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Abstract 13 
Single-molecule sequencing technologies have emerged in recent years and revolutionized 14 
structural variant calling, complex genome assembly, and epigenetic mark detection. 15 
However, the lack of a highly accurate small variant caller has limited the new technologies 16 
from being more widely used. In this study, we present Clair, the successor to Clairvoyante, 17 
a program for fast and accurate germline small variant calling, using single molecule 18 
sequencing data. For ONT data, Clair achieves the best precision, recall and speed as 19 
compared to several competing programs, including Clairvoyante, Longshot and Medaka. 20 
Through studying the missed variants and benchmarking intentionally overfitted models, we 21 
found that Clair may be approaching the limit of possible accuracy for germline small variant 22 
calling using pileup data and deep neural networks. Clair requires only a conventional CPU 23 
for variant calling and is an open source project available at https://github.com/HKU-24 
BAL/Clair. 25 

Introduction 26 
Fast and accurate variant calling is essential for both research and clinical applications of 27 
human genome sequencing1,2. Algorithms, best practices and benchmarking guidelines have 28 
been established for how to use Illumina sequencing to call germline small variants, 29 
including single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels)3-6. In 30 
recent years, single-molecule sequencing (SMS) technologies have emerged for a variety of 31 
important applications7. These technologies, which are also known as the third-generation 32 
sequencing technologies, generate sequencing reads two to three orders of magnitude 33 
longer than Illumina reads (10–100kbp versus 100–250bp). The long read length has made 34 
the new SMS technologies, including Pacific Biosciences (PacBio) and Oxford Nanopore 35 
Technology (ONT), unprecedentedly powerful for resolving complex genome assembly 36 
problems and for detecting large structural variants8. However, currently available SMS 37 
technologies also have a significantly higher base error rate of 3–15%9, making the variant 38 
calling methods previously designed for Illumina sequencing inapplicable to SMS 39 
technologies. The lack of accurate tools for efficient variant calling has limited SMS 40 
technologies from being applied to the many problems that require SNPs and small indels. 41 
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 42 
In our previous work, we developed Clairvoyante10, a germline small variant caller for single 43 
molecule sequencing data. Clairvoyante does not require sequence assembly and calls 44 
variants directly from read alignments. Clairvoyante adopts a deep convolutional neural 45 
network, so that by using the truth variants called and orthogonally verified in seven human 46 
individuals by the Genome In A Bottle (GIAB) consortium11-13, Clairvoyante can be trained 47 
for variant calling on any new type of sequencing data without the need to look into its 48 
error profile and build a hand-crafted model. Clairvoyante takes pileup data as input and 49 
runs quickly. However, Clairvoyante’s design is unable to call multiallelic variants or indels 50 
longer than four bases. These defects remain to be solved. Meanwhile, the limit of using 51 
pileup data and deep neural networks for variant calling remains to be explored. 52 
 53 
In this study, we present Clair, a fast and accurate system for germline small variant calling 54 
using single molecule sequencing data. With an entirely different network architecture and 55 
learning tasks (i.e. output components), Clair resolves the multiallelic and long indel variant 56 
calling problems that have prevented Clairvoyante from calling all types of small variants. 57 
We describe in detail the methods we tried that either worked or did not work for 58 
improving Clair’s performance. For ONT datasets14, our experiments on whole-genome 59 
variant calling in GIAB samples show that Clair outperforms Clairvoyante and other variant 60 
callers, including Longshot15 and Medaka16, in terms of precision, recall and speed. For high 61 
accuracy reads, including both PacBio CCS (Circular Consensus Sequencing)17 and Illumina 62 
datasets13, DeepVariant18 had modestly improved F1-scores over Clair by .11% to .12%, 63 
although Clair was seven times faster. Looking into the false positive (FP) and false negative 64 
(FN) variants of the three sequencing technologies showed that except for variants with 65 
insufficient coverage by chance, most of the others could be resolved using complete read 66 
alignments instead of pileup data or else could not be resolved at all, even with a manual 67 
inspection. 68 

Results 69 
Overview of Clair 70 
Clair is a four-task, five-layer recurrent neural network with two bi-directional LSTM layers 71 
followed by three feedforward layers (Figure 1). Clair takes a BAM file as input to find 72 
candidate variants with any minor allele frequencies larger than a threshold (typically 73 
between 0.1 and 0.2), and then computes a pileup of the candidates and converts the 74 
summaries into a tensor. In a tensor, the allelic counts of bases and gaps on both strands of 75 
a candidate variant and its 16 flanking bases are encoded into 1,056 integer values. More 76 
details and pseudo code are available in the Methods section. As discussed in the 77 
Clairvoyante paper, one major unsolved problem was how to support the calling of multi-78 
allelic variants (i.e., variants with two alternative alleles). In Clair, the problem is solved by 79 
using four new (deep learning) tasks that are entirely different from Clairvoyante. These are: 80 
1) a 21-genotype probabilistic model with 21 probability outputs; 2) the use of three 81 
probabilities for the input, including a homozygous reference (0/0 genotype), a 82 
heterozygous variant (0/1) or a homozygous variant (1/1); 3) the length of the first indel 83 
allele, with 33 probabilities representing a length of ‘<-15bp’, ‘-15bp’, ‘-14bp’, …, ‘-1bp’, 84 
‘0bp’, ‘1bp’, …, ‘15bp’, ‘>15bp’; and 4) the length of the second indel allele. The 21-genotype 85 
