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Abstract 

The single-input module (SIM) is a regulatory motif capable of coordinating gene expression across 

functionally related genes. We explore the relationship between regulation of the central 

autoregulated TF in a negatively regulated SIM and the target genes using a synthetic biology 

approach paired with stochastic simulations. Surprisingly, we find a fundamental asymmetry in the 

level of regulation experienced by the TF gene and its targets, even if they have identical regulatory 

DNA; the TF gene experiences stronger repression than its targets. This asymmetry is not predicted 

from deterministic modeling of the system but is revealed from corresponding stochastic 

simulations. The magnitude of asymmetry depends on factors such as the number of targets in the 

SIM, TF degradation rate (or growth rate) and TF binding affinity. Beyond implications for SIM motifs, 

the influence of network connectivity on regulatory levels highlights an interesting challenge for 

predictive models of gene regulation. 

 

Keywords: transcriptional regulation, resource competition, network motifs, negative 

autoregulation, gene expression 

 

Introduction 

Gene regulatory networks are composed of an organisms’ genes connected based on the ability of 

some protein products (transcription factors or TFs) to alter the expression patterns of those genes. 

The networks, when viewed as a whole, are typically dense and interconnected and as such difficult 

to interpret (1, 2). The concept of network motifs, defined as overrepresented patterns of connections 

between genes and TFs in the network, helps to digest these large networks into smaller subgraphs 

with specific properties; each of these motifs can be interpreted as performing a particular 

“information processing” function that is determined by the connectivity and regulatory role of the 

genes in the motif (2-6). 

The single-input module (SIM) is a network motif where a single TF regulates the expression of a 

set of genes, often including itself (Fig. 1A). Typically, this group of genes have related functions and 
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the purpose of this motif is to coordinate, in both time and magnitude, expression of these related 

genes (6). There are mounting examples, from diverse topics that range from metabolism (Fig. 1B, 

(7)), stress response (Fig. 1C, (8, 9)), development (10-12), and cancer (13), where temporal ordering 

of gene expression in the motif naturally follows the functional order of the genes in the physiological 

pathway. Mechanistically, it is thought that this ordering is set through differential affinity for the TF 

amongst the various target genes in the motif, where the strongest binding sites are the first ones to 

respond (and the last ones to stop responding) to a signal; this temporal patterning is referred to as 

“last-in first-out” (6). Due to the broad importance of these motifs, a quantitative understanding of 

how SIM modules can be encoded, designed and optimized, will be instrumental in gaining a deep 

and fundamental understanding of the spatial and temporal features of a diverse set of cellular 

phenomena. 

To quantitatively explore the input-output relationship of the SIM motif, we use a synthetic 

biology approach that boils the motif down to its most basic components: an autoregulated TF gene, 

a sample target gene, and competing binding sites. Specifically, we use non-functional “decoy” 

binding sites to exert competition for the TF and mimic the demand of the other genes in the motif 

(which will depend on the size of the network, Fig. 1D (18, 19)). However, the demand for the TF 

could also stem from a litany of sources such as random non-functional sites in the genome (14-17) 

or non-DNA based obstruction or localization effects that transiently interfere with a TFs ability to 

bind DNA. Because of the design, our results do not depend on the nature of the TF competition. SIM 

TFs typically exert the same regulatory role on all targets of the motif (18). As such, in this work we 
will focus on a TF that is a negative regulator of its target genes and itself; this is the most common 

regulation strategy in Escherichia coli where roughly 60% of TF genes are autoregulated and almost 

70% of those TFs negatively regulate their own expression (inset Fig. 1D, (18)).  

We used stochastic simulations of kinetic models (19-22), to predict how the overall level of gene 

expression depends on parameters characterizing cellular environment such as TF binding affinities 

and the number of competing binding sites. To test these predictions in vivo, we built a synthetic 

system with LacI as a model TF, and individually tune each of these parameters. Past work with LacI 

have demonstrated the ability to control with precision the regulatory function, binding affinity and 

TF copy number through basic sequence level manipulations (23-30); Here we use that detailed 

knowledge to inform our simulations which then guide our experiments (and vice versa).  

