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Brief summary: Ghrelin ameliorates WAT inflammation, fat atrophy and anorexia in LLC-induced 41 

cachexia. GHSR-1a is required for ghrelin’s orexigenic effect but not for its anti-inflammatory or 42 

fat-sparing effects. 43 
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ABSTRACT  46 

Adipose tissue (AT) atrophy is a hallmark of cancer cachexia contributing to increased 47 

morbidity/mortality. Ghrelin has been proposed as a treatment for cancer cachexia partly by 48 

preventing AT atrophy. However, the mechanisms mediating ghrelin’s effects are incompletely 49 

understood, including the extent to which its only known receptor, GHSR-1a, is required for these 50 

effects. This study characterizes the pathways involved in AT atrophy in the Lewis Lung Carcinoma 51 

(LLC)-induced cachexia model and those mediating the effects of ghrelin in Ghsr+/+ and Ghsr-/- mice. 52 

We show that LLC causes AT atrophy by inducing anorexia, and increasing AT inflammation, 53 

thermogenesis and energy expenditure. These changes were greater in Ghsr-/-. Ghrelin 54 

administration prevented LLC-induced anorexia only in Ghsr+/+, but prevented WAT inflammation 55 

and atrophy in both genotypes, although its effects were greater in Ghsr+/+. LLC-induced increases 56 

in BAT inflammation, WAT and BAT thermogenesis, and energy expenditure were not affected by 57 

ghrelin. In conclusion, ghrelin ameliorates WAT inflammation, fat atrophy and anorexia in 58 

LLC-induced cachexia. GHSR-1a is required for ghrelin’s orexigenic effect but not for its 59 

anti-inflammatory or fat-sparing effects. 60 

  61 
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INTRODUCTION 62 

Every year, over 1,500,000 individuals in the US are diagnosed with cancer. Cachexia (involuntary 63 

loss of muscle and adipose tissue) is present in up to 80% of cancer patients, is strongly associated 64 

with higher morbidity and mortality, and is reported as the direct cause of death in 20-40% of these 65 

patients (Dewys, Begg et al., 1980, Fearon, Strasser et al., 2011). Adipose tissue, once considered 66 

only a high-energy fuel reserve, has emerged recently as an active metabolic organ modulating 67 

inflammation, energy expenditure and food intake in non-cancer settings (You & Nicklas, 2006). 68 

Accelerated loss of adipose tissue plays an important role in cancer cachexia contributing 69 

significantly to the increased morbidity and mortality seen in this setting (Fouladiun, Korner et al., 70 

2005).  71 

 72 

Increased inflammation is common in the setting of cancer (Garcia, Garcia-Touza et al., 2005) and 73 

is associated with adipose tissue wasting in human studies (Lerner, Hayes et al., 2015). White 74 

adipose tissue (WAT) is a significant source of inflammatory cytokines accounting for more than 30% 75 

of circulating interleukin (IL)-6 (Michaud, Boulet et al., 2014) and this and other inflammatory 76 

cytokines have been linked to WAT atrophy in the setting of cancer (Petruzzelli, Schweiger et al., 77 

2014, Tsoli & Robertson, 2013, Tsoli, Swarbrick et al., 2016). Also, a phenotypic switch from WAT to 78 

brown adipose tissue (BAT) known as “browning” is thought to contribute to the overall increase in 79 

energy expenditure and WAT atrophy seen in cancer cachexia (Petruzzelli et al., 2014). 80 

Nevertheless, the mechanisms regulating adipose tissue atrophy and dysfunction in this setting are 81 

incompletely understood. 82 

 83 

Ghrelin, originally identified as the endogenous ligand for the growth hormone secretagogue 84 

receptor (GHSR)-1a, has emerged as a pleiotropic hormone that regulates body weight, body 85 
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composition and energy expenditure (Muller & Tschop, 2013). In non-cancer models, it has been 86 

shown to increase food intake by activating neuropeptide Y and agouti-related peptide-secreting 87 

neurons in the hypothalamus and to have direct effects on adipocytes (Kos, Harte et al., 2009, 88 

Muller & Tschop, 2013, Perez-Tilve, Heppner et al., 2011). Ghrelin has also been proposed as a 89 

promising target for cancer cachexia and it has been shown to prevent fat atrophy in tumor-bearing 90 

animals and in patients with cancer cachexia (Chen, Splenser et al., 2015, Garcia, Boccia et al., 91 

2015, Garcia, Scherer et al., 2013b). However, the mechanisms mediating these effects are 92 

incompletely understood. Interestingly, emerging data suggest that some of these effects are 93 

independent of the only ghrelin receptor identified to date, GHSR-1a (Kojima, Hosoda et al., 1999, 94 

Smith, Van der Ploeg et al., 1997).  95 

 96 

The objectives of this study were to characterize the pathways involved in adipose tissue atrophy in 97 

the Lewis Lung Carcinoma (LLC)-induced cachexia model and to determine the pathways mediating 98 

the effects of ghrelin on adipose tissue in this setting, including the relative contribution of GHSR-1a.  99 