probabilistic model can represent all possible genotypes of a diploid sample at the genome 86 
position. The length of indels longer than 15bp cannot be directly inferred from the third 87 
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and fourth tasks, so Clair includes an additional step that re-scans the alignments. More 88 
details on each of these steps can be found in the Methods section. The four tasks make 89 
their own decisions and are designed to cross-validate each other. For example, task two is 90 
a coarse-grained version of task one and can veto the decision made by task one. Tasks 91 
three and four should indicate 0bp indel length if an SNP variant is decided by task one. 92 
More details on how the four tasks make a joint decision are available in the Methods 93 
section. We used the ‘focal loss’ deep-learning technique to solve the problem of 94 
unbalanced variant types in training data. We used the ‘cyclical learning rate’ deep learning 95 
technique to achieve the maximum possible variant calling performance and speed up the 96 
training process to be able to handle larger training datasets. To improve Clair’s 97 
performance at lower sequencing coverages, we augmented the training data with 10 98 
subsampled coverages of each dataset. The parameters of these three new techniques are 99 
in the Methods section. 100 
 101 
Clair has 2,377,818 parameters, which is 45.7% more than Clairvoyante (1,631,496 102 
parameters) but only one tenth as many as DeepVariant (23,885,392 parameters). In terms 103 
of variant calling speed, Clair takes about 30 minutes, 1.5 hour, and 5 hours for a 50-fold 104 
coverage WGS sample using Illumina, PacBio CCS and ONT data, respectively, using 24 CPU 105 
cores. In our experiments, Clair was 10–20% slower than Clairvoyante, but significantly 106 
faster than DeepVariant, Longshot and Medaka. 107 
 108 
The Methods section includes a description of procedures to augment the training data or 109 
improve Clair’s network architecture that we tested but that did not improve precision and 110 
recall of variant calling. Developers working on further improving Clair’s performance can 111 
save time by avoiding the same methods, or the same settings in a method. 112 
 113 
Performance on ONT 114 
ONT datasets are currently available for two GIAB samples, HG001 and HG002. The HG001 115 
rel6 dataset generated by the Nanopore WGS Consortium14 contains approximately 44.3-116 
fold coverage of human genome (the dataset is also referred to as 1:44x, where '1' means 117 
the sample suffix and '44x' means the coverage). The rel6 dataset was base-called with 118 
Guppy 2.3.8, using the HAC (High-ACcuracy) model. In addition to the rel6 dataset, we 119 
obtained a separate 124.1-fold coverage dataset for HG001 (1:124x) directly from Oxford 120 
Nanopore (Philipp Rescheneder, personal communication). That dataset was base-called 121 
with Guppy 2.2.3 using the Flip-Flop model. In some experiments, we combined 1:44x and 122 
1:124x to form a new dataset 1:168x to maximize the coverage. For HG002, we used a 123 
dataset with ~64-fold coverage (2:64x) from the GIAB consortium, which was base-called 124 
with Guppy 2.3.5 using the Flip-Flop model. The links to the datasets are available in the 125 
Supplementary Notes. The details about "the GIAB truth variant datasets", "removing 126 
GA4GH (The Global Alliance for Genomics and Health) low-complexity regions6 from 127 
benchmarking", and "the benchmarking methods and metrics" are available in "Methods – 128 
Benchmarking". 129 
 130 
Figure 2 shows the precision and recall of Clair and other variant callers on SNPs and indels 131 
in multiple experiments with ONT data. Supplementary Table 1 contains more details, 132 
including precision, recall and F1-score in five categories, including overall, SNP, indel, 133 
insertion, and deletion. Our results show that Clair not only outperformed other variant 134 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 5, 2019. ; https://doi.org/10.1101/865782doi: bioRxiv preprint 

https://doi.org/10.1101/865782
http://creativecommons.org/licenses/by-nc-nd/4.0/


callers, including Clairvoyante, Longshot, and Medaka, but also ran much faster. Using 135 
1:168x|2:64x (i.e., test variant calling using HG002 with 64-fold coverage against a model 136 
trained using HG001 with 168-fold coverage) as Clair’s primary result, Clair achieved 98.36% 137 
precision, 96.46% recall, and 97.40% F1-score overall performance. In terms of SNPs, the 138 
three metrics were 99.29%, 97.78% and 98.53%, respectively. For indels, they were 139 
somewhat lower at 81.15%, 73.88%, and 77.34%. Clair significantly outperformed its 140 
predecessor Clairvoyante on both SNP and indel calling (overall F1-score 97.40% versus 141 
93.45%). Clair had a slightly higher F1-score on SNPs than Longshot (98.53% versus 98.41%), 142 
but Longshot detects only SNPs, and Clair ran five times faster than Longshot (320 versus 143 
1,797 minutes). Clair had a better performance than Medaka (overall F1-score 97.40% 144 
versus 94.81%) and ran 30 times faster (320 versus 10,817 minutes). It is worth mentioning 145 
that we didn’t benchmark Nanopolish19, which is also capable of variant calling on ONT data, 146 
because it also requires raw signals as input, which are not publicly available for HG002. 147 
 148 
We ran further experiments to answer five additional questions about Clair, as follows. 149 
 150 
Is the Clair model reference-genome specific? In our experiments, performance did not 151 
depend on whether we used GRCh37 or GRCh38. The performance of 1:168x|2:64x and 152 
1:168x|2:64x(b37) was similar; the latter experiment tested HG002 GRCh37 read alignments 153 
on a model trained using HG001 GRCh38 read alignments. Actually, 1:168x|2:64x(b37) 154 
performed slightly better than 1:168x|2:64x, with a 0.18% better F1-score on SNPs, and 155 
1.4% on indels.  156 
 157 
Does higher coverage in the test sample helps improve variant calling performance? Yes, 158 
but improvement seems to asymptote at ~60-fold coverage. In a comparison of 159 
