (S-
nP), Thr non-(+1 Pro) (T-nP), Tyr (Y) (Supplementary Figures S2C-D). This grouping is supported by the 
observation that position-specific weight matrices constructed from these subclasses are more similar between 
Ser +1 Pro and Thr +1 Pro than between either Ser non-(+1 Pro) and Ser +1 Pro or Thr non-(+1 Pro) and Thr +1 
Pro (Supplementary Figure S2C). For consistency with previously published work from other researchers, we also 

considered the simpler three subclass grouping based only on the identity of the phosphorylatable residue 
(Supplementary Figure S2D). 

2.4. Phosphorylatable sites in disordered substrates with +1 Pro are poised to respond to the 
phosphorylation event 

Accepted sequence heuristics exist that map expected conformational states of folded and disordered protein 

sequences to their PII propensity (20, 30), conformational stability (23, 26, 31-34, 56), or polarity and charge 
properties (35, 36). Given the demonstrated importance of +1 Pro in phosphorylation site subclass identification, 
we sought to understand the influence of these effects on the conformational manifolds of the subclasses. In 
particular, we predicted end-to-end ensemble distances (30) (Fig. 4A) and mapped annotated phosphorylation 
sites to the charge-charge plots of the denatured state (Fig. 4C) introduced by Das, et al. (35) to understand the 

expected conformational properties before and after the phosphorylation event (see Methods). 

Distributions of the sequence properties for each of the five subclasses suggest not only that the computed 
dimensions of respective conformational ensembles are poised in statistically different regions, but that the 
different subclasses respond differently to a phosphorylation event, with the +1 Pro sites responding more 
similarly than the non-(+1 Pro) sites (Figs. 4B and 4D). In detail, the generally expected response to adding the 

extra negative charge of a phosphoryl group is to make the sequence neighborhood less structured (Fig. 4C) 
(35), due both to the energetic unfavorability of burying a charged sequence in a structured hydrophobic core 
and to the energetic unfavorability of other like charges in the sequence neighborhood. Although the 
distribution is broad, this expected behavior is seen for the Ser and Thr non-(+1 Pro) subclasses (Figs. 4B and 4D, 
first two pairs of distributions). 

The +1 Pro subclasses exhibit a different response, becoming less unstructured than expected (Fig. 4B and 4D). 
However, the higher Pro content of these subclasses, and the high predicted sequence disorder content, do not 
support a folding event for the +1 Pro subclass. In fact, this subclass exhibits the highest increase in end-to-end 
distance (Fig. 4E), despite the fact that this increase starts from a more unstructured conformational ensemble. 
We hypothesize that modulating the population of PII structure through phosphorylation expands the ensemble 

(20), and that sequences already high in PII are more sensitive to the effects, as Fig. 4A would suggest. The 
demonstrated ability of Ser/Thr phosphorylation to selectively increase end-to-end distance in high PII 
sequences (20, 37) supports this hypothesis. 
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2.5. An improved phosphorylation site predictor resulting from consideration of conformational 

dynamics 

To explore the practical manifestations of our findings, the horizontal and vertical information were incorporated 
into a novel prediction method called PHOSforUS (see Methods). Evaluation of the individual predictors with 
cross-validation demonstrates that all five subclass-specific predictors have good predictive power for 
identifying annotated phosphorylation sites (Table 1). The horizontal and vertical information-specific predictors 

have similar performance, with the horizontal combination, including the position-specific COREX information 
(23, 26, 31-34) contained in eScape, showing the best performance (Figure 5B, blue curve). Although combining 
both horizontal and vertical information results in improved prediction accuracy relative to either alone (Figure 
5B, black curve), horizontal information consistently is more effective (as measured by AUROC) across subclasses 
than vertical information alone (Figure 5C, Supplementary Figures S7-9 and Supplementary Table 9). This result 

indicates that conformational equilibrium is the most important contributor to the phosphorylation event.  

Although several dozen prediction methods exist (16), six available tools were compared with PHOSforUS to 
assess the algorithm’s real-world performance (10, 11, 13-16). These methods were chosen because they were 
freely accessible and could handle the large datasets used for testing (see Methods). Based on ROC curves, the 
seven methods broadly segregated into two groups, with the most effective group containing methods that 

either explicitly, or implicitly, incorporated disorder prediction information (Table 2). For all five site classes, 
PHOSforUS exhibited the highest AUROC values (Fig. 5D and Table 2). Because we cannot exclude the possibility 
that phosphorylation sites in the testing set were not already contained in the training sets for the other 
methods, it is likely that the performance improvement of PHOSforUS reported here is a conservative estimate. 

