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Abstract

Plasmodium falciparum causes the most lethal form of malaria. The cooperation of heat shock 

protein (Hsp) 70 and 90 is important for folding of a select number of cellular proteins that are 

crucial for cyto-protection and development of the parasites. Hsp70 and Hsp90 are brought into a 

functional complex that allows substrate exchange by stress inducible protein 1 (STI1), also known 

as Hsp70-Hsp90 organizing protein (Hop). P. falciparum Hop (PfHop) co-localises and occurs in 

complex with the parasite cytosolic chaperones, PfHsp70-1 and PfHsp90. Here, we characterised 
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the structure of recombinant PfHop using synchrotron radiation circular dichroism (SRCD) and 

small-angle X-ray scattering. Structurally, PfHop is a monomeric, elongated but folded protein, in 

agreement with its predicted TPR domain structure. Using SRCD, we established that PfHop is 

unstable at temperatures higher than 40 °C.  This suggests that PfHop is less stable at elevated 

temperatures compared to its functional partner, PfHsp70-1, that is reportedly stable at 

temperatures as high as 80 °C.  These findings contribute towards our understanding of the role of 

the Hop-mediated functional partnership between Hsp70 and Hsp90.

Introduction

Heat shock proteins (Hsp) serve primarily as protein folding facilitators. They also participate in 

several other processes, such as protein transport, assembly/disassembly of protein complexes, 

protein degradation, amongst others [1]. Their role in the survival and pathogenicity of malaria 

parasites is increasingly becoming apparent [2; 3; 4]. Plasmodium falciparum is the agent for the 

most lethal form of malaria. It has been reported that the cytosolic P. falciparum heat shock protein 

70-1 (PfHsp70-1) is cyto-protective due to its ability to suppress protein mis-folding and 

aggregation under stressful conditions [5; 6]. In addition, another cytosolic molecular chaperone, 

P. falciparum Hsp90 (PfHsp90) is essential [7]. The cooperation of Hsp70 and Hsp90 is known to 

facilitate folding and function of proteins implicated in cell development, such as steroid hormone 

receptors and kinases [8; 9].

Stress inducible protein 1 (STI1) was first described in mouse [10], and now also known as Hsp70-

Hsp90 organizing protein (Hop), acts as a module that allows Hsp70 and Hsp90 to interact stably, 

thereby facilitating substrate transfer from Hsp70 to Hsp90. Hop is conserved and stress inducible 
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protein that possesses three tetratricopeptide repeats (TPR): TPR1, TPR2A and TPR2B [10]. Both 

Hsp70 and Hsp90 interact with Hop via the C-terminal EEVD motif, present in the two molecular 

chaperones [11; 12]. Hop interacts with Hsp70 and Hsp90 via its TPR1 and TPR2A domains, 

respectively [11]. While for a long time the role of the TPR2B domain of Hop has remained largely 

elusive, it is now thought that Hsp70 first binds to the TPR1 domain of Hop before switching to 

the TPR2B domain to facilitate substrate transfer to Hsp90 [11; 13].

In light of the importance of both PfHsp70-1 and PfHsp90 in the survival of the malaria parasite, 

there has been growing interest in identifying inhibitors targeting the function of these two 

molecular chaperones. Compounds that inhibit PfHsp70-1 [14; 15; 16] and PfHsp90 [17, 9] have 

been identified, and some of them exhibit antiplasmodial activity. Some compounds that target 

PfHsp90 function reverse parasite resistance to traditional antimalarial drugs, such as chloroquine 

(reviewed in [18]). We previously described Plasmodium falciparum Hop (PfHop), which co-

localises and associates with both PfHsp70-1 and PfHsp90 [19; 12]. While Hop in other organisms, 

such as yeast and human, has been rather extensively characterised, the structure and function of 

PfHop remain to be elucidated. 

