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Abstract

Sequence comparison is the cornerstone of bioinformatics and is traditionally realized by alignment. Unfortunately,
exponential computational complexity renders rigorous multiple sequence alignment (MSA) intractable. Approximate al-
gorithms and heuristics provide acceptable performance for relatively small number of sequences but engender prohibitive
computational cost and unbounded accumulation of error for massive sequence sets. Alignment free algorithms achieved
linear computational cost for sequence pair comparison but the challenge for multiple sequence comparison (MSC) re-
mains. Meanwhile, various number of parameters and procedures need to be empirically adjusted for different MSC tasks
with their complex interactions and impact not well understood. Therefore, development of efficient and nonparametric
global sequence comparison method is essential for explosive sequencing data. It is shown here that sorted composition
vector (SCV), which is based on a physical perspective on sequence composition constraint, is a feasible non-parametric
encoding scheme for global protein sequence comparison and classification with linear computational complexity, and pro-
vides a global atlas tree for natural protein sequences. This finding renders massive sequence comparison and classification,
which is infeasible on supercomputers, routine on a workstation. SCV sets an example of one-way encoding that might
revolutionize recognition and classification tasks in general.
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Introduction

The ability to compare and classify sequences is essential for modern biology. Its importance is partially reflected by the
fact that BLAST/X!*? and CLUSTALW (X)“* ranked 12, 14, 10 and 28 respectively among most cited scientific papers®.
Sequence comparison is expected to become more critical as single cell sequencing technologies mature. Traditionally,
alignment is the way to compare sequences and has a rich history of development1*6°8  Unfortunately, rigorous MSA
is computationally intractable. Approximate MSA algorithms”® work well for small number of sequences (e.g. less than
50,000). Alignment free algorithms??713 while reduce computational cost of a single sequence pair comparison to linear
complexity with respect to chain length, do not resolve the daunting task of MSC. Besides the prohibitive computational
cost of MSA/MSC, extent of error propagation for present approximate algorithms is unknown for massive sequence
sets. The need for empirical parameters (e.g. scoring and gap parameters for alignment and word length for alignment
free algorithms), MSA/C heuristics and complex interactions among these factors are additional source of uncertainties for
present methodologies. Impact of these issues are likely to become more severe for massive sequence sets that are expected
to be generated routinely. Therefore, efficient, reliable and non-parametric MSC method is highly desired. A global atlas
for natural proteins, if successfully constructed and enriched with our routine sequence alignments/comparisons, would
enable us marching toward a full understanding of the protein fold space and evolutional history. It is the intent of this
work to start a first step toward these directions.

Present sequence comparison algorithms are universally applicable for any sequences on arbitrary alphabets (with nec-
essary tuning of parameters/heuristics), such general ability inevitably reduces its efficiency for special type of sequences,
with biological sequences being an outstanding example. Natural protein sequences are subjected to strong cellular envi-
ronmental, synthesis, structural, functional, dynamical and degradation constraints, and are presumably to be confined in
a low dimensional continuous (if we believed in evolution) manifold within vast possible sequence space (approximately
20301 as estimated by Uniref50 sequence set). One corollary is that highly efficient one-way encoding schemes ( that
discard significant manifold boundary information but keep intra-manifold differences ) are likely to exist for biological
sequences. Therefore it is possible to first project natural sequences to a dramatically compressed space where different
individuals within the unknown manifold can still be distinguished to simplify the MSA/MSC challenge. The sorted com-
position vector (SCV) encoding is proposed with this thought in mind, and is found to be useful in realizing non-parametric
qualitative global protein sequence comparison and classification for arbitrarily large sequence set (that can be stored in
memory).