The implications of this result are three-fold. First, the prediction effectiveness of PHOSforUS is evidence that the 

ensemble conformational transition is important for kinase recognition. Second, because PHOSforUS is trained 
on sequence fragments, information about the conformational dynamics (i.e. fluctuations) of the 
phosphorylation site is contained in the sequence neighborhood of the site. Third, because the +1 Pro can 
meaningfully segregate human phosphorylation sites, it is possible that phosphorylation site sequence logos 
(Supplementary Figures 1 and 2) can in some cases also reflect evolutionary conservation of horizontal 

information. 
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3. Discussion 

Here we tested whether embedded horizontal information that captures the thermodynamics of a disordered 
chain plays a role in determining the ability of a substrate to be phosphorylated. Yet, phosphorylation can be 
considered as a specific case of a more general problem: how to identify the structural determinants of any 
biochemical reaction targeted to an intrinsically disordered site. Our proposed solution is to reformulate the 

problem of site prediction, whether structured or disordered, by couching it within a thermodynamic 
framework. In the case of a target site within a structured protein, such a framework is simplified by the existence 
of a unique native structure. In the case of intrinsic disorder, we employ a “thermodynamic proxy” due to the 
absence of accurate conformational ensemble modeling technology (though such technology is rapidly 
developing (38-41)). 

In this work, we schematically represented the phosphorylation reaction and phosphorylation prediction in 
terms of two distinct processes with their corresponding free energies (Fig. 1). The “vertical” information is 
reflective of the classic static structural view of proteins and substrates, whereby the conserved sequence 
elements provide the scaffold for tight binding. In effect, the degree of conservation serves as a proxy for the 
energy of the interaction, a result that is consistent with the reported similarity in statistical vs. experimental 

energy changes observed within folded proteins (60).  

Unique to the approach described here, however, is the incorporation of “horizontal” information that specifically 
encodes the conformational free energy differences embedded along a sequence. Importantly, both types of 
information could be encoded by amino acid sequence and should be conserved in a substrate multiple 
sequence alignment (Fig. 1, circles), with a key difference being that the horizontal information is more diffuse 

and thus would be expected to be less conserved at individual positions using traditional alignment tools (42). 
This could be an indication of an evolutionary strategy that permits rapid testing of functional amino acid 
substitutions within a conserved disordered region. Support for the relevance of horizontal information comes 
from the direct comparison of sub-predictor statistics, such as area under ROC curve and accuracy, which reveals 
that horizontal features perform better than vertical features in every phosphorylation subclass (Supplementary 

Tables 4-8).  

The presence or absence of the +1 Pro is a key feature for subclass identification and for the effectiveness of 
PHOSforUS predictions. What is the biological function of a phosphorylated side chain followed by a Pro, and 
why is the +1 Pro motif common in eukaryotes and not prokaryotes? Although speculative, our results suggest 
the answer lies in the work that is done in the form of conformational extension upon phosphorylation. To 

appreciate this point, it must be remembered that there are at least two documented mechanisms for extension 
in a disordered ensemble: changes in charge mixing (Fig. 4C) (35, 36, 38) and changes in intrinsic polyproline II 
propensity (Figure 4A) (20, 30, 36, 37). Sequence logos (Supplementary Figure S1) demonstrate that the second 
mechanism is likely to be associated with +1 Pro subclass. 

To assess the relative extension for these phosphorylated sequence fragments, we used the method of Tomasso 

and colleagues (30), which takes both charge and PII propensity into account. Phosphorylation subclasses with 
+1 Pro show a significant extension expected post-phosphorylation of more than 0.6 Å for a 29-mer (Figure 4E). 
Notably, this extension is mediated by both charge and PII propensity (Supplementary Figures S3-6). Thus, +1 
Pro sites may encode a conformational switch between disorder and PII extended structure. Detailed 
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investigation of individual proteins will be required to ascertain the biological functions of such a switch, but we 

speculate that some cases are related to the efficiency of the signal transmitted by the phosphoryl label, while 
others could be related to the emerging phenomenon of liquid droplet stress granule formation in eukaryotes 
(43). 

4. Conclusion 

We have shown that horizontally conserved information regarding the structure and energy of the 
conformational ensemble of a protein sequence plays a major role in determining which disordered sequences 
will be phosphorylated and how these ensembles will be affected by phosphorylation. Importantly, we note the 
model presented here is not a rigorous statistical thermodynamic method that explicitly accounts for specific 
interactions and contributions of individual amino acids. Instead, we asked whether the hidden conformational 

free energy information previously demonstrated to be embedded within all protein sequences, is sufficient to 
provide predictive information when sequence conservation is too low to render meaningful comparisons. Our 
ability to take as input a single amino acid sequence and predict the likelihood of phosphorylation at Ser, Thr, 
and Tyr residues (Figure 5), demonstrates the validity of our approach, and supports our assertion that 
conformational dynamics (or fluctuations) can affect (and in the case of phosphorylation, even dominate) the 

specificity of a biological process. Thus in some respects our development of a state-of-the-art prediction 
algorithm can be viewed as a “byproduct” (albeit highly desirable) of the more important biological finding, 
which demonstrates the critical role played by conformational dynamics in determining the functional 
regulatory changes in intrinsically disordered proteins. 