Here, we show that PfHop is a monomeric, elongated but folded protein, which loses most of its 

secondary structure at temperatures above 40ºC. We discuss the implications of our findings with 

respect to the role of PfHop in coordinating the Hsp70-Hsp90 pathway in P. falciparum.
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2.0 Methods and Materials

2.1 Materials

Reagents used in this study, unless otherwise stated, were purchased from Merck Chemicals 

(Darmstadt, Germany), Thermo Scientific (Illinois, USA), Zymo Research (USA), Melford 

(Suffolk, UK), and Sigma-Aldrich (USA). Nickel NTA resin was purchased from Thermo 

Scientific (USA). ECL was purchased from (ThermoFisher Scientific, USA). The expression and 

purification of his-tagged recombinant forms of PfHop was confirmed by Western blotting using 

anti-His antibodies (Thermo Scientific, USA). Furthermore, rabbit raised anti-PfHop antibodies 

(Eurogentec, Belgium; 19) were also used to confirm the presence of recombinant PfHop protein. 

2.2 Expression and purification of recombinant PfHop

Recombinant PfHop (PF3D7_1434300) was overexpressed in Escherichia coli XL1 Blue cells and 

purified by nickel affinity chromatography as previously described [19; 12]. The Ni-affinity 

purified proteins were extensively dialysed in SnakeSkin dialysis tubing 10 000 MWCO 

(ThermoFisher Scientific, USA) against buffer A [20 mM Tris-HCl, pH 7.5, 10 mM NaCl, 5% 

(v/v) glycerol, 0.2 mM Tris-carboxyethyl phosphine (TCEP)]. The protein from Ni-NTA 

chromatography was used to perform conventional CD spectroscopy and tryptophan fluorescence 

assays. SRCD and SAXS analyses were performed using protein that was further purified using 

ion exchange and size exclusion chromatography as follows. The dialysed protein was further 

purified using anion exchange chromatography using a Tricorn MonoQ 4.6/100 PE column (G.E 

Healthcare LS, USA). PfHop was eluted by applying buffer B (20 mM Tris-HCl, pH 7.5, 10 mM 

NaCl, 0.2 mM TCEP) to the column using a linear (0.1-1.0 M) NaCl gradient.  As the final 

purification step and to evaluate the oligomeric state of PfHop, size exclusion chromatography 
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was used. Following anion exchange, fractions containing pure PfHop were pooled together and 

loaded onto a HiLoad 16/600 SuperdexTM 200 pg column equilibrated with buffer C (10 mM Tris-

HCl, pH 8, 300 mM NaCl containing 5% glycerol, 0.2 mM TCEP). Eluted fractions were analysed 

using SDS-PAGE to determine the purity and homogeneity of the PfHop protein. Authenticity of 

the purified protein was confirmed by sequencing using MALDI-TOF mass spectrometry at the 

Biocenter Oulu Proteomics Core Facility, Oulu University, Finland. The protein concentration was 

determined by measuring the UV absorbance at 280 nm using a Nanodrop ND100 (ThermoFisher 

Scientific, USA). 

The molecular weight of PfHop was determined using multi-angle static light scattering (MALS) 

coupled to size exclusion chromatography using a Superdex S200 Increase 10/300 GL column 

(GE Healthcare). The column, equilibrated with buffer C, was coupled to a mini DAWN TREOS 

MALS detector (Wyatt Technology, Germany) and an ERC RefraMAx520 differential 

refractometer (ERC, Germany). 100 µg of PfHop in buffer C was injected into the column using a 

flow rate of 0.5 ml/min. BSA and ovalbumin were used as molecular-weight controls. The 

molecular weight of PfHop was determined based on the measured light scattering at three 

different angles and the refractive index using the ASTRA software version 6.1.5.22 (Wyatt 

Technology, Germany).

2.4 Investigation of the secondary structure of PfHop

The secondary structure of PfHop was investigated using synchrotron radiation (SR) and 

conventional circular dichroism (CD) spectroscopy. The spectral measurements were conducted 

at the UV-CD12 beam line (Anka, Karlsruhe) under temperature-controlled conditions. PfHop at 
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a concentration of 0.5 mg/ml dialysed in buffer D (10 mM K3PO4, pH 7.0, 150 NaF) was analysed 

using a 98.56 µm path length round cell cuvette (Suprasil, Hellma Analytics, Germany) at a 

constant temperature of 10°C. A total of 3 full spectral scans were recorded from 280 to 175 nm 

and averaged. CD spectroscopy experiments were done using a Jasco J-1500 CD spectrometer 