Our approach reveals that the presence of competing TF binding sites can have counterintuitive 

effects on the mean expression levels of the TF and its target genes due to the opposing relationship 

between total TFs and free TFs (those not bound to a specific binding site). Furthermore, we find that 

the TF and target gene experience quantitatively different levels of regulation in the same cell, and 

with the same regulatory sequence. We show that this regulatory asymmetry is sensitive to features 

such as the degradation rate, TF binding affinity and the number of competing binding sites for the 

TF. Interestingly, regulatory asymmetry is not captured by a deterministic model of our stochastic 

simulation, which is based on mass action equilibrium kinetics and are widely used in predicting gene 

expression patterns and levels (including precise quantitative agreement for the promoter used in 

our study (23, 25, 28, 29, 31)). In fact, this deterministic model fails to accurately predict expression 

of either gene. However, the stochastic model makes accurate predictions that we confirm through in 

vivo measurements.  
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Results 

Matching molecular biology with simulation methodology 

We use a combination of theory and experimental in vivo measurements to study the interplay 

between TF, target, and additional binding sites of a negative autoregulatory SIM network motif. The 

basic regulatory system is outlined in Fig. 1E. We use a kinetic model of the SIM motif to explore how 

the expression of the TF gene and one target gene depends on parameters such as TF binding affinity 

and number of other binding sites in the network (here modeled and controlled through competing, 

non-regulatory decoy sites (32)). In this model, the TF gene and target gene can be independently 

bound by a free TF to shut off gene expression until the TF unbinds. The two genes (TF-encoding and 

target) compete with decoy binding sites which can also bind free TFs. Each free TF can bind any 

open operator site with equal probability (set by the binding rate). The unbinding rate can be set 

individually for the TF gene, target gene and decoy sites and is related to the specific base pair identity 

of the bound operator site (33-36). We employ stochastic simulations to make specific predictions for 

how the expression level of the TF and target genes depend on the various parameters of the model. 

Furthermore, we translate these stochastic processes into a deterministic ODE model using 

equilibrium mass action kinetics (see SI section S6). This approach is prevalent in theoretical studies 

of gene expression because the equations can often be solved analytically and thus provide intuition 

for regulatory behavior of the system. Below we compare the stochastic and deterministic 

approaches to exploring the regulation of the SIM motif. A thorough discussion on how we chose the 

kinetic parameters of our model is presented in the methods section. 

 In experiments, the corresponding system is constructed with an integrated copy of both the TF 

(LacI-mCherry) and target gene (YFP) with expression of both genes controlled by identical 

promoters with a single LacI binding site centered at +11 relative to their transcription start sites 

(23, 28). As demonstrated in Fig. 1F, decoy binding sites are added by introducing a plasmid with an 

array of TF binding sites (between 0 to 5 sites per plasmid) enabling control of up to roughly 300 

binding sites per cell (for average plasmid copy number measured by qPCR, see methods and SI Fig. 

S3). TF unbinding rate is controlled by changing the sequence identity of the operator sites; the 

binding sequence assessed in this study include (in order of increasing affinity) O2, O1 and Oid. The 

decoy binding site arrays are constructed using the Oid operator site. We quantify regulation through 

measurements of fold-change (FC) in expression which is defined as the expression level of a gene in 

a given condition (typically a specific number of decoy binding sites) divided by the expression of 

that gene when it is unregulated. For the target gene we can always measure unregulated expression 

simply by measuring expression in a LacI knockout strain. However, it is challenging to measure 

unregulated expression for the autoregulated gene. For autoregulation this unregulated expression 

can be measured by exchanging the TF binding site with a mutated non-binding version of the site. 

For O1 there is a mutated sequence (NoO1v1 (30)) that we have shown relieves repression of the 

target gene comparable to a strain expressing no TF (see SI Fig. S4B) which allows us to calculate 

fold-change even for the autorepressed gene. Despite testing many different mutated sites and 

strategies, we could not find a corresponding sequence for O2 and Oid so we focus primarily on 

studying a TF gene regulated by O1 (see SI text S4 for more discussion). 
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 Decoy sites increase expression of the auto-repressed gene and its targets 