5. Materials and Methods 

5.1. Reference dataset and data processing  

Canonical human protein sequences were obtained from SWISS-PROT (2018 December Release) (8), a manually 
curated subset of the UniProt database. Phosphorylation annotations were obtained from SWISS-PROT and 
PhosphoSitePlus (2018 December Release) (9). True positive sets were assembled from SWISS-PROT annotations 

and low-throughput (LTP) subset of PhosphoSitePlus. Sequence fragments of 29 amino acids (14 residues N-
terminal and C-terminal relative to a central phosphorylation site) were extracted from these sets and 
subsequently divided into five subsets (S-P, S-NP, T-P, T-NP, Y) based on the identity of the center residue and the 
presence of Pro as its C-terminal neighbor. For example, S-P denotes Ser as the phosphorylatable central residue 
with presence of the +1 Pro, while S-NP denotes any of the remaining 19 residues at the +1 position. To reduce 

information redundancy, a 50% maximum pairwise sequence similarity filter was applied to these subsets. True 
negative subsets were assembled in a similar way and sequences that shared more than 50% similarity to any 
phosphorylated sequence were removed to filter out false positives. Resulting statistics of these sets are shown 
in Supplementary Table S1.  

For the comparative analysis, we constructed another positive set which contains none of the sequences already 

contained in the training set, and presumably minimal number of sequences in the training sets of existing 
phosphorylation predictors. From PhosphoSitePlus high-throughput (HTP) subset, we removed sequences that 
show 50% similarity to any of sequences within SWISS-PROT, Phospho.ELM (7) and PhosphoSitePlus LTP datasets. 
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From resulting positive set (statistics shown in Supplementary Table S1) and true negative set, we randomly 

sampled 5 testing sets with 100 positive sites and 100 negative sites to test predictor performances. 

5.2. Visualizing conservation of vertical and horizontal information 

Orthologs of human proteins with DNA-binding transcription factor activity (GO: 0003700) were obtained from 
OMA database (58). We selected ortholog groups with the number of members between 10 < n < 250, and 
downloaded multiple sequence alignments as archived in the database. A full list of the 835 ortholog groups we 

utilized is found in Supplementary Data File 2. 

Normalized local sequence conservation scores were calculated using the following procedure. The multiple 
sequence alignment (alignment size = n) was divided into small overlapping windows (window size = 5, step = 
1). For each window, pairwise local alignment scores using BLOSUM62 matrix (59) were calculated between a 

reference sequence ( ) and each of all other sequences within same ortholog group ( ). This process was 

iterated using each of the sequences in the alignment as a reference sequence. Within each iteration, each 
pairwise score was divided by a maximum score attainable, which was defined as the case when a sequence 
which is identical to the reference was applied for pairwise comparison. Calculated pairwise scores were 

averaged to obtain a normalized local sequence conservation score (Equation 2). 

     (2) 

Native state free energy for each protein sequences was calculated using the eSCAPE algorithm (31, https://
best.bio.jhu.edu/eScape). For the same window we used for calculation of local sequence conservation score, we 
calculated local average and standard deviation of free energy values. Horizontal conservation score was 
computed using the following Equation 3: 

        (3) 

In this case, scaling coefficient (  3.3 (kcal/mol)) was calculated from 10 different ortholog groups exhibiting 

high sequence conservation and structural stability (for example, actin (ACTB) and rhodopsin (RHO) families). 
Resulting conservation scores are plotted in Figure S10A (glucocorticoid receptor / GCR), Supplementary Figure 
S10B (actin) & S10C (rhodopsin) respectively. 

To observe its correlation with free energy, sequence conservation scores and horizontal conservation scores 
were normalized again with μ = 0 and SD = 1 (i.e. a Z-score). Linear correlations between average free energy and 

both conservation scores were calculated subsequently as Figure S10D. Binned distributions for slopes and 
correlation coefficients (for 835 correlations, one for each ortholog group) could be found in Figure S10E and 
S10F respectively. 