(JASCO Ltd, UK) with a temperature-controlled Peltier. Recombinant proteins at a final 

concentration of 2 μM were analysed using a 2-mm path-length quartz cuvette (Hellma). Spectral 

scans were recorded from 250 to 180 nm and averaged for least 3 scans. The SRCD data were 

processed and deconvoluted using the Dichroweb server (20) and the CONTINLL algorithm with 

the SP175 reference set (21). To further predict the secondary structure content of PfHop, the 

BeStSel server (http://bestsel.elte.hu/; [22; 23]) and the Phyre2 server 

(http://sbg.bio.ic.ac.uk/phyre2/; [24]) were also used. In order to investigate the heat stability of 

PfHop, the protein was subjected to increasing temperature (10 to 90°C using 5°C intervals) and 

full spectrums recorded. Melting curves were plotted by monitoring the CD signal at 192, 193, 210 

and 220 nm. The measurements were expressed as folded protein fraction at the respective 

temperature using previously described protocols [25; 26].  The tertiary structure of the protein 

was probed in the presence of varying concentrations of denaturants, urea (0 - 8 M) and guanidine 

hydrochloride (0 - 6 M). 

Fluorescence spectra were recorded with initial excitation at 295 nm and emission being measured 

between 300 nm and 400 nm using JASCO FP-6300 spectrofluorometer (JASCO, Tokyo, Japan).

2.5 Small-angle X-ray scattering analysis for PfHop shape determination

Synchrotron small-angle X-ray scattering (SAXS) data were collected on the EMBL Hamburg 

Outstation beam line P12 at PETRA III/DESY (Hamburg). PfHop (2.2 mg/ml) and buffer samples 
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were exposed to X-rays with a wavelength of 1.240 Å for 0.045 s. Pre-processed data were further 

analysed with the ATSAS software package [27]. The distance distribution calculation and ab 

initio modeling were performed using GNOM [28] and the GASBOR package [29], respectively. 

Human Hop Tpr1 (1ELW; 0) and bakers’s yeast Tpr2AB domains (3QU3; 11) were manually 

fitted in the ab initio envelope using PyMOL 2.3.2 (Schrödinger, USA). An Rg value of 5.3 nm 

was determined visually from the linear part of the low scattering angles (0.0087 – 0.0715 nm-1) 

using PRIMUS (1). The Dmax for PfHop was estimated as 24 nm, also using PRIMUS.

3 Results

3.1 Oligomeric state of recombinant PfHop

Recombinant PfHop was purified using nickel affinity chromatography as previously described 

[19]. The protein was further purified using ion exchange and subsequently subjected to size 

exclusion chromatography (Supplementary Figure S1). 

Hop has been reported to exist as either monomer [32] or dimer [33], or is largely monomeric 

forming weak dimers [34]. Based on size exclusion chromatography, PfHop eluted as an elongated 

monomer under reducing conditions. A small fraction of dimer, likely due to partial oxidation, 

could be seen in some batches (Figure S1 C, lanes 1-5). The monomeric state was confirmed using 

multi-angle light scattering coupled to size exclusion chromatography, which gave a molecular 

weight of 73 kDa for the main peak (Figure 1). This is 8% larger than the calculated theoretical 

molecular weight 67.6 kDa. As a control, we determined molecular weights for bovine serum 

albumin (73 kDa) and ovalbumin (45 kDa), which were 10% and 6%, respectively, larger than 

their calculated theoretical molecular weights. 
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 Figure 1. Determination of the oligomeric status of PfHop. Size exclusion chromatography of 

PfHop displays a single peak. The molecular weight of the peak calculated using static light 

scattering, shown as a black line, represents a PfHop monomer.

3.3 Analysis of the secondary structure of PfHop 

To confirm the folding state and secondary structure composition of recombinant PfHop, 

synchrotron radiation circular dichroism (SRCD) spectroscopy was conducted. SRCD spectra 

were recorded between 175 and 280 nm at 10°C. The PfHop spectra exhibited 2 negative minima 

around 222 and 208 nm and a positive peak at 194 nm (Figure 2A), characteristic of a 

predominantly α-helical protein [35]. Deconvolution of the spectra with Dichroweb indicated a 

predominantly α-helical structure comprising 77 % α-helices (Supplementary Table 1). This was 

supported by predictions from BeStSel and Phyre2 (Supplementary Table 1).  The observed 

predominantly α-helical structure is consistent with the predicted three-dimensional model of 