We first investigate the negatively regulated SIM motif where the TF and target gene have 

identical promoters and TF binding sites (O1) and the number of (identical) competing binding sites 

are varied systematically (schematically shown in Fig. 1E, F). Simulation and experimental data for 

fold-change of the TF gene as a function of number of decoys is shown in Fig. 2A as red lines 

(simulation) and red points (experiments). We find that increasing the number of decoy sites 

increases the expression of the auto-repressed TF gene monotonically. To interpret why the TF level 

increases, in Fig. 2B we plot the number of “free” TFs in our simulation (defined as TFs not bound to 

an operator site) as a function of decoy site number. The solid line demonstrates that on average, 

despite the increased average number of TFs in the cell, the number of unbound TFs decreases as the 

number of competing binding sites increases. Therefore, because the number of available repressors 

decreases, the overall level of repression also decreases and thus the mean expression of the TF gene 

rises.  

Now we consider the regulation of a SIM target gene which is regulated by an O1 binding site. In 

this case, the target promoter and TF promoter are identical. In Fig. 2A, the expression of the target 

gene is shown as blue points (experiments) and blue lines (simulation) for the SIM motif with 

different numbers of decoy TF binding sites. Just as in the case of the TF gene, we once again see that 

the expression of the target gene increases as more decoy binding sites are added even though the 

total number of TFs is also increasing (red points and line). Qualitatively, we expected this result 

since the free TF number is expected to decrease (Fig. 2B) and, in turn, the expression of any gene 

targeted by the autoregulated repressing TF will increase. While the mechanism is more obvious in 

this controlled system, it is important to note that this is a case where more repressors correlate with 

more expression of the repressed gene. It is easy to see how this relationship could be misinterpreted 

as activation in more complex in vivo system if the competition level of the TF is (advertently or 

otherwise) altered in experiments. 

Asymmetry in gene regulation between TF and target genes 

The stochastic simulations and experimental data in Fig. 2A reveal an intriguing detail: Even when 

the regulatory region of the auto-repressed gene and the target gene are identical, we find that the 

expression (fold-change or FC) is higher for the target gene, raising the question of how two genes 

with identical promoters and regulatory binding sites in the same cell can have different regulation 

levels. Interestingly, this finding stands in sharp contrast to what the corresponding deterministic 

modeling predicts, the expressions of the target and TF genes are expected to be identical when the 

corresponding regulatory regions are the same (see SI Fig. S7C, (37)). The asymmetry in regulation, 

as predicted by the stochastic simulations, is shown explicitly in Fig. 2C, where we plot the expression 

of the target gene against the expression of the TF gene. In this figure, the data points are derived 

from measurements made in six different competition levels (from 0 to 5 decoy binding sites per 

plasmid). Each data point represents the average expression level of each gene for a given number of 

competing binding sites. The lines represent the same quantity calculated by simulation. The intuitive 

expectation, further bolstered by the deterministic model predictions, that identical promoters 

(yellow data, Fig. 2C) should experience identical levels of regulation would suggest that the data fall 

on the black dashed one-to-one line. However, for both simulations and experiments of this system 

the TF gene is clearly more strongly regulated than the target gene subject to identical regulatory 

sequences. 
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 To examine the extent of asymmetry in this system, we adjust the target binding site to be of 

higher affinity (Oid, blue lines and data points in Fig. 2C) or weaker (O2, purple lines and data points 

in Fig. 2C). Clearly, this should change the symmetry of the regulation, after all the TF binding sites 

on the promoters are now different and symmetry is no longer to be expected. The experiments and 

simulations once again agree well. However, when Oid regulates the target gene and O1 regulates the 

TF gene, the regulation is now roughly symmetric despite the target gene having a much stronger 

binding site; in this case, the size of the inherent regulatory asymmetry effect is on par with altering 

the binding site to a stronger operator resulting in symmetric overall regulation of the genes.  