5.3. Combining horizontal and vertical information to build a phosphorylation site predictor 

Seqi Seqj

Scoreseq =  
∑n

i=1 ∑n (not i)
j=1

BLOSUM (seqi,  seqj)

BLOSUM (seqi,  seqi)

n(n − 1)

ScoreHor = 1 −
SDlocal

Cs

Cs =
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Selected horizontal information was computed over 29 residue window (Supplementary Information) using 

properties contained within the AAindex database (44). Properties that were not classified as horizontal were 
considered vertical information. A naïve Bayes predictor (45, 57) trained on each individual property was used to 
assess predictive accuracy for each phosphorylation subclass (Supplementary Tables S4-S8), and the individual 
properties with highest information content were incorporated into the PHOSforUS prediction algorithm 
(Supplementary Tables S2 and S3). Horizontal properties included amino acid partition energies (46, 47), alpha 

helix frequencies (48), extended conformation (49, 50) and polyproline II helix propensities (20), hinting at 
cooperative and non-cooperative structure tendencies. Vertical properties included amino acid isoelectric point 
(51), molecular weight (52), volume (53), and side chain average exposed surface area (54), all being 
characteristics independent of neighboring amino acids. Orthogonal information was incorporated from 
predicted thermodynamic properties (23, 26, 31-34) using the eScape software (31), this information was used to 

train a separate naïve Bayes predictor (Supplementary Information).  

The PHOSforUS algorithm consisted of three stages: sequence pre-processing, score calculation, and decision 
output (Figure 5A). The first stage identifies the Ser, Thr, and Tyr residues as possible phosphorylation sites and 
computes the horizontal and vertical properties mentioned above for each site’s sequence neighborhood. The 
second stage routes each site to the appropriate subclass predictor and parameter set. Prediction scores from 

each individual horizontal, vertical, and thermodynamic property are combined using a Gradient Boost (55, 57) 
predictor (see details of predictor architecture, Supplementary Information), resulting in a single value for the 
potential site. The third stage compares this single value to a pre-determined threshold to predict the probability 
that the site is phosphorylated or non-phosphorylated. Thus, a confidence is attached to the binary 
phosphorylation prediction, making the prediction more interpretable to the researcher. 

5.4. PHOSforUS source code, software, and databases 

The PHOSforUS software package and associated databases are freely available at https://github.com/bxlab/
PHOSforUS. 

6. Acknowledgements 

Funding from NIH (R01-GM063747, U41 HG006620), NSF (MCB-1330211), and Johns Hopkins University is 
gratefully acknowledged. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866558doi: bioRxiv preprint 

https://doi.org/10.1101/866558
http://creativecommons.org/licenses/by/4.0/


7. References 

1. Miller CJ & Turk BE (2018) Homing in: Mechanisms of Substrate Targeting by Protein Kinases. Trend in Biochem 
Sci 43(5):380-394. 

2. Collins MO, Yu L, & Choudhary JS (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 
7(16):2751-2768. 

3. Deribe YL, Pawson T, & Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 
17(6):666-672. 

4. Humphrey SJ, James DE, & Mann M (2015) Protein Phosphorylation: A Major Switch Mechanism for Metabolic 
Regulation. Trends Endocrinol Metab 26(12):676-687. 

5. Bah A & Forman-Kay JD (2016) Modulation of Intrinsically Disordered Protein Function by Post-translational 

Modifications. J Biol Chem 291(13):6696-6705. 

6. Needham EJ, Parker BL, Burykin T, James DE, & Humphrey SJ (2019) Illuminating the dark phosphoproteome. 
Sci Signal 12(565). 

7. Dinkel H, et al. (2011) Phospho.ELM: a database of phosphorylation sites--update 2011. Nuc Acid Res 
39(Database issue):D261-267. 

8. Boutet E, Lieberherr D, Tognolli M, Schneider M, & Bairoch A (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 
406:89-112. 

9. Hornbeck PV, et al. (2019) 15 years of PhosphoSitePlus(R): integrating post-translationally modified sites, 
disease variants and isoforms. Nuc Acid Res 47(D1):D433-D441. 

10. Blom N, Gammeltoft S, & Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein 

phosphorylation sites. J Mol Biol 294(5):1351-1362. 

11. Iakoucheva LM, et al. (2004) The importance of intrinsic disorder for protein phosphorylation. Nuc Acid Res 
32(3):1037-1049. 

12. Miller ML & Blom N (2009) Kinase-specific prediction of protein phosphorylation sites. Methods Mol Biol 
527:299-310. 

13. Gao J, Thelen JJ, Dunker AK, & Xu D (2010) Musite, a tool for global prediction of general and kinase-specific 
phosphorylation sites. Mol Cell Proteomics 9(12):2586-2600. 