PfHop which showed that all its three TPR motifs are α-helical in nature [19]. Furthermore, based 

on the previously generated three-dimensional model of PfHop, residues of PfHop that are 

implicated in making direct contact with PfHsp70-1/PfHsp90 are positioned within the grooves of 

the α-helical TPR domains [19] 

PfHop mediates the interaction between PfHsp70-1 and PfHsp90 [19; 12], and its expression is 

heat-induced [19]. The roles of these two chaperones become important when the parasite is under 

heat stress, such as during clinical malaria fever episodes [36]. It is therefore important that heat 

shock proteins of parasite origin exhibit resilience to heat stress conditions, and PfHsp70-1 is stable 

at high temperatures and is most active at 48-50 ºC and retains its ATPase activity at up to 80 ºC 
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[6; 25]. However, it remains to be established whether PfHop exhibits the same resilience to heat 

stress. 

To probe this, we investigated the heat stability of recombinant PfHop in vitro. As a control, the 

denaturation of PfHop exposed to urea (0 - 8 M) was also monitored using CD (Figure 2C). Next, 

we monitored the folded fraction of PfHop in response to exposure to increased temperature 

conditions using SRCD (10 to 90 °C) (Figure 2A). PfHop appeared stable at temperatures lower 

than 40°C. However, at higher temperatures the protein lost its fold, and only 50% of the protein 

retained its folded state at 45 °C (Figure 2B). Notably, the spectra suggest that the protein 

simultaneously loses both its α-helical and β-compositions in response to heat stress. Based on 

these findings, PfHop is less stable to heat stress than PfHsp70-1, whose ATPase activity was 

found to be optimal at 50 °C [25] and exhibits chaperone activity (suppressing heat induced 

aggregation of protein) at 48 °C [6].

Figure 2. Secondary structure analysis of PfHop. (A) SRCD spectrum of full-length PfHop. 

SRCD spectral scans upon heating from 10 to 90 °C, resulting in unfolding of PfHop. (B) The 

folded fraction of PfHop as a function of temperature. (C) Urea-induced unfolding of PfHop. (D) 

The fluorescence emission spectra monitored at 300-450 nm after an initial excitation at 295 nm. 

The recombinant PfHop protein tryptophan fluorescence emission spectra were recorded under 

various GdHCl and urea concentrations. Assessment of the red shift of PfHop exposed to different 

GdHCl and urea concentrations on the emission spectra were plotted.
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Furthermore, tryptophan fluorescence spectroscopy was conducted to monitor the tertiary 

structural organization of PfHop in the presence of varying amounts of urea and guanidine 

hydrochloride (GdHCl). A red shift was observed with maximum peaks at 350 nm (associated with 

6 M GdHCl) and 343 nm (associated with 8 M urea) (Figure 2D). PfHop was more sensitive to 

GdHCl, which is a stronger denaturant. This is in agreement to a previous observation for PfHsp70-

1 protein [25]. 

3.4 Low-resolution structure of PfHop in solution

In order to gain further insight into the structure of PfHop, we determined its low-resolution 

structure in solution using SAXS (Figure 3). The X-ray scattering curve (Figure 3A), the Kratky 

plot (Figure 3B), and the distance distribution function (Figure 3C) together indicate that PfHop is 

an elongated protein with a maximum dimension of approximately 24 nm (Table 1). PfHop 

consists mostly of folded parts connected by flexible linkers. Thus, as expected, the TPR domains 

likely are arranged like pearls on a string. The distance distribution function (Figure 3C) indicates 

at least two stable domains with maxima at ~3 and ~5 nm within the Dmax of 24 nm. An ab initio 

dummy residue model calculated with GASBOR (Figure 3D) is consistent with the above and 

shows an excellent fit to the experimental data (Figure 3) with a χ2 value of 1.06. The model has 

an elongated shape with some more compact regions, to which crystal structures of human and 

yeast Hop TPR1 (1ELW, 30) and TPR2AB (3UQ3, 11) domains, respectively, fit visually well 

(Figure 3D).

Figure 3. SAXS analysis of PfHop. (A) Fit of a calculated SAXS curve based on an ab initio 

model (red line) on the experimental SAXS curve (grey dots) measured for PfHop. (B) Kratky plot 
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derived from the scattering data. (C) Distance distribution function. (D) An Ab initio model of 

PfHop (green), determined using GASBOR compared with crystal structures of human Hop 

TPR2AB (3UQ3) and baker’s yeast TPR1 domains (1ELW) (cyan). The lower panel is related to 

the upper one, by a 90° clockwise rotation along the plane of view.