 100 

101 
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RESULTS 102 

We utilized C57/BL6 congenic mice with (Ghsr+/+) or without GHSR-1a (Ghsr-/-). Five to 103 

seven-month-old male Ghsr+/+ and Ghsr-/- mice were inoculated with 1x106 heat-killed (HK, control) 104 

or live LLC cells in the right flank. When the tumor was palpable (approximately 1 wk after 105 

implantation), tumor-bearing mice were injected with vehicle (saline solution, tumor-vehicle, TV) or 106 

ghrelin (0.8 mg/kg, tumor-ghrelin, TG) subcutaneously (s.q.) twice/day, while HK mice were injected 107 

with vehicle until the end of the experiments (2 weeks after the tumor became palpable). Body 108 

weight and fat mass were measured by nuclear magnetic resonance (NMR) before tumor 109 

implantation and 2 weeks after tumors were noted. Brown adipose tissue (BAT) and inguinal and 110 

epididymal white adipose tissue (iWAT, eWAT) were collected and weighed upon sacrificing animals 111 

2 weeks after tumors were noted. We confirmed that Ghsr-/- mice did not express Ghsr globally by 112 

genotyping. Also, there was no expression of Ghsr in neither iWAT or BAT on either genotype 113 

(Supplemental Fig.1). 114 

 115 

Ghrelin prevents tumor-induced weight loss and adipose tissue atrophy only partially via 116 

GHSR-1a.  117 

LLC tumor implantation induced significant decreases in carcass weight in both genotypes; 118 

although, the decrease was more profound in Ghsr-/- than in Ghsr+/+ mice (Fig. 1A, genotype effect: 119 

p < 0.001). The same pattern was seen in whole body fat mass measured by NMR (Fig. 1B, 120 

genotype effect: p = 0.002) as well as in iWAT and eWAT pad weights measured upon dissection 121 

(Fig. 1C, genotype effect on iWAT: p = 0.043). These changes were fully prevented by ghrelin 122 

administration in Ghsr+/+ tumor-bearing animals and partially prevented in Ghsr-/- animals. Ghsr-/- 123 

mice exhibited significantly less food intake versus Ghsr+/+ mice during daytime (genotype effect: p = 124 

0.018) and tumor-bearing mice showed less food intake than controls, although this difference only 125 
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reached significant for the TG group at nighttime (Figure 1D). LLC-induced decreases in food intake 126 

were prevented by ghrelin during daytime (6am – 6pm) only in Ghsr+/+. 127 

 128 

Ghrelin attenuates tumor-induced inflammation in iWAT but not in iBAT or in circulation. 129 

In Ghsr+/+ animals, protein level for the pro-inflammatory cytokines IL-1β and TNF in iWAT were 130 

increased in tumor-bearing mice and ghrelin prevented these increases (Fig 2A, C). IL-6 and the 131 

macrophage marker monocyte chemoattractant protein-1 (MCP-1), a key chemokine responsible for 132 

migration and infiltration of monocytes/macrophages (Deshmane, Kremlev et al., 2009), followed a 133 

similar pattern although the differences did not reach statistical significance (Fig. 2B, D). 134 

Interestingly, in Ghsr-/- mice LLC-induced IL-6 level increases in iWAT appear to be dampened; 135 

whereas, MCP-1 levels were not affected by LLC or by ghrelin. Immunohistochemistry staining 136 

shows complete co-localization of IL-6 and TNF with F4/80, a marker of macrophages in mice, 137 

demonstrating that the source of these cytokines in iWAT are macrophages (Fig 2 E-F). High 138 

resolution images of immunohistochemistry staining in iWAT are demonstrated in Supplemental Fig. 139 

2.  140 

 141 

In BAT, all the inflammatory markers were generally lower than in WAT. IL-1β was increased in both 142 

genotypes (Fig. 3A) and MCP-1 only in Ghsr-/- (Fig. 3D). Ghrelin did not significantly affect these 143 

changes. IL-6 and TNF levels were not significantly different between groups (Fig. 3B-C). 144 

Nevertheless, immunohistochemistry analysis shows similar results as in iWAT suggesting that IL-6 145 

and TNF in BAT were also derived exclusively from macrophages (Fig. 3 E-F). High resolution 146 

images of immunohistochemistry staining in BAT are demonstrated in Supplemental Fig. 3. Plasma 147 

cytokine and MCP-1 levels followed a different pattern than those seen in adipose tissue being 148 

increased by LLC and not modified by ghrelin (Supplemental Fig. 4).  149 
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 150 

Ghrelin does not prevent the increases in UCP-1 induced by LLC in iWAT or BAT 151 

Thermogenesis in BAT is activated by uncoupling protein-1 (UCP-1) by de-coupling oxidative 152 

phosphorylation from ATP synthesis and dissipating heat in the inner mitochondrial membrane 153 

(Puigserver, Wu et al., 1998). A similar process has been reported in WAT which has been 154 

described as “fat browning” with transformation of “white” to “beige” adipocytes (Rosen & 155 

Spiegelman, 2014, Wu, Bostrom et al., 2012). To test the effect of LLC and the role of ghrelin and 156 

GHSR-1a on this pathway, we quantified UCP-1 levels in iWAT and BAT using 157 

immunohistochemistry (IHC) by normalizing the positively-stained area to the total cross-sectional 158 

area of the adipose tissue. Tumor implantation induced increases in UCP-1 expression in iWAT and 159 

BAT in both genotypes and these increases were more pronounced in Ghsr-/- than in Ghsr+/+ (Fig 4 160 

A-D, genotype effect in BAT: p = 0.005). In iWAT, the LLC-induced UCP-1 increase only reached 161 

significance in the tumor-bearing Ghsr-/- mice and no significant effect of ghrelin was observed. In 162 

BAT, the positively stained UCP-1 area increased with tumor implantation from 22% to 59% in 163 