14. Dou Y, Yao B, & Zhang C (2014) PhosphoSVM: prediction of phosphorylation sites by integrating various 
protein sequence attributes with a support vector machine. Amino Acids 46(6):1459-1469. 

15. Ismail HD, Jones A, Kim JH, Newman RH, & Kc DB (2016) RF-Phos: A Novel General Phosphorylation Site 

Prediction Tool Based on Random Forest. Biomed Res Int 2016:3281590. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866558doi: bioRxiv preprint 

https://doi.org/10.1101/866558
http://creativecommons.org/licenses/by/4.0/


16. Wei L, Xing P, Tang J, & Zou Q (2017) PhosPred-RF: A Novel Sequence-Based Predictor for Phosphorylation 

Sites Using Sequential Information Only. IEEE Trans Nanobioscience 16(4):240-247. 

17. Kim MS, Zhong J, & Pandey A (2016) Common errors in mass spectrometry-based analysis of post-
translational modifications. Proteomics 16(5):700-714. 

18. Pinna LA & Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 
1314(3):191-225. 

19. Que S, et al. (2010) Evaluation of protein phosphorylation site predictors. Protein Pept Lett 17(1):64-69. 

20. Elam WA, Schrank TP, Campagnolo AJ, & Hilser VJ (2013) Evolutionary conservation of the polyproline II 
conformation surrounding intrinsically disordered phosphorylation sites. Prot Sci 22(4):405-417. 

21. Wrabl JO, Larson SA, & Hilser VJ (2001) Thermodynamic propensities of amino acids in the native state 
ensemble: implications for fold recognition. Prot Sci 10(5):1032-1045. 

22. Wrabl JO, Larson SA, & Hilser VJ (2002) Thermodynamic environments in proteins: fundamental determinants 
of fold specificity. Pro Sci 11(8):1945-1957. 

23. Larson SA & Hilser VJ (2004) Analysis of the "thermodynamic information content" of a Homo sapiens 
structural database reveals hierarchical thermodynamic organization. Prot Sci 13(7):1787-1801. 

24. Liu T, et al. (2012) Quantitative assessment of protein structural models by comparison of H/D exchange MS 

data with exchange behavior accurately predicted by DXCOREX. J Am Soc Mass Spectrom 23(1):43-56. 

25. Hoffmann J, Wrabl JO, & Hilser VJ (2016) The role of negative selection in protein evolution revealed through 
the energetics of the native state ensemble. Prot Struct Func Bioinf 84(4):435-447. 

26. Wang S, Gu J, Larson SA, Whitten ST, & Hilser VJ (2008) Denatured-state energy landscapes of a protein 
structural database reveal the energetic determinants of a framework model for folding. J Mol Biol 381(5):

1184-1201. 

27. Vertrees J, Wrabl JO, & Hilser VJ (2009) Energetic profiling of protein folds. Methods Enzymol 455:299-327. 

28. Wrabl JO & Hilser VJ (2010) Investigating homology between proteins using energetic profiles. PLoS Comput 
Biol 6(3):e1000722. 

29. Finnegan ML & Bowler BE (2010) Propensities of aromatic amino acids versus leucine and proline to induce 

residual structure in the denatured-state ensemble of iso-1-cytochrome c. J Mol Biol 403(4):495-504. 

30. Tomasso ME, Tarver MJ, Devarajan D, & Whitten ST (2016) Hydrodynamic Radii of Intrinsically Disordered 
Proteins Determined from Experimental Polyproline II Propensities. PLoS Comput Biol 12(1):e1004686. 

31. Gu J & Hilser VJ (2008) Predicting the energetics of conformational fluctuations in proteins from sequence: a 
strategy for profiling the proteome. Structure 16(11):1627-1637. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866558doi: bioRxiv preprint 

https://doi.org/10.1101/866558
http://creativecommons.org/licenses/by/4.0/


32. Gu J & Hilser VJ (2009) Sequence-based analysis of protein energy landscapes reveals nonuniform thermal 

adaptation within the proteome. Mol Biol Evol 26(10):2217-2227. 

33. Hilser VJ & Freire E (1996) Structure-based calculation of the equilibrium folding pathway of proteins. 
Correlation with hydrogen exchange protection factors. J Mol Biol 262(5):756-772. 

34. Hilser VJ (2001) Modeling the native state ensemble. Methods Mol Biol 168:93-116. 

35. Das RK & Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear 

sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 110(33):13392-13397. 

36. Martin EW, et al. (2016) Sequence Determinants of the Conformational Properties of an Intrinsically 
Disordered Protein Prior to and upon Multisite Phosphorylation. J Am Chem Soc 138(47):15323-15335. 