 

Mechanism of asymmetric gene regulation 

The difference in expression between the TF and its target can be understood by studying the TF-

operator occupancy for each gene, drawn schematically in Fig. 3A. This cartoon shows the four 

possible promoter occupancy states of the system: (1) both genes unbound by TF, (2) target gene 

bound by TF, TF gene unbound, (3) TF gene bound by TF, target gene unbound, and (4) both genes 

bound by TF. It should be clear that state 1 and state 4 cannot be the cause of asymmetry; both genes 

are either fully on (state 1) or fully off (state 4). As such the asymmetry must originate from 

differences in states 2 and 3. In state 2, the TF gene is “on” while the target gene is fully repressed and 

in state 3 the opposite is true. Since we know that the asymmetry appears as more regulation of the 

TF gene than the target gene, then it must be the case that the system spends less time in state 2 than 

in state 3. There are two paths to exit either of these states: unbinding of the TF from the bound 

operator or binding of the TF to the free operator. Since unbinding rate of a TF is identical for both 

promoters in our model, the asymmetry must originate from differences in binding of free TF in state 

2 and in state 3; specifically state 2 must have an (on average) higher concentration of TF than state 

3. This makes sense since the system is still making TF in state 2, while production of TF is shut off in 

state 3. Fig. 3B validates this interpretation as we can see that state 2 has on average more free TFs 

than state 3, and as a result, the system spends less time in state 2 than in state 3 in our simulations. 

As such, the asymmetry comes from the fact that the two genes, despite being in the same cell and 

experiencing the same average intracellular TF concentrations, are exposed to systematically 

different concentrations of TF when the TF and target gene are in their respective “active” states. To 

quantify regulatory asymmetry, we define asymmetry as the difference in fold-change of the target 

and TF gene (asymmetry =FCtarget-FCTF). In our simulations we find that asymmetry is exactly equal 

to the difference in time spent in state 3 and state 2, for any condition or parameter choice (Fig. 3C).  

According to the above proposed mechanism, the regulatory asymmetry stems from differences 

in the cellular TF concentration when the TF is bound to the target versus when it is bound to the 

autoregulatory gene, as such we expect that binding affinity will play a central role in setting 

asymmetry levels. However, there are many parameters associated with the production and decay of 

TF and target mRNA and protein which could also influence the asymmetry. To reveal which (if any) 

of these parameters is important to asymmetry, Fig. 3D shows our theory predictions for the 

maximum asymmetry (the maximum value of asymmetry found as competing site number is 

controlled, see SI Fig. S8) as these production and degradation parameters are tuned. First, we find 

that tuning the rates of target gene production and decay has almost no effect on asymmetry (black 

dashed line for target protein degradation rate, others not shown). On the other hand, for TF 

production and decay each parameter has some effect on asymmetry. However, we find that the 

biggest driver of asymmetry in this set of parameters is the protein degradation rate (red line). As 
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such, we focus on two crucial parameters that control the asymmetry: TF binding affinity and TF 

degradation rate. In Fig. 3E we show a heat map of the maximum asymmetry as a function of the rate 

of protein degradation and binding affinity of the TF. We see from this figure that strong binding 

produces enhanced asymmetry, and the degradation rate displays an interesting intermediate 

maximum in asymmetry – degradation that is too fast, or too slow will not show asymmetry. A 

maximum asymmetry is expected for TF lifetimes between 10 and 100 minutes. Crucially, this 

maximum coincides with typical doubling time of E. coli (which sets the TF half-life (38, 39)) and thus 

asymmetry is most relevant in common physiological conditions 

Dependence of regulatory asymmetry on TF degradation and binding affinity 
 To experimentally test the theory predictions for the role of TF degradation in setting regulatory 

asymmetry, we introduced several ssrA degradation tags to the LacI-mCherry in our experiments 

(40). The data, shown in Fig. 3F includes degradation by a “weak” or “slow” tag (DAS with a rate of 

0.00063 per minute per enzyme (41), blue points), a slightly faster tag (DAS+4 with a rate of 0.0011 

per minute per enzyme (41), green points) and a very fast tag (LAA tag with a rate of 0.21 per minute 

per enzyme (41), red points). In addition, the data without a tag is shown as yellow points. Here we 

see that the slowest tag (blue points) introduces strong asymmetry. However, for the next fastest tag 

(green points) we see a significant decrease in asymmetry and the level of regulatory asymmetry is 

similar to what is seen in the absence of tags (yellow points). Finally, the fastest tag (red points) 

shows no asymmetry at all. It is worth pointing out that the qualitative order of degradation rates in 

these experiments can be inferred from how far the data “reaches,” faster degradation will lead to 

higher overall fold-changes for a given competition level. Importantly, controlling the protein 

degradation rate through this synthetic tool agrees with our model predictions, although the actual 

in vivo protein degradation rates are difficult to estimate from tag sequence alone, the asymmetry 

follows the expected trends based on the known (and observed) effectiveness of each tag (see 

schematic inset Fig. 3F). 