Molecular constraints and sorted composition vector encoding

With given environment, chemical composition is usually the most important property of a molecule in determining its
behavior. From a coarse-grained perspective, all natural proteins swim in similar biological media ( despite its complexity
and diversity ). Intra-molecular environment of each amino acid (AA) is mainly determined by composition of the belong-
ing chain. One intuitive way is to designate the most populous AA type as the most important composition, and the second
most populous AA type to be the second most important composition, etc. With this idea, Natural protein sequences may
be easily mapped into sorted composition vectors (SCVs) with lengths equal to or shorter than 20. This immediately par-
tition the whole protein sequence space into a tree with 6613313319248080000 nodes (see Figure 1). Natural proteins
may range from small peptides to over 30000-AA long chains and with the average length being approximately 301 for the
uniref50 data set (see Methods). Thus a potential sequence space of approximately 20°°! is reduced by SCVs to less than
10'°. The specific intra-molecular environment hopefully specifies behavior of each comprising AA, hence that of the chain.
It is no doubt that identical sequences share the same SCV. Our analysis suggest that intra-molecular constraints specified
by SCV, together with stringent extra-molecular constraints experienced by natural proteins, dictate that (in overwhelm-
ing majority cases) only very similar sequences may share the same SCV, which thus provides an ultra efficient encoding
scheme. The resulting SCV tree (see figure 1) generates a global atlas for natural proteins, and realizes qualitative MSC
for massive sequence sets with no adjustable parameters. Construction of such an atlas tree takes a one-pass reading of
all available sequences, thus have an effective time and space computational complexity of NL for N chains with length L
(or Ly +Ly+---+ Ly for N chains with various lengths). When compared with present MSA/C/ algorithms with typical N*
time complexity scaling and N? space complexity scaling for consistency based methods, it is about N> (or more) times
faster, that is 10'? faster for a sequence set of size one million, and has much less memory requirement.

Distribution of similar protein sequences in SCV tree

When more than one protein sequences encode the same SCV, corresponding nodes are termed multiples. SCV trees for
two different data sets (uniref50, uniref100, see Methods) are constructed. Number of tree paths, sequences, filled nodes
and multiples for various SCV lengths are listed in table 1. Most filled nodes have only sequence, and overwhelming
majority of rare multiples have only two chains (Nyey — Nrnoae is only slightly larger than 2 x Nyrp in table 1). Sequences
in the same multiple have very high sequence identity (Figures 2 and 3). Removal of identical (or similar) chains in a
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Table 1 Number of paths (Np,), sequences Ns,,, filled nodes (Npwoq.) and multiple nodes (Nyrp) in each layer of the SCV tree built
from uniref50 and uniref100.

UniRef50 UniRef100
Npath Nseq Nrenode Nurp | Npan Nseq Nrenode Nurp
20 0 0 0 20 0 0 0
380 16 15 1 380 82 54 14
6536 45 39 5 6605 335 155 34
84887 158 120 17 90847 1018 469 85
663290 304 285 13 802077 1645 1107 167
2989062 633 613 14 4245091 2588 2063 226
8561826 1077 1063 10 14552648 3996 3357 241
16934103 1945 1932 12 35277439 6011 5149 273
25056216 3533 3519 10 64303785 9083 8235 340
30584132 6684 6666 18 94150371 16075 14234 620
33628295 13325 13305 17 118919774 28955 26652 1066
35180597 29827 29792 29 137545396 62752 58445 2129
35872847 72530 72496 32 150989634 148004 139982 4378
36078849 179625 179581 41 159816809 363626 350165 8967
35993895 422712 422650 57 164760431 900242 869273 20948
35600912 916062 915977 82 166810238 2129682 2058765 48733
34694127 1843625 1843517 97 166351670 4883674 4701479 125789
32853550 3618282 3618128 148 162480418 12191326 11456020 433134
29236678 7845291 7844932 354 151452229 38463028 34613993 2014086
21392008 21395233 21392008 3070 116974828 135988894 116974828 8945458

massive sequence set is trivial in SCV tree as only comparison within rare multiples (or limited number of neighborhood
and annotated distant nodes) is necessary. Sequences in uniref50 are supposed to have pairwise sequence identity lower
than 50% as expected by CD-HIT algorithm14, which was utilized to remove similar sequences from uniref100 to construct
uniref50. The fact that some very similar sequences remain in uniref50 is due to unbound propagation of local sequence
comparison error. No present algorithm can guarantee full removal of highly similar sequences in a massive dataset
without a full pairwise comparison, which is about N/2 ( N is the number of sequences in the set) times more expensive
than SCV tree construction and does not provide qualitative global relative relationship as revealed by SCV tree.