Ghsr+/+ and from 35% to 70% in Ghsr-/- mice. However, no effect of ghrelin on reducing UCP-1 in 164 

BAT was observed.  165 

 166 

Tumor-induced increases in energy expenditure (EE) are not prevented by ghrelin 167 

Tumor implantation increased EE and this difference was of greater magnitude in Ghsr-/- animals 168 

when the heat production was adjusted for lean body mass (LBM, Fig 5 A-C; endpoint EE 169 

normalized to baseline level, genotype effect: p = 0.013; average EE at endpoint, genotype effect: p 170 

= 0.010). We also analyzed the raw EE data (kcal/h) by analysis of covariance (ANCOVA) with LBM 171 

as a covariate as recommended by Tschop et al. (Tschop, Speakman et al., 2011). A significant 172 

strain difference (p = 0.001) was also detected using this method where Ghsr-/- mice showed higher 173 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/866376doi: bioRxiv preprint 

https://doi.org/10.1101/866376


9 
 

EE levels in response to LLC tumor implantation when compared to Ghsr+/+. Animals 174 

co-administered ghrelin were not statistically different from vehicle-treated, tumor-bearing animals. 175 

Tumor implantation also decreased spontaneous locomotor activity in both genotypes and ghrelin 176 

administration did not prevent these changes (Fig 5 D-F). The respiratory quotient (RQ), was 177 

significantly decreased by tumor implantation and was not affected by genotype or ghrelin 178 

administration (Fig 5 G-I). 179 

180 
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DISCUSSION 181 

Adipose tissue atrophy is a central component of the cancer anorexia and cachexia syndrome 182 

(CACS) leading to increased morbidity and mortality (Das, Eder et al., 2011). Recently, emerging 183 

roles for inflammation, WAT browning and increased BAT thermogenesis have been demonstrated 184 

in this setting (Daas, Rizeq et al., 2018, Dalal, 2019, Han, Meng et al., 2018, Kir, White et al., 2014, 185 

Kliewer, Ke et al., 2015, Petruzzelli et al., 2014, Rohm, Schafer et al., 2016, Rohm, Zeigerer et al., 186 

2019, Wang, Zhu et al., 2019); however, the pathways involved and their potential as therapeutic 187 

targets are not well-known. Ghrelin and agonists of its only known receptor, GHSR-1a, show 188 

potential to ameliorate CACS at least in part by preventing fat atrophy, but the specific mechanisms 189 

mediating these effects have not been fully characterized. Given that there are no FDA-approved 190 

treatments for cancer cachexia and that several clinical trials targeting this pathway have failed to 191 

meet their primary endpoints (Garcia et al., 2015, Temel, Abernethy et al., 2016), there is a pressing 192 

need to improve our understanding of the mechanisms of action of ghrelin in this setting. In this 193 

study we show that ghrelin prevents LLC tumor-induced weight loss, fat atrophy and WAT 194 

inflammation without affecting tumor-induced BAT inflammation, WAT browning, and increased BAT 195 

uncoupling and whole-body energy expenditure. We confirmed that its orexigenic effects are 196 

GHSR-1a-dependent, and also show that other novel GHSR-1a-independent mechanisms are 197 

involved given the partial improvements in fat atrophy and WAT inflammation seen in ghrelin-treated, 198 

Ghsr-/- animals. Also, this is the first report of macrophages as the source of IL-6 and TNF in both 199 

WAT and BAT in the setting of CACS. 200 

 201 

Weight loss and survival rates are correlated with IL-6 levels in cancer patients (Garcia et al., 2005, 202 

Moses, Maingay et al., 2009, Scott, McMillan et al., 1996). These observations and several 203 

mechanistic studies support the premise that inflammation plays a central role in CACS. Increases 204 
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in IL-1β and TNF contribute to anorexia (Baracos, Martin et al., 2018, Braun, Zhu et al., 2011, Khatib, 205 

Gaidhane et al., 2018), and TNF and IL-6 promote lipolysis and inhibit lipogenesis in WAT leading to 206 

weight loss (Fearon, Glass et al., 2012, Han et al., 2018, Jeanson, Carriere et al., 2015, Jung & Choi, 207 

2014, Ruan, Hacohen et al., 2002). In non-cancer settings, one third of the circulating IL-6 is 208 

produced by WAT (Mohamed-Ali, Goodrick et al., 1997) and most of this WAT-derived IL-6 comes 209 

from the stroma-vascular fraction composed of endothelial cells, monocytes/macrophages, 210 

myocytes, and fibroblasts (Fain, Madan et al., 2004), although it can also be derived from 211 

adipocytes (Fain, 2006). Macrophages in WAT are known to be the source of proinflammatory 212 

cytokines in conditions leading to AT hypertrophy including obesity (Di Gregorio, Yao-Borengasser 213 

et al., 2005, Divoux, Tordjman et al., 2010, Lumeng, Deyoung et al., 2007) but this has not been 214 

previously shown in CACS. Here we show that LLC tumor implantation induces an increase in 215 

inflammatory cytokines in circulation as well as in BAT and WAT. Moreover, these AT cytokines 216 

appear to be derived exclusively from macrophages residing in these tissues. Adipose tissue 217 

atrophy in cancer patients with CACS has been associated with an increase in subcutaneous AT 218 

macrophages (Batista, Henriques et al., 2016, de Matos-Neto, Lima et al., 2015, Henriques, Sertie 219 

et al., 2017) and tissue inflammation (Batista, Olivan et al., 2013, de Matos-Neto et al., 2015, 220 