In the absence of targeted degradation, the degradation rate of most protein in E. coli, is naturally 

set by the growth rate. According to the model predictions in Fig. 3E, the asymmetry should be 

highest for fast growing cells (roughly 20-minute division rates) and decrease (or vanish) for very 

slow growing cells. To test this, we take the system with O1 regulatory binding sites on both the target 

and the TF promoter (yellow data in Fig. 2C grown in M9 + glucose, 55-minute doubling time) and 

grow in a range of doubling times between 22 minutes (rich defined media) up to 215 minutes (M9 

+ acetate) (see SI Fig. S2A). Importantly, when we change the growth rate, other rates such as the 

transcription and translation rates will also be impacted (42, 43), while these parameters will change 

features of the asymmetry curve (see Fig. 3D), the qualitative ordering and features of the asymmetry 

are not expected to be impacted (see SI Fig. S6). The data for these growth conditions is shown in Fig. 

4A. As predicted, faster growing cells show more regulatory asymmetry and slower growing cells 

show little-to-no regulatory asymmetry. We also test the role of growth rate in asymmetric regulation 

when O2 (a lower affinity site) and Oid (a higher affinity site) are used as the regulatory binding sites 

instead of O1. This data is shown in Fig. 4B (O2) and 4C (Oid). As discussed above, we could not find 

a suitable mutant for O2 and Oid that both relieved regulation from LacI and completely restored the 

expression of target gene (see SI text S4.). This means we cannot explicitly measure the 1-1 

correlation between the two axes in our data when using O2 or Oid for the TF gene. To this end, we 

find this correspondence by fitting the glucose data to our simulation of the same system and use that 

value to normalize all other growth rates for that operator. Despite this complication, it is clear that 
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O2 regulation is symmetric at all studied growth rates while Oid regulation is asymmetric for all 

growth rates with faster growth rates appearing more asymmetric.  

Importantly, the regulatory asymmetry is not due to a small population of outliers, bimodality or 

any other “rare” phenotype. In Fig. 4D, we show a histogram of single cell asymmetry values (defined 

as asymmetry = FCTarget– FCTF) for each condition. As can be seen, expression in each media 

condition are roughly symmetric for most cells at the lowest competition levels (top panel). However, 

as competition levels are increased, the fast-growing conditions shift to higher asymmetry levels; 

strikingly at the highest growth rate almost every single cell is expressing target at a higher level than 

TF (bottom panel). 

Divergence from deterministic model solutions 
In this study, both the TF gene and target gene have identical regulatory regions; both genes are 

regulated by a single repressor binding site immediately downstream of the promoter. This 

regulatory scheme is often referred to as “simple repression” (28, 44, 45). For regulation of this kind, 

we can derive the expected fold-change using the deterministic modeling approach described here 

(see SI text S6). Under this framework, we find that regardless of the network architecture 

(autoregulation, constitutive TF production, number of competing sites, etc.), the fold-change is 

expected to follow a simple scaling relation, 

FC =  
1

(1 + 𝑅∗)
 ,  

where, 

𝑅∗ = 𝑅free (
𝑘on

𝑘off + 𝛾
) , 

 

 

where 𝑅free is the number of free (unbound) TFs and 𝑘on/(𝑘off + 𝛾) is the affinity of the specific TF 

binding site. Although the free TF concentration is inherently difficult to measure experimentally, it 

has previously been shown that in the thermodynamic framework 𝑅free is a calculable quantity 

(where it is directly related to the TF “fugacity”). The fugacity is determined from details that will 

alter TF availability such as total number of TFs, number of decoy binding sites, TF binding affinities 

and inducer concentrations (23, 44, 46-49). The advantage of this approach is that for experimental 

data the effective concentration is calculable from basic measurable parameters of the system. 

Importantly the two approaches (using fugacity or free TF) yield identical results. 