As shown in Fig. 2, the extent by intramolecular constraints of given SCVs increase rapidly with their lengths such that
qualitatively sequences in multiples correspond to longer SCV exhibit significantly higher sequence identity (the reason this
relationship is not strictly observed is likely due to lack of statistics), and the relative number of multiples (Nyrp/Nryode)
are smaller for nodes of longer SCVs when SCV length is smaller than 13. It is important to note that while overwhelming
majority of chains have SCV longer than 13, SCV tree path branching does not increase significantly after the 13th layer.
Within a SCV multiple node, weight vectors provide more quantitative information beyond SCV itself, one may choose
to investigate the full sequences since multiples are rare and number of distinct sequences within multiples are small.
Besides those reside in the same multiple, sequences reside in closely distanced nodes in SCV tree (e.g. sibling nodes
with common close ancestor, parent and child nodes, grand-parent and grand-child nodes ) also have quite high sequence
similarity. The distance between nodes in SCV tree is a qualitative nonlinear measure for difference of corresponding
sequences (with exceptions explained and resolved below). As the branching of SCV tree mainly occurs within the top 13
layers, All SCVs sharing the first 13 letters are likely to be quite similar, and quantitative relationship need to be analyzed
further. An additional limitation of the SCV tree is that the extent of differences among all nodes sharing the same parent
is not specified, which physically corresponding to addition of a new AA type in the intra-molecular environment specified
by the parent node. The tree structure (parent nodes and paths) explicitly specifies conditions of adding in new AA
type, thus provides a composition specific log table to record accurate description of quantitative sequence similarity. Full
quantitation of SCV tree for natural proteins implicates accomplishing full comparison of natural protein sequence space,
and needs to be improved for years to come as statistics accumulates with more available sequences.

For a given sequence, apart from sequences in closely neighboring nodes of SCV tree, there is possibility that some
similar sequences may locate far away in the SCV tree. For example, “ALSGKDEFNQPY” and “LASGKDEFNQPY” are
very similar SCVs but locate 24 steps away in the SCV tree. Existence of similar sequences in distant SCV nodes caused by
such partial reversal situations (AL vs. LA) may be annotated for all chains in SCV tree (Fig. 1). For each chain, only a
small number of different SCV reversals are possible and therefore their treatment takes linear computational cost.
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Table 2 Number of protein class nodes for specified length of SCVs. These numbers are calculated from by N,,ges = 20!/(20 —n)!

SCVlength Nnude Nnode r_uni50 Nnodes 7 unil00
1 20 20.0 20.0

2 380 380.0 354.254

3 6840 6232.0 6298.92

4 116280 1.10269e+5 1.03486e+5
5 1860480 1.36552e+6 1.31214e+6
6 27907200 1.5353%e+7 1.56203e+7
7 390700800 1.65610e+8 1.64728e+8
8 5079110400 1.69212e+9 1.63279e+9
9 60949324800 1.54313e+10 1.43448e+10
10 670442572800 1.16505e+11 1.02145e+11
11 6704425728000 7.13125e+11 6.29664e+11
12 60339831552000 3.37604e+12 3.09156e+12
13 482718652416000 1.35510e+13 1.36603e+13
14 3379030566912000 5.08334e+13 5.38978e+13
15 20274183401472000 1.82261e+14 2.08672e+14
16 101370917007360000 6.93837e+14 8.84451le+14
17 405483668029440000 3.12220e+15 4.59311e+15
18 1216451004088320000 1.62390e+16 2.83181le+16
19 2432902008176640000 8.88886e+16 1.42621e+17
20 2432902008176640000 2.43479e+17 2.78874e+17

Reduction of SCV tree by equal weight amino acid type

When two or more different amino acid type have the same composition weight, their rank become meaningless and could
be artificially different depending upon the sorting algorithm and their order of appearance as a chain is read from the
amino-terminus to the carboxyl-terminus. To remove such uncertainty, rank of equal weight AA need to be specified. In
this work, more populous AAs (as revealed by statistics from the uniref50 sequence set) are placed in front of less populous
ones in case of equal weight. Another direct impact is that SCV space (number of nodes in SCV tree) is reduced. The
extent of SCV space reduction is estimated on the uniref50 and uniref100 data set respectively and the results are shown
in Table 2. Better SCV space reduction estimation may be achieved as more sequences become available.

Physical constraints variation for different SCVs

As is shown in Fig.?? that more compositions (nodes correspond to longer SCVs) on average correspond to stronger
constraints as reflected by larger fraction of within-multiple sequence pairs have higher than 99% sequence identity.
Correspondingly, it is intuitive to speculate that SCV multiples with significant in-node sequence differences correspond
to relatively weaker composition/physical constraints and allow more different ways of primary sequence permutation
variation. As a corollary, protein sequences fall in such SCV nodes are likely to be more flexible and consequently tend to
be more difficult to crystallize. Therefore, it is likely that statistically, multiples in SCV tree that share a significant fraction
of SCV with any chains in protein data bank (PDB) should on average have lower probability of observing dissimilar
chains. This is indeed the case as shown in Fig.??, where sequences in multiples sharing various number (from 2 to 20)
of first SCV letters with any PDB chains have higher probability of observing higher than 99% sequence identity for in-
node pairwise alignment than sequences in those multiples that do not. Similarly, when sequence clusters sharing first K
(K =3,6,9,12) letters of their SCV code for uniref100 data set are sorted and plotted in Fig.??a), c), e) and f). It is shown
that the largest (least restrictive) clusters have no PDB chains. Cumulative probability (Fig.??b), d) and f)) show that PDB
chains are underrepresented for the least restrictive (or most populous) partial SCV codes except when K = 12 or larger K
(not shown). This is consistent with the fact that tree branching does not increase significantly after the 12¢/ layer.