37. Chin AF, Toptygin D, Elam WA, Schrank TP, & Hilser VJ (2016) Phosphorylation Increases Persistence Length 
and End-to-End Distance of a Segment of Tau Protein. Biophys J 110(2):362-371.  

38. Fossat MJ & Pappu RV (2019) q-canonical Monte Carlo Sampling for Modeling the Linkage between Charge 
Regulation and Conformational Equilibria of Peptides, J Phys Chem B 123(32):6952-6967. 

39. Robustelli P, Piana S, & Shaw DE (2018) Developing a molecular dynamics force field for both folded and 
disordered protein states. Proc Natl Acad Sci U S A 115(21):E4758-E4766. 

40. Webb B, et al. (2018) Integrative structure modeling with the Integrative Modeling Platform. Prot Sci 27(1):

245-258. 

41. Karaca E, Rodrigues J, Graziadei A, Bonvin A, & Carlomagno T (2017) M3: an integrative framework for 
structure determination of molecular machines. Nat Methods 14(9):897-902. 

42. Schaefer C, Schlessinger A, & Rost B (2010) Protein secondary structure appears to be robust under in silico 
evolution while protein disorder appears not to be. Bioinformatics 26(5):625-631. 

43. Shin Y & Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357(6357). 

44. Kawashima S, et al. (2008) AAindex: amino acid index database, progress report 2008. Nuc Acid Res 
36(Database issue):D202-205. 

45. Zhang H (2004) The optimality of naive Bayes. Proceedings of the 17th International FLAIRS Conference 
(FLAIRS 2004), (AAAI Press). 

46. Guy HR (1985) Amino acid side-chain partition energies and distribution of residues in soluble proteins. 
Biophys J 47(1):61-70. 

47. Miyazawa S & Jernigan RL (1999) Self-consistent estimation of inter-residue protein contact energies based 
on an equilibrium mixture approximation of residues. Prot Struct Funct Genet 34(1):49-68. 

48. Prabhakaran M (1990) The distribution of physical, chemical and conformational properties in signal and 

nascent peptides. Biochem J 269(3):691-696. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866558doi: bioRxiv preprint 

https://doi.org/10.1101/866558
http://creativecommons.org/licenses/by/4.0/


49. Palau J, Argos P, & Puigdomenech P (1982) Protein secondary structure. Studies on the limits of prediction 

accuracy. Int J Pept Protein Res 19(4):394-401. 

50. Robson B & Suzuki E (1976) Conformational properties of amino acid residues in globular proteins. J Mol Biol 
107(3):327-356. 

51. Zimmerman JM, Eliezer N, & Simha R (1968) The characterization of amino acid sequences in proteins by 
statistical methods. J Theor Biol 21(2):170-201. 

52. Fasman, G.D., editor. (1976) Proteins (CRC Press, Cleveland) 3 Ed. 

53. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4154):
862-864. 

54. Radzicka A & Wolfenden R (1988) Comparing the Polarities of the Amino-Acids - Side-Chain Distribution 
Coefficients between the Vapor-Phase, Cyclohexane, 1-Octanol, and Neutral Aqueous-Solution. Biochemistry-Us 

27(5):1664-1670. 

55. Hastie T, Tibshirani R, & Friedman J (2009) Elements of Statistical Learning (Springer, New York) 2 Ed. 

56. Campen A, et al. (2008) TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. 
Protein Pept Lett 15(9):956-963. 

57. Pedgregosa F, et al. (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 

12:2825-2830. 

58. Altenhoff A, et al. (2018) The OMA orthology database in 2018: retrieving evolutionary relationships among 
all domains of life through richer web and programmatic interfaces. Nuc Acid Res 46 (D1): D477-D485. 

59. Henikoff S & Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 
89:10915-10919.  

60. Lockless SW & Ranganathan R (1999) Evolutionarily conserved pathways of energetic connectivity in protein 
families. Science 286: 285-299. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866558doi: bioRxiv preprint 

https://doi.org/10.1101/866558
http://creativecommons.org/licenses/by/4.0/


Figures and Tables 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866558doi: bioRxiv preprint 

https://doi.org/10.1101/866558
http://creativecommons.org/licenses/by/4.0/


 

ΔGconf ΔGint

Vertical information layer
(position-specific information)

Horizontal information layer
(position-averaged information)

(e.g. sequence motif, charge, 
catalytic residues, disulfide)(e.g. Hφ, Intrinsic disorder, PII)