1:168x|2:64x to 1:168x|2:32x, the overall F1-score increased from 94.10% to 97.40% 160 
(+3.30%), the SNP from 95.51% to 98.53% (+3.02%), and the indel from 68.87% to 77.34% 161 
(+8.47%). Further increasing the coverage in the test sample will note significantly increase 162 
the variant calling performance as we discuss below. 163 
 164 
Does higher coverage for model training help improve variant calling performance? Yes, 165 
but it depends on the coverage of the test sample. In a comparison of 1:124x|2:64x to 166 
1:44x|2:64x, the overall F1-score increased from 96.84% to 97.51% (+0.67%), the SNP from 167 
98.01% to 98.54% (+0.53%), and the indel from 75.78% to 78.44% (+2.66%). In a comparison 168 
of 1:168x|2:64x to 1:124x|2:64x, the performance was similar, or even slightly dropped 169 
from 97.51% to 97.40% overall. One possible reason is that the lower coverage test sample 170 
cannot benefit from the much higher coverage used for model training. We propose how to 171 
deal with excessively high coverage in test samples (i.e., coverage exceeding that used in 172 
model training) in the Discussion section below. 173 
 174 
Does multiple subsampled coverage for model training improved variant calling 175 
performance? Yes. in a comparison of 1:44x|2:64x to ‘1:44x (single cov.)|2:64x’, the latter 176 
used only the full coverage 44-fold in model training; the overall F1-score increased from 177 
95.47% to 96.84% (+1.37%), the SNP from 96.94% to 98.01% (+1.07%), and the indel from 178 
75.78% to 78.44% (+2.86%). The results show that even without sufficient coverage for 179 
model training, using multiple subsampled coverage still improved the variant calling 180 
performance significantly. 181 
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 182 
What is the upper bound on performance? 183 
To determine Clair’s performance cap using the current ONT data, we intentionally 184 
overfitted Clair by adding the samples we are going to test to the model training. Even 185 
though Clair is designed with multiple generalization techniques, including ‘dropout’ and ‘L2 186 
regularization’, exposing the test samples to model training is a biased evaluation, and if a 187 
true variant is not called even after this biased training, this suggests the input signal is 188 
simply too weak. The two tests we did were 1:168x+2:64x|2:64x and 1:168x+2:64x|1:168x. 189 
Although the test sample coverage in the first test was much lower than that in the second 190 
(64-fold against 168-fold), their performance was similar, with the overall F1-score at 191 
97.77% and 97.82%, SNP at 98.75% and 98.77%, and indel at 79.92% and 81.37%. The 192 
biased test 1:168x+2:64x|2:64x did not significantly outperform 1:168x|2:64x; the overall 193 
F1-score increased from 97.40% to 97.77% (+0.33%), SNP from 98.53% to 98.75% (+0.22%), 194 
and indel from 77.34% to 79.92% (+2.58%). Even with this biased experiment, we observed 195 
that the performance of using Clair on the current ONT data was capped at about 97.8% F1-196 
score overall, 98.8% on SNPs, and 80% on indels. We consider how the new ONT chemistry 197 
that provides a lower base error rate can raise the upper bound of Clair’s variant calling 198 
performance in the Discussion section below. 199 
 200 
We analyzed and categorized the FP and FN results of Clair on ONT data. We randomly 201 
extracted 100 FPs and 100 FNs from the 1:168x|2:64x experiment. Figure 3 shows a 202 
summary and examples of different categories, and Supplementary Table 2 shows a detailed 203 
analysis of each FP and FN. Within the 100 FPs, the three largest categories are "Incorrect 204 
allele with AF≥0.2" (41/100), "Homopolymer" (25/100), and "Tandem repeat" (11/100). 205 
"Incorrect allele with AF≥0.2" means that at the FP variant, an incorrect allele dominates 206 
other alleles in the read alignments (including the correct one), and the incorrect allele has a 207 
frequency ≥20%. "Homopolymer", "Tandem repeat", and "Low complexity region" mean 208 
that the FP variant is in a repetitive region, which remains difficult for ONT base-calling. It is 209 
worth mentioning that these repetitive regions are ≤10bp because we removed all GA4GH 210 
low-complexity regions longer than 10bp from benchmarking. It may not be possible to 211 
perfectly resolve these three categories for FP variants using pileup data for variant calling, 212 
although complete read alignments might help to provide better precision. Three out of 100 213 
FPs had "Incorrect insertion bases", while two out of 100 were categorized as "Overlapping 214 
insertions", which means that the alleles of two consecutive insertions overlapped each 215 
other in an input tensor; thus, the correct allele cannot be resolved for both insertions. 216 
These two categories of errors can be resolved using the '--pysam_for_all_indel' option in 217 
Clair, but this slows down Clair for ONT data by a factor of up to ten times. Other errors, 218 
including "Incorrect indel length" and "Incorrect zygosity", are errors made by Clair's neural 219 
network. In the 100 FNs, the three major categories are "Correct allele with AF<0.25" 220 
(54/100), "Homopolymer" (18/100), and "Tandem repeat" (7/100). "Correct allele with 221 
AF<0.25" means that at the location of the missed (FN) variant, the signal of the correct 222 
allele is rather weak, with allele frequency lower than 25%. One FN categorized as "More 223 
than two possible alternative alleles" is an error due to an alignment error in segmental 224 
duplications, in which more than two alternative alleles seem correct. 225 
 226 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 5, 2019. ; https://doi.org/10.1101/865782doi: bioRxiv preprint 

https://doi.org/10.1101/865782
http://creativecommons.org/licenses/by-nc-nd/4.0/


Performance on PacBio CCS 227 
In early 201917, PacBio developed a protocol based on single-molecule, circular consensus 228 
sequencing (CCS) to generate highly accurate (99.8%) long reads averaging as much as 229 
13.5kb. PacBio published CCS datasets for HG001 (in this section also referred to as 1:30x; 1 230 
as the sample suffix and 30x means 30-fold coverage), HG002 (2:28x) and HG005 (5:33x), 231 