Henriques et al., 2017). Although, macrophage infiltration has also been described in WAT from 221 

tumor-bearing rodents (Henriques et al., 2017, Machado, Costa Rosa et al., 2004, Petruzzelli et al., 222 

2014), to our knowledge this is the first report of macrophages as the source of pro-inflammatory 223 

cytokines in adipose tissue in CACS. These findings may explain why AT remains an important 224 

source of pro-inflammatory cytokines even when the adipocyte mass is significantly reduced in this 225 

setting. Also, this may be clinically relevant to cancer patients since knowing the source of 226 

inflammation may allow us to target these pathways more effectively (Henriques, Lopes et al., 227 

2018).  228 
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 229 

Previously, we have shown that activation of GHSR-1a by ghrelin or GHSR-1a agonists (GHS) 230 

increases food intake and body weight (13, 39, 40). Our group and others also have shown that 231 

ghrelin reduces fat oxidation and lipolysis and increases lipogenesis and adiposity in a rodent model 232 

of cisplatin-induced cachexia by a combination of food intake-dependent and independent 233 

mechanisms (Chen et al., 2015, Garcia et al., 2013b, Porporato, Filigheddu et al., 2013). Ghrelin is 234 

thought to have anti-inflammatory effects in other settings (Deboer, Zhu et al., 2008, Dixit, Schaffer 235 

et al., 2004, Tsubouchi, Yanagi et al., 2014) but this is not yet clear in CACS. Some reports suggest 236 

an anti-inflammatory effect of native ghrelin administration, but this was not confirmed in other 237 

studies using GHSR-1a agonists (Chen et al., 2015, Garcia, Friend et al., 2013a). In the current 238 

study, we report that ghrelin modulates inflammation in a tissue-specific manner. Ghrelin did not 239 

prevent tumor-induced increases in circulating inflammatory cytokines or in BAT IL-1β or MCP-1 240 

protein levels. However, it mitigated LLC-induced inflammation in WAT. This effect was seen in both 241 

genotypes although it was clearer in wild type animals partly because Ghsr-/- mice appear to be 242 

resistant to tumor-induced inflammation. GHSR-1a is not expressed in adipocytes (Sun, Garcia et 243 

al., 2007) but is present in macrophages (Ma, Lin et al., 2013) and our findings are consistent with a 244 

previous report showing that old, non-tumor-bearing Ghsr-/- mice have reduced macrophage 245 

infiltration, a shift on macrophage differentiation towards a more anti-inflammatory phenotype, and 246 

decreased inflammation in adipose tissue (Lin, Lee et al., 2016). However, a GHSR-1a-independent 247 

effect of ghrelin on macrophages is also possible as it has been proposed in other settings (Avallone, 248 

Demers et al., 2006, Bulgarelli, Tamiazzo et al., 2009, Lucchi, Costa et al., 2017). Taken together, 249 

our data is consistent with a WAT-specific, anti-inflammatory effect of ghrelin that is partly GHSR-1a 250 

dependent. This is clinically relevant as GHSR-1a agonists are in clinical development for CACS 251 

and their effect on these GHSR-1a independent pathways is not known (Garcia et al., 2015). Also, 252 
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the differences we report between serum, WAT and BAT levels underscore the limitations of relying 253 

exclusively on circulating cytokine levels when trying to determine the potential role of inflammation 254 

in other tissues. 255 

 256 

Energy expenditure is an important mechanism in the regulation of body weight and is increased in 257 

CACS (Garcia et al., 2013a, Kir, Komaba et al., 2016, Rohm et al., 2019). Factors contributing to EE 258 

include physical activity and resting EE (REE) (Silver, Dietrich et al., 2007, Vazeille, Jouinot et al., 259 

2017) and adipose tissue can lead to an increase in REE by uncoupling oxidative phosphorylation in 260 

mitochondria thereby releasing heat through activation of a proton leak (Nicholls, 1976, 261 

Okamatsu-Ogura, Kitao et al., 2007). In WAT, browning has been noted in multiple cancer cachexia 262 

models with adipocytes showing an upregulation of the main regulator of thermogenesis, UCP1 263 

(Dong, Lin et al., 2018, Vaitkus & Celi, 2017). In BAT, increased thermogenesis has been reported in 264 

cachectic animals (Kir et al., 2014) independently of decreased food intake or their ability to 265 

maintain their body temperature (Tsoli, Moore et al., 2012). Proinflammatory cytokines have been 266 

suggested as key drivers of WAT browning (Han et al., 2018, Petruzzelli et al., 2014) and of BAT 267 

thermogenesis through activation of sympathetic nervous system or targeting BAT directly (Arruda, 268 

Milanski et al., 2010, Dascombe, Rothwell et al., 1989, Li, Klein et al., 2002, Tsoli et al., 2012). Here 269 

we show that LLC-tumor implantation led to an increase in total EE in spite of a significant decrease 270 

in physical activity, suggesting an increase in REE. This was associated with an increase in UCP-1 271 

expression in WAT (browning) and in BAT. Moreover, these effects were more marked in Ghsr-/- mice 272 

suggesting a protective role of GHSR-1a in this setting. These results agree with previous reports in 273 

aged, non-tumor-bearing Ghsr-/- showing higher levels of thermogenesis and energy expenditure 274 

when compared to aged-matched, wild-type mice (Lin, Saha et al., 2011). The effect of ghrelin or 275 