ΔGtotal = ΔGconf + ΔGint

Protein sequences

QTVNIPGPEKVLDQSPGLGLQREPLYDLP
IRLSRLHNQQALSSSIEEGLRMQAMHRAQ
TYQRNNYALNTTATYAEPYRPIQYRVQEC
VRKQRKKIKAKMLGTPEEAESSEDEAGPW
FPLAIKMMWNISAGSSSEAILNTMSQELV
ANWGEDLRVRRRRGTGGSESSRASGLVGR
AKASRTSSKHKEDVYENLHTKNKREEKVK

QTVNIPGPEKVLDQSPGLGLQREPLYDLP
IRLSRLHNQQALSSSIEEGLRMQAMHRAQ
TYQRNNYALNTTATYAEPYRPIQYRVQEC
VRKQRKKIKAKMLGTPEEAESSEDEAGPW
FPLAIKMMWNISAGSSSEAILNTMSQELV
ANWGEDLRVRRRRGTGGSESSRASGLVGR
AKASRTSSKHKEDVYENLHTKNKREEKVK

N’                              (P-site)                               C’ N’                              (P-site)                               C’

Conformational redistribution
Kinase-protein interaction

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866558doi: bioRxiv preprint 

https://doi.org/10.1101/866558
http://creativecommons.org/licenses/by/4.0/


Figure 1. Horizontal and vertical protein sequence information reflected in the conformational and 
binding equilibria of kinase-substrate interaction. Cartoon of coupled equilibria (upper half ) demonstrates a 
decrease of diversity in the substrate’s conformational ensemble mediated by horizontal information (blue box) 
necessary to position functional residues, mediated by vertical information (red box). Horizontal and vertical 
information are simultaneously encoded (lower half ) in an amino acid sequence alignment. Black letters 

represent aligned sequences, with blue rows representing neighboring groups of amino acids exhibiting 
emergent biophysical properties, and red columns representing conserved amino acids typically used for 
alignment and binding site identification. The central hypothesis of this work is that biological phosphorylation, 
and effective phosphorylation site prediction, critically depends on both types of information. 
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Figure 2. Horizontal information is more strongly conserved than vertical information in intrinsically 

disordered regions of protein families. A. Difference between degrees of conservation of sequence and native 
state free energy (ΔG, (31)) calculated for human glucocorticoid receptor (GR) and its orthologs (58), Methods. 
Cyan denotes regions where free energy conservation (HIC, horizontal information conservation) is stronger than 
sequence conservation (VIC, vertical information conservation), and red denotes the opposite. In human GR, 
DNA binding region (DBD) and LBD region are structured, while N-terminal domain (NTD) and hinge region are 

intrinsically disordered. Preponderance of cyan area demonstrates that horizontal information can be conserved 
when vertical information is not. B. Coefficient of correlations between free  energy and conservation score is 
calculated for ortholog alignments of 835 different transcription factors (58). Distribution of slope coefficients 
over many families show that sequence conservation (red) is more strongly correlated with calculated free 
energy, a property seen in Figure 2A for a single family.  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Figure 3. Proline residue at the +1 site (+1 Pro) of serine phosphorylation sites (pS) defines a subclass of 
site (pS-P) dependent on horizontal information. A. Example 29-mer sequence neighborhoods centered on 
the phosphorylated Ser residue. Conserved Ser (S) and +1 Pro residues (P) are enlarged and bold. Frequencies of 
+1 Pro phosphorylation sites (pS-P) make up one-third of all known human phosphorylated Ser. B. Amino acid 
frequencies around pS-P and pS-nP demonstrate that pS-P sites have little distinguishing sequence features as 

compared to S-P sites. Top logos show enrichment/depletion patterns of amino acids around phosphorylated 
Ser sites. Bottom logos show patterns around non-phosphorylated Ser sites. Left logos show patterns where the 
Ser is immediately followed by amino acids other than Pro. Right logos show patterns where the Ser is 
immediately followed by Pro (i.e. +1 Pro). Vertical scale indicates information content in bits. 
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Figure 4. Phosphorylation sites containing +1 Pro are energetically poised to respond to phosphorylation 

by extension, mediated by charge and PII propensity. A. Conceptual plot illustrating expected end-to-end 
distance increase (30) due to phosphorylation of an ensemble distribution of 29-mer sequence fragments. Gray 
cloud represents non-phosphorylated sequences (NP) and blue cloud represents singly-phosphorylated 
sequences (P). B. Violin plots of ensemble distributions of sequence PII propensities (20) before (gray) and after 
(blue) phosphorylation. The +1 Pro classes in particular (the two right-most pairs of distributions) exist in an 

extension range nearest the exponential increase in panel A. C. Conceptual plot illustrating expected charge 
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change due to single phosphorylation (P) of a distribution of 29-mers. The numbered regions R1-R5 represent 