with HG002 sequenced earlier than HG001 and HG005. The links to the datasets are 232 
available in the Supplementary Notes. We used HG001 and HG005 only for model training 233 
and benchmarking because we found that when DeepVariant was run on all datasets, its 234 
performance on indel calling in the HG002 dataset was substantially lower compared to 235 
HG001 and HG005 (Supplementary Table 3). 236 
 237 
Supplementary Table 4 shows the results of Clair and three other variant callers: 238 
Clairvoyante, Longshot, and DeepVariant. DeepVariant performed the best, with an overall 239 
F1-score of 99.92%, SNP of 99.93%, and indel of 99.78%. The primary result of Clair 240 
1:30x|5:33x had an overall F1-score of 99.80%, which was 0.12% lower than DeepVariant, 241 
but outperformed both Clairvoyante and Longshot. On SNP, 1:30x|5:33x had an F1-score of 242 
99.86%, which was 0.07% lower than DeepVariant, 0.4% higher than Longshot, and 0.18% 243 
higher than Clairvoyante. On indel, 1:30x|5:33x had an F1-score at 98.78%, which was 1% 244 
lower than DeepVariant, but 16% higher than Clairvoyante, showing that the new methods 245 
applied to Clair have effective solved the indel-calling problem in Clairvoyante. In terms of 246 
speed, Clair (139 minutes) is slightly faster than Longshot (208 minutes), and about seven 247 
times faster than DeepVariant (1,113 minutes). The biased test 1:30x+5:33x|5:33x found 248 
the performance cap of Clair at 99.87% on SNP, which was 0.01% higher than 1:30x|5:33x, 249 
and 99.23% on Indel, which was 0.45% higher than 1:30x|5:33x. While in 1:30x|5:33x, the 250 
coverage used for model training was only 30x, we expect to fill the performance gap on 251 
indel calling by using higher coverage for model training. The performance gap between 252 
Clair and DeepVariant (99.23% against 99.78%, -0.55%) is the result of Clair using pileup 253 
data, while DeepVariant uses complete read alignments that contain information at a per-254 
read level. This is also a reason DeepVariant runs slower than Clair. We discuss the 255 
possibility of improving Clair to use complete read alignments without slowing down 256 
performance in the Discussion section below. 257 
 258 
Performance on Illumina 259 
Approximately 300x coverage in 148-bp Illumina paired-end read data is available for five 260 
GIAB samples, including HG001, HG002, HG003, HG004 and HG00511. We used HG001, 261 
HG003, HG004, HG005 for model training, and HG002 for benchmarking. To resemble the 262 
typical coverage in whole genome sequencing, we used full coverage of HG001 (306-fold) 263 
and HG005 (352-fold), but down-sampled HG002, HG003 and HG004 to 52-, 57-, and 66-264 
fold. The links to the datasets are available in the Supplementary Notes. 265 
 266 
Supplementary Table 5 shows the results of Clair and DeepVariant. DeepVariant performed 267 
better, with an overall F1-score of 99.94%. The primary result of Clair 268 
1:306x+3:57x+4:66x+5:352x|2:52x was an overall F1-score of 99.83%, which was 0.11% 269 
lower than DeepVariant’s. For SNPs, the F1-score of Clair was 0.09% lower than that of 270 
DeepVariant (99.85% versus 99.94%). For Indel, the F1-score of Clair was 0.4% lower than 271 
DeepVariant’s (99.48% versus 99.90%). In terms of speed, Clair was about seven times faster 272 
than DeepVariant (77 versus 537 minutes). The biased test 273 
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1:306x+2:52x+3:57x+4:66x+5:352x|2:52x found the performance cap of Clair to be 99.90% 274 
for SNPs, which was 0.05% higher than the primary result, but 0.04% lower than that of 275 
DeepVariant, and 99.57% for indels, which was 0.09% higher than the primary result, but 276 
0.31% lower than that of DeepVariant. Similar to the ONT and PacBio CCS experiments, we 277 
expect to fill in the performance gap through partially making use of complete read 278 
alignments, as discussed in the Discussion section. 279 

Discussion 280 
In this paper we present Clair, a germline small variant caller for single molecule sequencing 281 
data. The name Clair means ‘clear’ in French, echoing its predecessor, named Clairvoyante, 282 
meaning ‘clear seeing’. Clair adds new methods to solve problems that Clairvoyante had 283 
trouble with, including multiallelic variant calling and long indel calling. In our experiments 284 
on ONT data, Clair outperformed all existing tools in terms of precision, recall and speed. On 285 
PacBio CCS and Illumina data, Clair performed slightly worse than DeepVariant, but ran 286 
about an order of magnitude faster. Looking closer at the FP and FN variants shows that 287 
Clair is approaching the limit on how accurately it can call variants using pileup data. Some 288 
of the erroneous variant calls can be corrected using complete read alignments instead of 289 
pileup data. However, dealing with complete read alignments requires a more powerful 290 
neural network design with much greater computational demands. In the future, we will 291 
explore using an ensemble method to handle the majority of the variants using Clair, while 292 
for the extremely tricky ones we will use a new, more sophisticated method. 293 
 294 
The quality and sufficiency of training data is key to the performance of Clair, as well as 295 
other deep learning based variant callers, such as DeepVariant. To train a model for 296 
production purposes, we used five samples (HG001 to 5) for Illumina data, but only two 297 
samples (HG001 and HG002) for ONT, due to the limited availability of public high-coverage 298 
whole genome sequencing datasets for the GIAB samples. ONT sequencing of the other 299 
GIAB samples is ongoing, and more data will be available in the near future. With additional 300 
datasets, we expect to see even higher performance in Clair on ONT data. 301 
 302 
On ONT data, although Clair performed the best, its indel calling precision and recall were 303 
only about 80%, even excluding GA4GH low-complexity regions, which leaves substantial 304 
room for improvement. While the precision can be further improved by considering 305 
complete read alignments, the recall is bounded by input and can be improved only with a 306 