GHSR1a agonists on energy expenditure is unclear with some studies showing a decrease in EE 276 
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(Borner, Loi et al., 2016, Villars, Pietra et al., 2017) while others showed no effect (Adachi, Takiguchi 277 

et al., 2010, Tschop, Smiley et al., 2000, Vestergaard, Djurhuus et al., 2008). In this study, we did 278 

not see a significant effect of ghrelin on preventing LLC-induced fat browning, BAT thermogenesis, 279 

increased REE or decreased physical activity in the setting of CACS despite the fact that ghrelin 280 

prevented fat and weight loss and anorexia. We hypothesize that differences in the models, route of 281 

administration and treatment regimen and agents used (LLC mice vs. C26 mice or hepatoma model 282 

in rats, administration via s.q. vs. oral gavage vs. osmotic mini pump, ghrelin vs. GHSR1a agonists) 283 

could account for these discrepancies. More studies will be needed to test this hypothesis. 284 

 285 

Macrophage infiltration contributes to the high levels of inflammatory cytokines (TNF, IL-6, and IL-1β) 286 

in BAT in conditions associated with AT hypertrophy such as high fat diet (Roberts-Toler, O'Neill et 287 

al., 2015, van den Berg, van Dam et al., 2017) or obesity (Alcala, Calderon-Dominguez et al., 2017, 288 

Calderon-Dominguez, Mir et al., 2016). In CACS the aforementioned tumor-induced inflammation is 289 

thought to play an important role in BAT thermogenesis (Petruzzelli et al., 2014, Tsoli et al., 2012); 290 

however, the source of inflammation in BAT is not known. Similar to WAT, we found that BAT IL-6 291 

and TNF come exclusively from macrophages in the setting of cachexia. However, their expression 292 

in BAT were lower than in WAT and no significant changes were found in response to tumor 293 

implantation or ghrelin. We found a significant tumor-effect on increasing IL-1β levels in BAT 294 

although ghrelin did not prevent this increase, suggesting tissue-specific differences in inflammation 295 

between BAT and WAT in response to tumor and ghrelin. Taken together, these results are 296 

important because they show that tumor-induced WAT browning and BAT thermogenesis are 297 

associated with significant increases in REE and appear to be independent of inflammation given 298 

that downregulating inflammation does not prevent uncoupling in WAT and that BAT IL6 and TNF 299 

levels were not upregulated upon tumor implantation. In addition, our data suggests that WAT is a 300 
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significant source of inflammatory cytokines, which express the highest levels of IL-1β, IL-6, and 301 

TNF when compared to BAT and circulating levels. 302 

 303 

There were limitations to our approach. This study was not set up to establish the safety of ghrelin 304 

administration in the setting of cancer. Nevertheless, none of the studies published to date using 305 

ghrelin or GHSR-1a agonists in mice or humans have shown an increase in tumor progression 306 

(Sever, White et al., 2016). Also, the experiments were not designed to characterize other 307 

mechanisms contributing to the protective role of GHSR-1a in this setting. Lastly, our data suggest 308 

that there is an alternative receptor for ghrelin although identification of this receptor remains elusive 309 

and is the focus of other studies.  310 

 311 

In summary, ghrelin prevents LLC tumor-induced body weight and fat loss by a combination of 312 

GHSR-1a-dependent mechanisms including preventing anorexia, and other mechanisms that are 313 

partly GHSR-1a-independent. The increase in inflammation in AT induced by tumor implantation is 314 

prevented by ghrelin only in WAT; however, tumor-induced WAT browning, and increased BAT 315 

inflammation, uncoupling and whole body energy expenditure are not prevented by ghrelin even 316 

when the presence of GHSR-1a appears to contribute to maintaining energy balance in this setting. 317 

Tumor-induced WAT browning and BAT thermogenesis are associated with significant increases in 318 

REE and these seem to be independent of inflammation given that downregulating it does not 319 

prevent these changes. These results are clinically relevant because they show that ghrelin 320 

ameliorates WAT inflammation, fat atrophy and anorexia in CACS in spite of not having a discernible 321 

effect on energy expenditure, WAT browning or BAT inflammation and thermogenesis. Our data fills 322 

an important gap in the knowledge regarding the mechanisms of action of ghrelin in the setting of 323 

cancer cachexia and should inform the design of future preclinical and clinical studies targeting this 324 
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pathway.   325 

 326 

METHODS 327 

Animals 328 

Five to seven-month-old male C57BL/6J growth hormone (GH) secretagogue receptor wild type 329 

(Ghsr+/+) and knockout (Ghsr-/-) congenic mice were used for all experiments. Briefly the Ghsr+/+ and 330 

Ghsr-/- mice were originally from Dr. Roy G. Smith Ph.D’s laboratory (Sun, Butte et al., 2008) and the 331 

Ghsr-/- mice were backcrossed with C57BL/6J for at least 10 generations to minimize selective 332 

genetic traits. The mice used in the study were off springs of these congenic mice and were bred in 333 

the Animal Research Facilities in Veterans Affairs Puget Sound Health Care System. Mice were 334 

individually housed, acclimated to their cages and human handling for 1 week before the 335 

experiments and maintained on a 12/12 light/dark cycle (lights on at 6AM). All experiments were 336 

conducted with the approval of the Institutional Animal Care and Use Committee at VA Puget Sound 337 

Health Care System and were in compliance with the NIH Guidelines for Use and Care of 338 

Laboratory Animals. Sample sizes of each experiment are shown in the figure legends. 339 