conformational regimes as described in Das, et al. (35). Note that the dashed diagonal line corresponds to the y-
axis in panel D, following. D. Violin plots of ensemble distributions of sequence charge properties before (gray) 
and after (red) phosphorylation. Dotted horizontal lines represent conformational regimes as described in Das, et 
al. (35). Sites with +1 Pro (the two right-most pairs of distributions) specifically exhibit a less unstructured 
conformational manifold prior to a phosphorylation event, thus the Pro effectively buffers a conformational 

transition with an increased PII propensity. E. +1 Pro sites undergo the largest expected extension upon 
phosphorylation due to contributions from both extension (PII structure) and charge repulsion (see 
Supplementary Figures S3-6). F. Schematic summarizing changes in the conformational ensemble upon 
phosphorylation. The top-half represents an idealized conformational spectrum ranging from mostly folded (left 
side) to mostly disordered (right side). Conformational change is measured by end-to-end distance (bottom), 

mediated by PII propensity and charge interactions. Along this spectrum, tyrosine phosphorylation (gray arrow) 
exhibits the smallest change, non +1 Pro site phosphorylation (red arrow) exhibits a moderate change, and +1 
Pro site phosphorylation exhibits the largest change (blue arrow). 
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Figure 5. Architecture, training performance, and comparative effectiveness of PHOSforUS predictor. A. 

Simplified workflow of PHOSforUS predictor algorithm. Biophysical properties of an arbitrary protein sequence 
are split into 29-mer fragments centered on Ser/Thr/Tyr residues. Five (or three) subclass-specific predictors are 
invoked, independently based on vertical (red) or horizontal (blue) information. Intermediate output is 
combined with gradient boost, and combination scores over a preset threshold are predicted as phosphorylated. 
B. Receiver–operating characteristics (ROC) of PHOSforUS constituent predictors. Area under the ROC curve 

(AUROC) is indicated as a separate bar graph (C). Performance of all subclasses of phosphorylation site are 
combined into a single curve. The combined predictor (Total, black) outperforms separate predictors based on 
vertical (Vert, red) or horizontal (Hor, blue) information. Notably, horizontal information significantly outperforms 
vertical information (C), demonstrating the importance of horizontal information. D. Comparative effectiveness 
of protein phosphorylation site prediction by PHOSforUS. For five subclasses of phosphorylation site, PHOSforUS 

AUROC values meet or exceed those obtained on the identical data with six existing prediction tools. 
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Table 1. Subclass training performance of PHOSforUS predictor. 

Accuracy Sensitivity Specificity Precision F1 MCC AUROC

Class S-P 0.795±0.007 0.800±0.007 0.789±0.011 0.791±0.010 0.796±0.006 0.589±0.014 0.883±0.006

Class S-nP 0.838±0.004 0.843±0.010 0.832±0.007 0.834±0.005 0.838±0.004 0.675±0.007 0.919±0.002

Class T-P 0.741±0.015 0.768±0.024 0.715±0.017 0.729±0.014 0.748±0.016 0.484±0.031 0.820±0.015

Class T-nP 0.730±0.007 0.735±0.026 0.725±0.018 0.728±0.008 0.731±0.011 0.460±0.014 0.810±0.007

Class Y 0.718±0.018 0.717±0.025 0.720±0.024 0.719±0.020 0.718±0.019 0.437±0.036 0.791±0.015

Weighted 
average 0.803±0.006 0.809±0.013 0.796±0.011 0.799±0.008 0.804±0.007 0.605±0.013 0.885±0.005
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Table 2. Comparative analysis (AUROC) of PHOSforUS against currently utilized predictors. 

Subclass PHOSforUS Disphos Musite Netphos3.1 Rfphos PhosPred-
RF PhosphoSVM

Class S-nP 0.871±0.028 0.823±0.028 0.783±0.037 0.717±0.044 0.744±0.026 0.813±0.034 0.814±0.025

Class T-nP 0.743±0.018 0.628±0.018 0.674±0.019 0.531±0.042 0.674±0.036 0.715±0.029 0.720±0.024

Class Y 0.724±0.024 0.657±0.024 0.651±0.039 0.622±0.022 0.637±0.067 0.684±0.022 0.678±0.021

Class S-P 0.845±0.046 0.758±0.046 0.715±0.030 0.633±0.053 0.674±0.032 0.738±0.027 0.703±0.054

Class T-P 0.768±0.023 0.663±0.023 0.635±0.011 0.596±0.033 0.644±0.037 0.683±0.023 0.692±0.030

Weighted 
average 0.836±0.021 0.767±0.030 0.738±0.032 0.665±0.044 0.707±0.032 0.769±0.030 0.762±0.018
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