Discussions

While we constructed a global atlas for natural proteins based on SCV in an efficient, robust and nonparametric way. The
issue of evaluating similarity of constituting alphabets members in normal sequence alignment persist locally. Since SCV
tree by itself does not specify extent of similarity for sequences located in sibling nodes. The fundamental contribution of
this work is to limit such uncertainties to local, thus effectively limiting the global propagation of error. Such local similarity
is apparently dependent upon compositions specifying corresponding locality in the SCV tree, quantitative characterization
of these locality necessitate construction of scoring schemes of some form. However, the great thing is that SCV tree
provides an effective global log table, which does not dependent on adjustable parameters, for us to accumulate detailed
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quantitative analysis of specific local similarities.

The starting point of SCV encoding is utilization of complex inter- and intra-molecular restraints that shape the un-
known manifold of natural protein sequences in vast sequence space. When sufficient number of sequences is available,
the rank for number of total sequences (in a node and all of its descendent nodes) for the 20 top level gives a qualitative
description of relative constraint power of the corresponding AA type, with the AA defining node of the lowest rank (least
number of total sequences) has the strongest restraints. Similarly, at each level, relative restraint power of different AA
type under the given environment specified by ancestor nodes is reflected by local rank of total sequences. SCV is a specific
case of one-way encoding based on unknown manifold.

While the exact encoding scheme utilized here is specific to protein, the general idea might well be applicable to other
applications. For example, extension of SCV encoding to nucleotide sequences is likely to be straight forward. SCV vector
of maximum lengths (4,16,64,256,1024,4096---) may be used. Specifically, with 5’ to 3’ order, construction of 4 element
SCV vector is just a counting of A,G,C,T, which is simply the GC/AT content weights and has been widely utilized in
genome sequence analysis. However, extension to 16 element SCV can be easily encoded by counting of 16 different di-
nucleotides, extension to 64 element SCV uses tri-nucleotide segment, etc. Encoding of a nucleic acid sequence into SCVs
of various maximum length can be achieved with a single pass of reading. This immediately open the door for massive
genome sequence comparison.

Apart from analysis of protein sequences as demonstrated in this work and analysis of nucleic acid (NA) sequences as
proposed above, SCV is fundamentally a general one-way encoding scheme that can potentially be applied in encoding of
two or higher dimensional data such as pixel images. For example, a two dimensional pixel matrix (or higher dimensional
tensor quantity) may be first flattened in a wide variety of mapping order, with value of each pixel discretized as the specific
alphabet just as AA. Further generalization of SCV to text, audio and video recognition and classification is possible.
Algorithm development and application of SCV in these scenarios will be explored in near future.

Different from traditional compression algorithms that realize two-way encoding, SCV is a one-way encoding scheme
with significant irreversible information loss. Essentially, in our specific case of natural protein sequence analysis, it keeps
significant differences among in-manifold protein sequences but discards large body of important information on bound-
aries of the concerned manifold. Apparently, successful inverse mapping from SCV to corresponding original sequences
implicates understanding of the lost boundary information for the corresponding manifold, and is a very challenging task.
However, as long as a one-way encoding scheme effectively keep in-manifold differences, it is likely to be useful for com-
parison and classification of interested objects. The utility of one-way encoding is not limited to natural protein sequences
(e.g. NA sequences, linearized graphics, text, audio and video objects proposed above). It is likely to be applicable for any
low dimensional manifold in high dimensional space as long as proper encoding scheme is constructed. Essentially almost
all high dimensional problems in reality might be mapped into a much lower dimensional manifold. Therefore, searching
for reliable one-way encoding might be a new direction for robust and efficient objects comparison and classification,
which is the central task for many present artificial intelligence (AI) applications. This study is to my best knowledge
the first effective proposal and utilization of such one-way encoding. Mathematically, the proposed SCV encoding is an
efficient non-linear dimension reduction scheme with linear computational time and space complexity. This is in con-
trast to widely utilized principle component analysis (PCA), which engenders cubical computational cost to realize linear
dimension reduction. The common advantage for SCA and PCA is that both are non-parametric. Extension of SCV in
additional (other than discussed above) high dimensional sparse matrix problems in physics, chemistry, machine learning
and many other fields is not necessarily straight forward, it might well be inspirational. It is believed by the author that
there should be more one-way encoding schemes beyond SCV, and hope that more variety of efficient one-way encoding
being developed to target different applications.