 340 

Tumor implantation and ghrelin administration 341 

The procedures of tumor implantation (TI) and ghrelin intervention were described previously (Chen 342 

et al., 2015). In brief, mice were injected subcutaneously (s.q.) with Lewis lung carcinoma (LLC) 343 

cells (1 × 106 cells, CRL1642, American Type Culture Collection, Manassas, VA) into the right flank 344 

or with equal volume and number of heat-killed LLC cells (HK). Approximately 7 days after tumor 345 

implantation (TI), when the tumor was palpable (~1cm in diameter), the tumor-bearing mice were 346 

treated with either acylated ghrelin (AS-24160, Anaspect, Fremont, CA) at a dose of 0.8 mg/kg or 347 

vehicle (0.9% sodium chloride, 8881570121, COVIDIEN, Dublin, Ireland), s.q., twice daily, while 348 
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mice in HK group received vehicle (saline, same volume), s.q., twice daily for two weeks.  349 

Mice were euthanized by CO2 on Day 21 after TI, approximately 2 weeks after TN. Blood samples 350 

were collected and then processed into plasma. Fat pads including iWAT, eWAT, and BAT, as well as 351 

tumors were collected during dissection. The timeline of the study is demonstrated in Supplemental 352 

Fig. 5.  353 

 354 

Body weight, food intake, and body composition 355 

Body weight and food intake were assessed daily starting before TI (baseline) until endpoint. 356 

Parameters of body composition, including LBM and fat mass (FM) were measured by nuclear 357 

magnetic resonance (NMR, Bruker optics, The Woodlands, TX) and identified at the baseline before 358 

tumor implantation, when tumor was noted, and 2 weeks after tumor noted before terminating the 359 

experiment (endpoint).  360 

 361 

Comprehensive laboratory animal monitoring system (CLAMS™) 362 

The Comprehensive Laboratory Animal Monitoring System (CLAMS™, Columbus Instruments, 363 

Columbus, OH) was used to identify metabolic parameters of the animals as we previously 364 

described (Guillory, Chen et al., 2017). Ghsr+/+ and Ghsr-/- mice were individually housed in CLAMS 365 

cages for 96 hours before TI as well as at the endpoint (see the Supplemental Fig. 5, timeline for the 366 

study). The first 12 hours of CLAMS was considered as the acclimation phase and the data for the 367 

next 72 hours were analyzed. Oxygen consumption (VO2) (mL/h), carbon dioxide production (VCO2) 368 

(mL/h), and locomotor activity (infrared beam-break counts) were recorded automatically by the 369 

CLAMS system every 20 min. The respiratory exchange ratio (RQ) and energy expenditure (EE, or 370 

heat generation) were calculated from VO2 and VCO2 gas exchange data as follows: RQ = 371 

VCO2/VO2 and EE = (3.815 + 1.232 × RQ) × VO2, respectively. Energy expenditure was then 372 
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normalized to LBM for statistical analysis using two-way analysis of variance (ANOVA). Alternatively, 373 

we also analyzed EE value by ANCOVA with LBM as a covariate. Locomotor activity was measured 374 

on x- and z-axes by the counts of beam-breaks during the recording period. The data shown in the 375 

results was summarized as the mean of every 6 hours in a 72-hour-period.  376 

 377 

Electrochemiluminescence immunoassay 378 

Inflammatory cytokines IL-1β, IL-6, and TNF-α and macrophage marker MCP-1 in iWAT, BAT, and 379 

serum were detected by U-PLEX Biomarker Group1 (ms) Assays which are developed by Meso 380 

Scale Diagnostics (K15069L-1, MSD, Rockville, MD). A protocol provided by manufacturer was 381 

used for this assay. In brief, each plate was prepared by overnight coating with the multiplex coating 382 

solution at 4 oC, which contained linker-coupled biotinylated antibodies. Standards and serum 383 

samples were diluted with Diluent 41 into 2-fold and loaded onto the coated plate on the next day. 384 

For iWAT and BAT samples, 150ug of the protein lysate was diluted with Diluent 41 and loaded onto 385 

each well. The plate was incubated at room temperature (RT) with shaking for 2h followed by 3 386 

times of wash in phosphate buffered saline with .05% Tween 20 (PBS/T). Sulfo-tag labeled 387 

detection antibody was then added to plates and incubated for 2.5h. After another 3 washes in 388 

PBS/T, Read Buffer T(2x) was added and the plate was read on MSD Sector Imager (MSD).  389 

 390 

Immunohistochemistry 391 

The iWAT and BAT were mounted with OCT (VWR 25608-930, VWR, Radnor, PA) and flash frozen 392 

in liquid nitrogen-chilled isopentane immediately after tissue collection. The OCT-mounted iWAT 393 

and BAT blocks were sliced at 14μm using a Cryostat (Leica CM3050S, Nussloch, Germany) at 394 

-40oC. Before the process of staining, slides were dehydrated at RT for 30 minutes followed by 395 

incubating in methanol for 15 minutes at -20 oC. To identify the colocalization of F4/80 and IL-6 or 396 
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TNFα in iWAT and BAT, slides were blocked with 10% donkey serum for 1 hour at RT and followed 397 

by incubating in primary antibodies (F4/80 Monoclonal Antibody 1:100, MF48000, Thermo Fisher 398 

Scientific; Anti-IL-6 antibody 1:100, ab6672, Abcam; TNF alpha monoclonal antibody, FITC, 399 

eBioscience™ 1:200, 11-7349-82, Thermo Fisher Scientific) at 4oC for overnight. After 3 washes in 400 