lower read-level base-calling error rate. Future improvements in ONT technology offer the 307 
possibility of reducing the error rate to 2-3%, which in turn should improve Clair’s ability to 308 
detect indels in these data. 309 
 310 
The GIAB datasets we used for model training have moderate whole-genome sequencing 311 
coverage. Although we can use samples with very high coverage (over 300-fold, which is 312 
sometimes seen in amplicon sequenced data) with Clair for variant calling, such samples 313 
might show degraded performance because very high coverage variants were not 314 
adequately observed in model training. To solve this problem, we propose two methods. 315 
One method is to do transfer learning using a trained model on additional datasets with 316 
very high coverage. Clair supports transfer learning and can be applied to additional 317 
datasets instantly. Another method is an ensemble method, which generates multiple 318 
copies of randomly subsampled read alignments at a candidate variant for Clair to call 319 
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variant. A majority vote or a decision tree can be used to make the final decision, using the 320 
results of each copy. 321 
 322 
A limitation of Clair is that it cannot be applied to polyploid species, which are inconsistent 323 
with its neural network design. For the same reasons, Clair is not applicable to somatic 324 
variant calling, where a single sample might hold multiple distinct populations of cells. Our 325 
next steps include extending Clair to support polyploid species and somatic variant calling. 326 

Method 327 
 328 
Clair's input/output 329 
Input 330 
For a truth variant for training or a candidate variant for calling, the read alignments that 331 
overlap or are adjacent to the variant are summarized (i.e. pile-up data) into a three-332 
dimensional tensor of shape 33 by 8 by 4, comprising 1056 integer numbers. The three 333 
dimensions correspond to the position, the count of four possible bases from two different 334 
strands, and four different ways of counting. In the first dimension, 33 positions include the 335 
starting position of a variant at the center and 16 flanking bases on both sides. The second 336 
dimension corresponds to the count of 'A+', 'A-', 'C+', 'C-', 'G+', 'G-', 'T+' or 'T-', with the 337 
symbols +/- denoting the count from the forward/reverse strand. The third dimension 338 
replicates the first two dimensions with four different ways of counting to highlight 1) the 339 
allelic count of the reference allele, 2) insertions, 3) deletions and 4) single nucleotide 340 
alternative alleles. "Supplementary Note – Pseudocode for generating the input tensor" 341 
shows the pseudo code of the exact algorithm of how the input tensor is generated. 342 
Supplementary Figure 1 demonstrates how the tensors are look like for ONT data at a 343 
random ‘non-variant’, a ‘SNP’, an ‘Insertion’, and a ‘Deletion’. 344 
 345 
Output  346 
The output of Clair has four tasks (a.k.a. four output components, in total 90 probabilities), 347 
including 1) the 21-genotype probabilistic model (21 probabilities); 2) zygosity (3 348 
probabilities); 3) the length of the first indel allele (33 probabilities); and 4) the length of the 349 
second indel allele (33 probabilities). One of the breakthroughs in Clair is the invention of 350 
the 21-genotype probabilistic model. It comprises all of the possible genotypes of a diploid 351 
sample at a genome position, including 'AA', 'AC', 'AG', 'AT', 'CC', 'CG', 'CT', 'GG', 'GT', 'TT', 352 
'AI', 'CI', 'GI', 'TI', 'AD', 'CD', 'GD', 'TD', 'II', 'DD', and 'ID', where 'A', 'C', 'G', 'T', 'I' (insertion) 353 
and 'D' (deletion) denote the six possible alleles. The new model covers variants with two 354 
alternative alleles, which could not be called in Clairvoyante. The zygosity task outputs the 355 
probability of the input being 1) a homozygous reference (0/0); 2) heterozygous with 1 or 2 356 
alternative alleles (0/1 or 1/2); or 3) a homozygous variant (1/1). The zygosity task is 357 
partially redundant to the 21-genotype task, but it makes decisions independently, and it 358 
crosschecks the decision made by the 21-genotype task. Tasks three and four have the same 359 
design. They output the length of up to two indel alleles. Each task outputs 33 probabilities, 360 
including the likelihood of 1) more than 15bp deleted (<-15bp); 2) any number between -361 
15bp and 15bp, including 0bp, and; 3) more than 15bp inserted (>15bp). In training, the 362 
indel allele with a smaller number is set as the first indel allele. For example, for a 363 
heterozygous 1bp deletion, the first indel allele is set as -1bp, the second as 0bp (-1bp/0bp). 364 
For a heterozygous 1bp insertion, 0bp/1bp is set. This design makes the non-0bp training 365 
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variants for both tasks balanced. For a heterozygous indel with two alternative alleles, say, 366 
one -2bp and one 5bp, -2bp/5bp are set. For a homozygous indel, two indel alleles are set to 367 
the same value. For indels longer than 15bp, the exact length is determined using an 368 
additional step (Supplementary Note – New methods used in Clair – Dealing with indels 369 
longer than 15bp). The output of the two indel allele tasks are also used for crosschecking 370 
with the 21-genotype task, with 0bp supporting an SNP allele, and non-0bp supporting an 371 
indel allele. More details about how the four tasks crosscheck each other to come up with a 372 
result coherently are in "Method – New methods used in Clair – Determining the most 373 
probable variant type using the four tasks of Clair". 374 
 375 
New methods used in Clair 376 
Clair has been fully revamped while a few basic deep-learning techniques in Clairvoyante 377 
have been retained, including 1) model initialization; 2) activation function; 3) optimizer; 4) 378 
dropout; 5) regularization; and 6) combining multiple samples for model training. Below we 379 
discussed the new methods we have applied in Clair. 380 
 381 
Dealing with indels longer than 15bp 382 