Conclusions

Based on the thought that biological sequences are effectively limited within a low dimensional continuous manifold in
a potentially vast high dimensional sequence space, SCV is proposed and demonstrated to be an efficient and reliable
encoding scheme that effectively accomplish non-parametric and qualitative global multiple sequence comparison with
linear time and space computational complexity. This is in stark contrast to the cubical or higher order time complexity
and square space complexity of present available algorithms. SCV provides a physical perspective on intra-molecular
constraints that is lacking in all present sequence alignment/comparison algorithms. The atlas tree based on SCV provides
an effective log table for future quantitative and global understanding of natural protein universe. Additionally, SCV is an
example of one-way encoding that can potentially be applied on other sequential data (e.g. nucleic acid sequences) or
higher dimensional data with proper specified flattening procedures (e.g. flattening of 2D or 3D pixel data). Success of
SCV suggests that search of effective one-way encoding might be a productive new direction for object comparison and
classification in general.
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Methods

We downloaded uniref50.fasta.gz and uniref100.fasta.gz from the uniprot database on Sep/01/2019 and Sep/04/2019.
After excluding sequences shorter than 40 and sequences that containing any non-natural AAs, two sequence sets have
36350907 and 195201016 sequences respectively. PDB sequences was downloaded from PDB database. For proteins that
have many slightly different sequences due to mutation, only the first one in the original file is selected, similarly, all
sequences shorter than 40, have non-natural AAs, and are not included in Uniref100 are removed with 43538 sequences
in the final set. After constructing the SCVs for accompanying weight vectors, protein chain IDs are organized into nested
python dictionaries. Sequence identity calculation is performed with the Biopython’s Align.Pairwisealigner module.
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Figure 1 Schematic representation of a protein SCV tree with 20 layers (shown from left to right) and a maximum possible of
6613313319248080000 nodes (N,,,qes = 20!/(20—n)! for the nth layer), only partial tree is presented with only one child branch (except
the last two layers) shown for each layer in the figure with omitted part denoted by dots. Each node has three boxes, the title node is
essential and is denoted by a letter in corresponding SCV, each letter of which specifies its path in the tree; sequence box save the
list of sequences (denoted by circles) encoding the SCV that ends with the title node letter and with other letters specified by ancestor
nodes; distant neighbor box saves non-local SCV nodes (denoted by rectangles) that containing similar sequences as those in the
sequence box. There are three types of nodes (denoted by circled numbers), 1) nodes with a sequence list, 2) path nodes with no
sequences and 4) nodes with both sequences and SCV list of distant similar sequences. The first level of this tree has 20 nodes,
each of which represent homo-polypeptides of arbitrary length with the same weight vector which is simply [1.0]. The second level
correspond to protein chain comprising two types of amino acid with the majority being specified by its parental node. For example
'AAL’ and 'AAAALL’ share the same node (AL) in the SCV tree with the same weight vector [2/3,1/3]. Thus SCV and its accompanying
weight vector provide very little constraints for homo-polypeptides and di-hetero-polypeptides. Fortunately, the overwhelming majority
(more than 99.63% in uniref50 and 99.85% in uniref100) of natural proteins have more than 13 different types of comprising AA (see
Table 1). Two SCV with 20 types of AA [DCNVE — — — — — — — — — — — — — YGland [ DCNVE — — — — — ———— — — — — GY] are partially
shown in the figure with hyphens represent omitted AA.
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Figure 2 Cumulative probability of within-multiple sequence pair identity for SCV lengths from 3 to 20. Number of calculated sequence
pairs is shown in parenthesis. Data points of X-axis are [0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4]. The value at 0.99 is the percentage
of within-multiple sequence pairs that have sequence identity higher than 99%, etc. For SCV lengths larger than 7, the overwhelming
majority within-multiple sequences have pair identity higher than 0.8. For SCV lengths larger than 16, the overwhelming majority
within-multiple sequences have pair identity higher than 0.9. The results are based on Uniref100 set.
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Figure 4 Distribution (a,c,e,g) and cumulative probability (b,d,f,h) of sorted total node weight defined by Uniref100 sequence set. Total
sequence number of a node is the sum of number of sequences fall in a node and all of its descendent nodes. Total node weight is
normalized total sequence number for all nodes at the same level of SCV tree. a) and b) are for the 3 — rd level nodes; c) and d) are
for the 61k level nodes; e) and f) are for the 9¢h level nodes; g) and h) are for the 1274 level nodes
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