PBS, the slides were incubated by the corresponding secondary antibodies (Alexa Fluor 594 401 

donkey anti-rat IgG, A21209, or Alexa Fluor 488 donkey anti-rat IgG, A21208, for F4/80; Texas Red 402 

goat anti-rabbit IgG, T-2767, for IL-6) for 2 hours at RT and followed by incubating in 1:1000 DAPI 403 

(62248, Thermo Fisher Scientific) in PBS for 1min. The slides were then mounted by Prolong Gold 404 

AntiFade reagent (P36930, Thermo Fisher Scientific) with coverslips. To identify UCP1 in iWAT and 405 

BAT, slides were incubated with 3% hydrogen peroxide (323381, Sigma-Aldrich, St. Louis, MO) for 406 

30 min and then in 2.5% normal horse serum for 1hr. Then the slides were incubated with UCP1 407 

Polyclonal Antibody (PA1-24894, Thermo Fisher Scientific) diluted 1:200 in 2.5% normal horse 408 

serum at 4oC for overnight. On the following day, signals were visualized using SignalStain® Boost 409 

IHC Detection Reagent (8114, Cell Signaling) and the SignalStain® DAB Substrate kit (8059, Cell 410 

Signaling). The stained slides were dehydrated by 70%, 90%, 100% ethanol, and 100% xylene 411 

sequentially and mounted with coverslips by using Permount (SP15-100, Thermo Fisher Scientific). 412 

All stained slides were imaged by Nikon NiE microscope at 20x (iWAT) or 40x (BAT). The positive 413 

cells (immunofluorescence) or positive area (DAB stain) in the section were quantified and 414 

normalized to the total area of the section (mm2) using ImageJ analysis software (National Institutes 415 

of Health, http://rsb.info.nih.gov/ij/). 416 

 417 

Statistics 418 

Two-way ANOVA was performed to identify differences between genotypes (Ghsr+/+ vs. Ghsr-/-) 419 

across treatments (HK, TV, and TG) followed by Fisher’s LSD post hoc test. For inflammatory 420 
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cytokines, Kruskal-Wallis test was performed to identify the differences between groups. For energy 421 

expenditure, ANCOVA was also used for analysis in addition to ANOVA with LBM as a covariate to 422 

identify differences between genotypes across treatments followed by Fisher’s LSD post hoc test. 423 

Values are presented in mean ± SEM. All statistical testing was performed using IBM SPSS version 424 

18 software. Significant difference was set at *: p < 0.05; **: p < 0.01; ***: p < 0.001.  425 
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FIGURE LEGENDS 691 

Figure 1. Effects of ghrelin on body weight, fat mass, and food intake in LLC-induced cachexia. HK: 692 

heat-killed + vehicle; TV: tumor + vehicle; TG: tumor + ghrelin. Changes in (A) body weight (carcass 693 

weight, n = 8-10) and (B) fat body mass by NMR expressed as % change from baseline (n = 8-10). 694 

(C) Fat pad mass normalized to baseline NMR fat mass (mg/g, n = 4-6). (D) Average cumulative 695 

food intake (FI) normalized to baseline FI (g/g, black areas represent food intake in the nighttime, 696 

and the bottom areas in the bars represent food intake in the daytime, n = 4-6). * p < 0.05 compared 697 

to HK within the same genotype. # p <0.05 compared to TV within the same genotype. In panel D, 698 

differences in daytime are shown at the lower part of the bars; differences in nighttime are shown at 699 

the upper part of the bars. Genotype effects are shown in p-values above the corresponding figures 700 

(p < 0.05). Data are shown as mean ± SE.  701 

 702 

Figure 2. Effects of ghrelin on LLC-induced changes in inflammation and macrophages in iWAT. HK: 703 

heat-killed + vehicle; TV: tumor + vehicle; TG: tumor + ghrelin. Protein levels of inflammatory 704 

markers (A)IL-1β, (B) IL-6, and (C) TNF; and (D) macrophage marker MCP-1 in iWAT (pg/mg). *p < 705 

0.05; **p < 0.01 compared to HK within the same genotype. # p < 0.05 compared to TV within the 706 

same genotype. No genotype difference was detected. Data are shown as mean ± SE. n = 707 

6-7/group. (E-F) Colocalization of inflammation and macrophages in iWAT. (E) Representative 708 

images of colocalization of inflammatory marker IL-6 and macrophage marker F4/80 in iWAT (IL-6 in 709 

Texas red; F4/80 in FITC green; nuclei in DAPI blue). (F) Representative images of colocalization of 710 

inflammatory marker TNF and macrophage marker F4/80 in iWAT (TNF in FITC green; F4/80 in 711 

Texas red; nuclei in DAPI blue). Positively stained inflammatory markers and colocalizations with 712 

macrophages are indicated by the white arrows. Scale bars, 100 µm. 713 

 714 
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Figure 3. Effects of ghrelin on LLC-induced changes in inflammation and macrophages in BAT. HK: 715 

heat-killed + vehicle; TV: tumor + vehicle; TG: tumor + ghrelin. Protein levels of inflammatory 716 

markers (A)IL-1β, (B) IL-6, and (C) TNF; and (D) macrophage marker MCP-1 in iWAT (pg/mg). * p < 717 

0.05; ** p < 0.01; *** p < 0.001 compared to HK within the same genotype. # p < 0.05; ### p < 0.001 718 

compared to TV within the same genotype. No genotype difference was detected. Data are shown 719 

as mean ± SE. n = 6-7/group. (E-F) Colocalization of inflammation and macrophages in BAT. (E) 720 