For each candidate variant, Clair directly outputs the length of up to two alternative indel 383 
alleles. However, if an insertion goes beyond 15bp, or a deletion goes below -15bp, Clair 384 
runs an additional step to decide its exact length and allele. In the additional step, Clair 385 
gathers all possible insertion/deletion alleles longer than 15bp at a genome position 386 
through pysam (a wrapper around htslib and the samtools20 package). Depending on the 387 
genotype concluded by Clair, we choose 1) the insertion/deletion with the highest allelic 388 
count for 'AI', 'CI', 'GI', 'TI', 'AD', 'CD', 'GD' and 'TD'; 2) the insertions with the highest and/or 389 
the second-highest allelic count for 'II'; 3) the deletions with highest and/or the second-390 
highest allelic count for 'DD', or; 4) both the insertion and deletion with the highest allelic 391 
count for 'ID'. The additional step is slow, but it is required only for indels longer than 15bp. 392 
We investigated HG001 and found 570,367 indels in its truth variant set; only 10,672 393 
(1.87%) were >15bp. In our experiments, we found the slowdown was acceptable. Users can 394 
set an option in Clair to enable this additional step for all indels, but our experiments found 395 
that while the improvement in precision is small, it slows down Clair by about two times 396 
with Illumina and PacBio CCS data, and by more than 10 times on ONT data. 397 
 398 
Determining the most probable variant type using the four Clair tasks 399 
Clair outputs data on four tasks. With an independent penultimate layer (Figure 1, FC5 400 
layer) immediately before each task, the output of each task is considered independent. We 401 
made two observations from our experiments: 1) for true positive variants, a random task 402 
or two will make a mistake occasionally, but usually, the best and the second-best 403 
probabilities are near and can be disambiguated if considered with other tasks; 2) for false 404 
positive variants, the tasks do not usually agree well with each other, leading to two or 405 
more possible decisions with similar probabilities. Thus, in Clair, we implemented a method 406 
as a submodule for making a decision using the output of all four tasks. Variants are divided 407 
into 10 categories: 1) a homozygous reference allele; 2) a homozygous 1 SNP allele; 3) a 408 
heterozygous 1 SNP allele, or heterozygous 2 SNP alleles; 4) a homozygous 1 insertion allele; 409 
5) a heterozygous 1 insertion allele, or heterozygous 1 SNP and 1 insertion alleles; 6) 410 
heterozygous 2 insertion alleles; 7) a homozygous 1 deletion allele; 8) a heterozygous 1 411 
deletion allele, or heterozygous 1 SNP and 1 deletion alleles; 9) heterozygous 2 deletion 412 
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alleles; and 10) a heterozygous 1 insertion and 1 deletion alleles. The likelihood value of the 413 
10 categories is calculated for each candidate variant, and the category with the largest 414 
likelihood value is chosen (Pseudocode in "Supplementary Note – Pseudo code for 415 
determining the most probable variant type"). The variant quality is calculated as the square 416 
of the Phred score of the distance between the largest and the second-largest likelihood 417 
values. 418 
 419 
Cyclical learning rate 420 
The "initial learning rate" and "how the learning rate decays" are two critical 421 
hyperparameters in training a deep neural network model. A model might be stuck at a local 422 
optimum (i.e. unable to achieve the best precision and recall) if the initial learning rate is 423 
too large, or the decay is too fast. But a large initial learning rate, and a slow decay rate 424 
make the training process either unstable or take too long to finish. So in common practice, 425 
a tediously long grid search that is very costly is needed to find the best hyperparameters. 426 
Furthermore, through a grid search, we found that different sequencing technologies differ 427 
in their best hyperparameters. This problem makes model training too complicated and 428 
largely impedes Clair from being applied to new datasets and sequencing technologies. To 429 
solve the problem, we implemented Cyclical Learning Rate (CLR)21 in Clair. CLR is a new deep 430 
learning technique that eliminates the need to find the best values of the two 431 
hyperparameters. CLR gives a way to schedule the learning rate in an efficient way during 432 
training, by cyclically varying between a lower and higher threshold. Following the CLR 433 
paper, we determined the higher threshold to be 0.03 and the lower threshold to be 0.0001. 434 
The two thresholds worked well on the training variants of all three sequencing 435 
technologies (Illumina, PacBio CCS and ONT). In terms of which CLR scheduler to use, we 436 
chose the triangular schedule with exponential decay. In our experiments, on PacBio CCS 437 
and Illumina datasets, CLR decreased model training time by about 1–3 times, while often 438 
outperforming the three-step decay method introduced in Clairvoyante for both precision 439 
and recall. However, on ONT datasets, CLR has a lower, but almost negligible, performance 440 
than the three-step decay. We provide both CLR and three-step decay options in Clair. To 441 
train a model for production, we suggest users try both options and choose the best 442 
through benchmarking. In our results, we used CLR for PacBio CCS and Illumina datasets, 443 
and the three-step decay method for ONT datasets. 444 
 445 
Focal loss 446 
Our training data uses the truth variants from the GIAB consortium and is unbalanced in 447 
terms of variant type. For example, the number of heterozygous variants is nearly twice that 448 
of the homozygous variants. SNPs are about five times more numerous than indels. Worst 449 
of all, only ~1.1% (39,898 of 3,619,471 in HG001) of variants have two or more alternative 450 
alleles. And among them, only 884 (~0.024%) are multiallelic SNPs. This problem leads to 451 
degenerate models, as the numerous easy variants contribute no useful learning signals and 452 
overwhelm training. In our practice, if we leave the problem unaddressed, we observe a 453 