Fig. 5A shows a collection of experimental measurements (adapted from (50)) where the free 

concentration of TF is varied through any of these parameters (binding affinities, total TF number, 

inducer concentration, etc.) and the resulting fold-change is measured as a function of the free TF 

concentration; the predictions of the thermodynamic model are extremely robust to these 

perturbations and the collapse of this data demonstrates that the theory has identified the “natural 

variable” (free TF concentration) of the system in agreement with the deterministic expectation 

(black dashed line Fig. 5A). In the studies comprising the data of Fig. 5A and in other similar 

quantitative studies, the TF is expressed either constitutively or from an inducible promoter 

controlled by a second repressor, (23, 25, 28, 51). However, in the case of negative autoregulation and 

the resulting regulatory asymmetry, the above fold-change relationship obviously cannot hold for 

both the TF and target gene, but it is unclear where the departure from this relationship occurs. In 
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fact, it has previously been shown that the binding probability of a TF to an autoregulatory gene can 

deviate from the deterministic solution (52-54), so it is reasonable to expect that this is the root of 

the asymmetry. In Fig. 5B, we show simulation data for the fold-change versus number of scaled-free 

TFs (R*) for the autoregulatory gene (red line) and its target gene (blue line) with O1 (Fig. 5B), O2 

(Fig. 5C) and Oid (Fig. 5D) binding sites, where we are changing the number of free TFs by tuning the 

number of competing binding sites. In each plot, we also show simulations for the fold-change of a 

single target gene with a TF undergoing constitutive (constant in time) expression where the TF is 

controlled by either changing the expression level of the TF (purple stars) or adding competing 

binding sites while maintaining a set constitutive expression level (purple circles). In both cases, 

where TFs are made constitutively, the simulation data agrees well with the deterministic model 

predictions (although the strongest binding site, Oid, begins to show some divergence). However, for 

the autoregulatory circuits, we find that for strong binding sites (O1 and Oid) neither the target nor 

the TF gene follow the deterministic solution (black dashed line), and surprisingly, the target gene 

deviates even more strongly from the deterministic solution. Thus, the asymmetry is not a result of 

one gene diverging from the deterministic solution but rather both genes diverging in different ways. 

As expected, when the binding is weak (O2), both the target and TF gene converge to the 

deterministic solution. 

 

Discussion 

The single input module (SIM) is a prevalent regulation strategy in both bacteria (18, 55) and 

higher organisms (56-58). While the role of TF autoregulation (positive and negative) has been 

extensively studied (59-66), the focus here is on the combined influence of an autoregulated TF and 

its target genes and how the shared need for the TF influences the quantitative features of its 

regulatory behaviors. We find that there is a fundamental asymmetry in gene regulation that can 

occur in the SIM regulatory motif. This asymmetry is not related to distinctions in the biological 

processes or an unexpected difference in our in vivo experiment, but rather an inherent asymmetry 

originating from the way the motif itself is wired. Although two identical promoters are in the same 

cell with the same average protein concentrations, they experience distinct regulatory environments. 

This is particularly relevant for the SIM motif because the primary function of the motif, organizing 

and coordinating gene expression patterns, operates on the premise of differential affinities amongst 

target genes; here we have shown that the TF gene has an inherent “affinity advantage” due to being 

exposed to systematically higher TF concentrations than its target genes.  

Regulatory asymmetry is intrinsic to the negative SIM motif even in the absence of decoys, but it 

can be greatly exacerbated by competing TF binding sites. Due to the promiscuous nature of TF 

binding, this highlights the importance of considering not just the “closed” system of a TF and a given 

target but also the impact of other binding sites (or inactivating interactions) for the TF in predicting 

regulation as well as the regulatory motif at play in the system. In our system, the magnitude of the 

asymmetry is enough to compensate for swapping the wild-type proximal O1 LacI binding site on the 

target gene with the “ideal” operator Oid. 

The cause of this asymmetry is a systematic difference in the TF concentration when the TF gene 

is active compared to when the target gene is active. As such, asymmetry is magnified by anything 

that enhances this concentration difference. Here we have identified TF binding affinity and TF 

degradation rate (controlled both directly and through modulating growth rate) as primary drivers 
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of asymmetry in this motif. Although the relationship between growth rate and expression levels is 

well established (42, 43, 67-69), effects such as this add a layer of complexity to this relationship. 