Table 1. SAXS parameters for PfHop

Sample Rg (nm) Dmax (Å) MW (kDa) Expected MW 

(kDa)

SLS 73 67.6

SAXS 5.3 240 67.6

4. Discussion 

PfHop is thought to facilitate the functional cooperation between PfHsp70-1 and PfHsp90, both 

prominent cytosolic molecular chaperones of P. falciparum [19; 12]. The Hsp70-Hop-Hsp90 

pathway plays an important role in cellular development, as it facilitates folding and maturation of 

proteins, such as kinases and steroid hormone receptors [37]. The inhibition of both PfHsp90 and 

PfHsp70-1 leads to parasite death [7; 14; 16], making these molecular chaperones potential 

antimalarial drug targets. In the current study, we demonstrated that PfHop PfHop is unstable at 

temperatures above 40 °C (Figure 2). We previously observed that PfHop, PfHsp70-1, and 

PfHsp90 occur in a complex, and that PfHop directly associates with the TPR domains of PfHsp70-

1 and PfHsp90 [19; 12]. This suggests that PfHop modulates functional cooperation between 

PfHsp70-1 and PfHsp90. The development of clinical malaria is associated with body temperature 

rising to 41.6 °C. At such high temperatures, the role of heat shock proteins in maintaining 
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proteostasis becomes unquestionably important, as is evidenced by the elevated expression of key 

molecular chaperones, such as PfHsp70-1 and PfHsp90 [7; 38]. It is intriguing to imagine how 

PfHsp70-1 and PfHsp90 cooperate in the presence of limiting levels of PfHop, as occurs during 

sustained heat stress conditions induced by malaria fever. It is possible that under extended stress 

conditions, the role of Hop becomes less vital and that perhaps Hsp70 and Hsp90 may directly 

interact. Indeed, a study showed that despite lack of Hop in E. coli, Hsp70 and Hsp90 from E. coli 

are capable of direct interaction [39]. In a previous study, we observed complexes of PfHsp70-1 

and PfHsp90 in which PfHop was present based on size exclusion chromatography of parasite 

lysates [19]. However, we also observed eluates representing a complex of PfHsp70-1 and 

PfHsp90, in which PfHop was absent [19].  In addition, yeast Hsp70 and Hsp90 were recently 

shown to directly bind in the absence of Hop [40]. A non-canonical Hop homologue from 

Caenorhabditis elegans has been shown to lack a TPR1 domain, thus was shown to be more biased 

towards binding to Hsp90 than Hsp70 [41]. Altogether, our findings and those of others suggest 

that the function of Hop may vary across species and may also depend on the prevailing cellular 

physiological conditions.

Findings on the oligomeric status of Hop have remained controversial as independent studies have 

reported it to be either monomeric [32] or dimeric [33], or largely monomeric but forming also 

weak dimers [34]. In the current study, we sought to establish the oligomeric status of PfHop. 

Based on size-exclusion chromatography and multi-angle static light scattering, we conclude that 

PfHop occurs as a monodisperse monomer (Figure 1). However, a dimeric fraction is observed in 

non-reducing conditions, indicating unspecific disulphide bridge formation, which would explain 

some of the previous data [12]. On the other hand, human Hop has been reported to form dimers 
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[42; 33; 43], but it should be confirmed, whether these are of functional significance. In addition, 

Hop has also been suggested to form elongated monomers, which are difficult to resolve using gel 

filtration [32]. Indeed, the low-resolution solution structure determined by SAXS shows that 

PfHop is highly elongated with folded domains organised like beads on a string. This is consistent 

with the predicted concave nature of its predominantly α-helical TPR motifs [19]. TPR motifs of 

human Hop have been described to occur as grooves into which the C-terminal EEVD motifs of 

Hsp90 and Hsp70 bind in extended form [30]. Our SAXS data for PfHop fits with this proposed 

model.

Altogether, our findings established that PfHop is an elongated, predominantly α-helical, 

monomeric, protein. Its heat stability is much lower than that reported for PfHsp70-1, suggesting 

that its function may be compromised at high temperatures associated with clinical malaria 

progression. 
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