significant drop in recall for the underrepresented variant types. For multiallelic SNPs, the 454 
recall dropped to zero. To solve this problem, we used the "Focal loss" technique22, which 455 
applies a modulating term to the cross-entropy loss in Clair's output to focus training on 456 
underrepresented hard variants and down-weight the numerous easy variants. Focal loss 457 
calculates the loss as (1 − 𝑝%)' × 𝛼% × −log	(𝑝%), where 𝑝% = 𝑝, 𝛼% = 𝛼, if the prediction 458 
matches the truth, or 𝑝% = (1 − 𝑝), 𝛼% = (1 − 𝛼) otherwise. In addition to the traditional 459 
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cross entropy loss, focal loss uses two more parameters: 𝛾 (the focusing parameter) to 460 
differentiate easy/hard training examples, and 𝛼 (the balancing parameter) to balance the 461 
importance of positive/negative training examples. We determined 𝛾 = 2 and 𝛼 = 0.25 462 
work best for the GIAB truth variants with a 1:2 ratio of truth variant and non-variant. The 463 
use of focal loss significantly increases the performance of underrepresented variant types. 464 
It also allows us to be more lenient on variant type balance when augmenting the training 465 
data. 466 
 467 
Training data augmentation using subsampled coverage 468 
Lower coverage usually leads to lower precision and recall in variant calling. To train Clair to 469 
achieve better performance on variants with lower coverages, we subsampled each dataset 470 
into four or nine additional datasets with lower coverages. The subsampling factors f are 471 
determined as (√4 ÷ 𝑐8 )9, where c is full coverage of each sample, 4 is the minimal 472 
coverage, ℎ is either 4 or 9, and 𝑛 is from 1 to h. Using HG002 as an example, its full 473 
coverage is 63.68-fold, and the nine subsampled coverages are 46.82-, 34.43-, 25.31-, 474 
18.61-, 13.69-, 10.06-, 7.40-, 5.44- and 4.00-fold. If variant samples were lower than 4x after 475 
subsampling, we removed them from training. We used the command "samtools view -s f" 476 
to generate a subsampled BAM. A different seed counting from zero for random number 477 
generation was set for each coverage. The use of subsampled coverages improved the recall 478 
on indel significantly. 479 
 480 
Methods tested but showed no improvement to accuracy 481 
In this section we discuss methods we tested that had no effect on Clair’s performance. For 482 
researchers working on further improving the performance of Clair, these methods could be 483 
avoided or revised. 484 
 485 
Extend input tensor from 33bp to 49bp and 65bp 486 
Intuitively, a larger input tensor with more flanking bases provides additional information 487 
on the surrounding read alignments, which might lead to better precision and recall. Our 488 
experiments show that extending the input tensor from 33bp (16bp flanking bases) to 49bp 489 
(24bp flanking bases) and 65bp (32bp flanking bases) slows down Clair by 5.4% and 12.6%, 490 
respectively. But the improvement was negligible in terms of precision or recall with both 491 
SNP and indel. 492 
 493 
Using non-variants adjacent to true variants as negative samples for model training 494 
Clair, by default, uses a ratio of 1:2 on true variants and non-variants for model training, and 495 
the non-variants are randomly selected from the genome, except for the positions with a 496 
true variant or insufficient coverage. We experimented using non-variants adjacent to true 497 
variants (we tried ±2bp, ±8bp and ±16bp) as negative samples for model training and 498 
adjusted the ratio to 1:1:1 on true variants adjacent non-variants and random non-variants. 499 
We used adjacent non-variants for training because their input is true variant alike, but a 500 
few bases shifted. The hypothesis was that using them as adversarial training samples 501 
against the true variants might improve Clair’s performance at high density variants and 502 
alignment errors. However, our experiments show that the method decreased recall slightly 503 
on both SNP and indel. 504 
 505 
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Incorporating less confident GIAB variants for model training 506 
The GIAB HG001 truth variant dataset includes 3,619,471 truth variants passing all criteria 507 
(with the ‘PASS’ tag), and 2,264,796 variants failing one or more criteria. The criteria details 508 
were explained by Zook et al. in 201913. Among the failed variants, 310,113 had the 509 
‘allfilteredbutagree’ tag, which means at the same position, the variants called in all the 510 
supporting datasets agreed with each other, even though none of them were in the callable 511 
regions, in which a range of coverage and minimum alignment quality are met. These 512 
variants are considered less confident than those passing all criteria, but might still 513 
contribute to training a better model because while a deep neural network can tolerate 514 
moderate errors in training data, if any new patterns are provided in additional data, it will 515 
be learned by the model and, in turn, improve the performance. We experimented adding 516 
the variants with the ‘allfilteredbutagree’ tag to training. However, our results show that the 517 
recall went down significantly on SNP, and the precision went down significantly on indel. 518 
 519 
Discarding homopolymer variants in model training  520 
Variant calling in homopolymer sequences is usually more challenging, and the problem is 521 
even worse in SMS technologies since the length of homopolymers is usually 522 
underestimated. At longer homopolymers, the signals are usually too discordant, so it is 523 
common for humans to make mistakes with them. From the feature engineering point of 524 
view, variants in homopolymer sequences are confusing and less informative, and might 525 
lead to a degenerate model. We tested model training without variants at homopolymer 526 
sequences longer than 5bp. Our results show that both precision and recall degrade 527 
significantly if homopolymer variants are not used in model training.  528 
 529 
Benchmarking 530 
The GIAB truth variant datasets 531 
We used the GIAB version 3.3.2 datasets as our truth variants. Depending on the availability 532 