Representative images of colocalization of inflammatory marker IL-6 and macrophage marker F4/80 721 

in BAT (IL-6 in Texas red; F4/80 in FITC green; nuclei in DAPI blue). (F) Representative images of 722 

colocalization of inflammatory marker TNF and macrophage marker F4/80 in BAT (TNF in FITC 723 

green; F4/80 in Texas red; nuclei in DAPI blue). Positively stained inflammatory markers and 724 

colocalizations with macrophages are indicated by the white arrows. Scale bars, 100 µm. 725 

 726 

Figure 4. Expression of UCP-1 in iWAT and BAT. HK: heat-killed + vehicle; TV: tumor + vehicle; TG: 727 

tumor + ghrelin. (A) Representative IHC images of UCP-1 in iWAT. (B) UCP-1 positive area is 728 

expressed as % of the total analyzed area in iWAT (n = 4-6). (C) Representative IHC images of 729 

UCP-1 in BAT. (D) UCP-1 positive area is expressed as % of the total analyzed area in BAT (n = 4-6). 730 

* p < 0.05; ** p < 0.01; *** p < 0.001 compared to HK within the same genotype. Genotype effects 731 

are shown as p-values above the corresponding figures (p < .05). Data are shown as mean ± SE. 732 

Scale bars, 200 µm. 733 

 734 

Figure 5. Indirect calorimetry measurements by CLAMS. HK: heat-killed + vehicle; TV: tumor + 735 

vehicle; TG: tumor + ghrelin. (A-C) Energy expenditure adjusted by LBM is expressed (A) compared 736 

to the baseline; (B) every 6 hours; and (C) average of every 6 hours. (D-F) Ambulatory activity is 737 

expressed (D) compared to baseline; (E) every 6 hours; and (F) daily (black areas represent night 738 
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activity in each group). (G-I) Respiratory Quotient (RQ) is expressed (G) compared to baseline; (H) 739 

every 6 hours; and (I) average of every 6 hours. *p<0.05 compared to HK within the same genotype. 740 

Genotype effects are shown in p-values above the corresponding figures (p < 0.05).  N = 4 for HK 741 

groups and N = 6 for the rest of the groups. Data are shown as mean ± SE.  742 

 743 

Supplemental Fig. 1. Gene expression of Ghsr in brain, iWAT, and BAT in Ghsr +/+ and -/- mice. Data 744 

is expressed as box-and-whisker plot showing the median (middle line), mean (middle cross), upper 745 

and lower quartiles (box), maximum and minimum (whiskers). Relative gene expression was 746 

determined by normalization to Gapdh. N = 4/group. Ghsr was only detected in brain in Ghsr +/+ 747 

mice. No Ghsr expression was detected in any tissue in Ghsr -/- or adipose tissue in Ghsr +/+ mice. 748 

 749 

Supplemental Fig. 2. High resolution images of immunohistochemistry staining in iWAT. (A) 750 

Representative images of colocalization of inflammatory marker IL-6 and macrophage marker F4/80 751 

in iWAT (IL-6 in Texas red; F4/80 in FITC green; nuclei in DAPI blue). (B) Representative images of 752 

colocalization of inflammatory marker TNF and macrophage marker F4/80 in iWAT (TNF in FITC 753 

green; F4/80 in Texas red; nuclei in DAPI blue). Positively stained inflammatory markers and 754 

colocalizations with macrophages are indicated by the white arrows. Scale bars, 100 µm. 755 

 756 

Supplemental Fig. 3. High resolution images of immunohistochemistry staining in BAT. (A) 757 

Representative images of colocalization of inflammatory marker IL-6 and macrophage marker F4/80 758 

in BAT (IL-6 in Texas red; F4/80 in FITC green; nuclei in DAPI blue). (B) Representative images of 759 

colocalization of inflammatory marker TNF and macrophage marker F4/80 in BAT (TNF in FITC 760 

green; F4/80 in Texas red; nuclei in DAPI blue). Positively stained inflammatory markers and 761 

colocalizations with macrophages are indicated by the white arrows. Scale bars, 100 µm. 762 
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 763 

Supplemental Fig. 4. Effects of ghrelin on LLC-induced protein-level changes in inflammation (IL-1β, 764 

IL-6, and TNF) and macrophages (MCP-1) in plasma (pg/mg, n = 11-14). *, **: different than HK 765 

within the same genotype (*: p < .05; **: p < .01). Genotype effects are shown in p-values above the 766 

corresponding figures (p < .05). Data are shown as mean ± SE. 767 

 768 

Supplemental Fig. 4. Timeline of current study. Ghsr+/+ and -/- mice were injected with LLC (T, 1 × 769 

106 cells, s.q.) into the right flank or with equal volume and number of heat-killed LLC cells (HK). 770 

Approximately 7 days after tumor implantation, when the tumor was palpable (day 0), the 771 

tumor-bearing mice were treated with either acylated ghrelin, 0.8 mg/kg (TG) or vehicle (0.9% 772 

sodium chloride, TV), s.q., twice daily, while mice in HK group received vehicle (saline, same 773 

volume), s.q., twice daily for two weeks. Body composition were identified by NMR before tumor 774 

implantation (7 days before tumor noted, baseline) and weekly till the endpoint. All the mice were 775 

individually housed in CLAMS cages for 96 hours before TI (11-7 days before tumor noted, baseline) 776 

as well as at the endpoint (day 10-14 after tumor noted). 777 
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