of deep sequencing data, our ONT experiments used samples HG001 or HG001+HG002 for 533 
model training, our PacBio CCS experiments used HG001 or HG001+HG005, and our Illumina 534 
experiments used HG001 or HG001+HG003+HG004+HG005. For benchmarking, ONT, PacBio 535 
CCS and Illumina experiments have used HG002, HG005, and HG002, respectively. The links 536 
to the truth variants and high-confidence regions are available in “Methods – Data sources – 537 
Truth variants”. Depending on the reference genome used in the already available read 538 
alignments, we used GRCh38 for our ONT and Illumina experiments, and GRCh37 for our 539 
PacBio CCS experiments. The links to the reference genomes we used are available in 540 
“Methods – Data sources – Reference genomes” 541 
 542 
Removing GA4GH low-complexity regions from benchmarking 543 
Krusche et al.6 from the GA4GH benchmarking team and the GIAB consortium published the 544 
low-complexity regions, including homopolymers, STRs, VNTRs, and other repetitive 545 
sequences for stratifying variants in their paper titled "Best practices for benchmarking 546 
germline small-variant calls in human genomes". In the low-complexity regions larger than 547 
10bp, ONT's performance degraded significantly (precision -11.41%, recall -55.33%), while 548 
that of PacBio CCS and Illumina dropped only 0.99–1.67% in precision and recall 549 
(Supplementary Table 6). Thus, when computing variant calling using ONT, we suggest 550 
removing the variants called in the low-complexity regions. In our benchmarks for all 551 
datasets, in addition to using the high-confidence regions of each sample provided by GIAB, 552 
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we removed the low-complexity regions. The procedures are available in "Supplementary 553 
Note – Commands – Remove GA4GH low complexity regions from GIAB's high-confidence 554 
regions". There was retention of 92.61–93.47% high-confidence regions in GRCh38, and 555 
94.40–95.05% in GRCh37 of the five samples HG001 to 5 after removing the low-complexity 556 
regions (Supplementary Table 7). 557 
 558 
Benchmarking methods and metrics 559 
Clair trains a model either for 30 epochs, using the Cyclical Learning Rate (used for PacBio 560 
CCS and Illumina datasets), or by decaying the learning rate three times (by one tenth each 561 
time) until the validation losses converge (used for ONT datasets). While the performance of 562 
last few epochs are generally similar, the best-performing one will be chosen for 563 
benchmarking. We did not run replications of model training because choosing from the 564 
best epoch actually resembles the process of having multiple replications. In ONT and 565 
Illumina experiments, the GRCh38 reference genome was used, while in PacBio CCS 566 
experiments, GRCh37 was used. For each variant calling experiment, we used the 567 
submodule vcfeval in RTG Tools23 version 3.9 to generate three metrics, ‘Precision’, ‘Recall’, 568 
and ‘F1-score’, for five categories of variants: ‘Overall’, ‘SNP’, ‘Indel’, ‘Insertion’, and 569 
‘Deletion’. All time consumptions were gauged on two 12-core Intel Xeon Silver 4116 (in 570 
total 24 cores), with 12 concurrent Clair processes, each with 4 Tensorflow threads. As Clair 571 
has some serial steps that use only one thread, we observed our setting sufficient to 572 
maximize the utilization of all 24 cores. For other variant callers, including DeepVariant, 573 
Longshot and Medaka, options were to set to use all 24 cores for the best speed. 574 
 575 
Computational performance 576 
Clair requires Python3, Pypy3 and Tensorflow. Variant calling using Clair requires only a 577 
CPU. For a typical 30-fold human WGS sample, Clair takes about an hour for Illumina data 578 
and PacBio CCS data, and five hours on ONT data, using two 12-core Intel Xeon Silver 4116 579 
processors. Memory consumption depends on both input data and concurrency. ONT data 580 
has a higher memory footprint than Illumina and PacBio CSS, while Clair is capped at 7GB 581 
per process (helper scripts at 4.5GB and Tensorflow at 2.5GB). Model training requires a 582 
high-end GPU; we used the Nvidia Titan RTX 24GB in our experiment. Using Clair’s default 583 
parameters, generating 1 million training samples takes about 38 seconds. For example, the 584 
Illumina model with four samples (HG001, 3, 4, 5) and 30 coverages in total (10 for 1 and 5, 585 
5 for 2 and 3) has 284,367,735 training samples and takes about 11,000 seconds per epoch. 586 
In comparison, the Nvidia RTX 2080 Ti 11GB is about 15% slower, and the Nvidia GTX 1080 Ti 587 
11GB is about 35% slower. 588 
 589 
Code availability 590 
Clair is open source, available at https://github.com/HKU-BAL/Clair. 591 
 592 
Data availability 593 
The authors declare that all data supporting the findings of this study are available at the 594 
links in the paper and its supplementary information files. 595 
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Figures 666 

 667 
Figure 1. Clair network architecture and layer details. RNN: Recurrent Neural Network. FC: 668 
Fully Connected layer. Bi-LSTM: Bi-directional Long Short-Term Memory layer. 669 
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 671 
Figure 2. ONT benchmarking results. For Clair, the datasets used for model training and 672 
testing are separated with a vertical bar '|', and are written as ‘a:bx’, where a denotes the 673 
suffix of the GIAB sample ID (e.g., 1 means HG001), and b denotes the coverage of the 674 
dataset. Longshot calls only SNP variants, so it is not shown in the indel results. 675 
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 677 
Figure 3. The category distribution of FPs and FNs made by Clair in the 1:168x|2:64x 678 
experiment on ONT data, and six genome browser screen captures showing examples of 679 
different categories. In the screen captures, bases A, C, G, and T are green, blue, yellow, and 680 
red, respectively. Gaps (i.e., deletions) are dark gray. Insertions are purple dots between 681 
two bases and are wider when the insertion is longer. 682 
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