In studies of quantitative gene regulation, the typical goal is to predict the output of a gene based 

on the regulatory composition of that gene’s promoter and the number and identity of regulatory 

proteins. This work clearly presents a challenge for the drive to “read” and predict regulation levels 

from the promoter DNA alone, in this case the regulatory motif is responsible for altering the 

observed regulation and must be considered as well. It has previously been demonstrated that 

features of a transcript can impact its regulation by effects such as targeted degradation, stabilization 

or posttranslational modification and regulation (70), it is important to point out this is a distinct 

phenomenon that does not operate through an enzymatic process but rather is a fundamental feature 

of the network. 

Finally, here we demonstrate regulatory asymmetry using a specific (but common) regulatory 

motif. The broader point that specific genes can be exposed to systematically different levels of 

regulatory TFs even in the absence of specific cellular mechanisms such as cytoplasmic 

compartmentalization, protein localization or DNA accessibility is likely more broadly relevant. 

Understanding and quantifying these mechanisms can be an important piece towards improving our 

ability to predict and design gene regulatory circuits. 
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ordering is thought to originate from a corresponding ordering in TF binding af inities of the target genes. (C)
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sponding transition rates. The kon for transition from state 1 to state 2 or state 3 will be identical and hence cannot
account for the asymmetry. State 2 and state 3 on the other hand, will encounter a difference in the free TF concen-
tration and hence the kon for transition from one of these states to state 4 will be different; thus, accounting for the
asymmetry in expression between the TF and the target. (B) Plot showing the average number of free TFs in differ-
ent states and fraction of time cells spends in each of the given state in the simulation. (C) Plot showing asymmetry
as a function of fractional time difference between state 2 and state 3. (D) Exploring the model parameters of the
TF (mRNA production and degradation; protein production and degradation) that could in luence the asymmetry
between the TF and the target. Tuning the protein degradation rate (red line) has the maximum in luence on the
asymmetry between the TF and its target gene. (E) Heat map showing the phase space of maximum asymmetry as
a function of binding af inity for the TF and its half-life. (F) Tuning the TF degradation rate in luences the extent
of asymmetry observed in the SIMmodule. Yellow points correspond to the systemwith no degradation tags; Blue
points correspond to degradation by a “weak” or “slow” tag (DAS tag); Green points correspond to a slightly faster
tag (DAS+4); Red points corresponds to a very fast tag (LAA tag). Inset shows schematic of the expectedmaximum
asymmetry as degradation rate of the TF is increased.
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Fig. 4: Dependence of regulatory asymmetry on growth rate. Measurement of asymmetry in differentmedia as
a function of TF binding energy: O1 (A), O2 (B), Oid (C). The division time (τ) is varied between 22 minutes up to
215 minutes. (A) For O1, the asymmetry decreases with slower division rates and agrees well with the simulation
predictions. (B) For the weak O2 site, no asymmetry is seen at any growth rate. (C) For the strongest site Oid
asymmetry is present at every growth rate although the magnitude of asymmetry still orders roughly by growth
rate. (D) Histograms of single-cell asymmetry in expression of the TF and target gene regulated by O1 binding site
in these 4 growth rates. Panels from top to bottom represent increasing the level of competition for the TF.
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(A) Agreement between experimental data 
and deterministic model

(B) O1 fold-change vs scaled free TF in simulation

10 -1 10 0 10 1 10 2
10 -2

10 -1

10 0

10 -1 10 0 10 1 10 2
10 -2

10 -1

10 0

vary # of decoy sites
vary TF production rate

Constitutive TF where:

Autoregulated TF:

target gene
TF gene

Kinetic model ~ 1/(1+R*)

vary # of decoy sites
vary TF production rate

Constitutive TF where:

Autoregulated TF:

target gene
TF gene

Kinetic model ~ 1/(1+R*)

(D) O2 fold-change vs scaled free TF in simulation(C) Oid fold-change vs scaled free TF in simulation

10 0 10 2 10 4

10 -4

10 -2

10 0

LacI

target genepromoter

: Oid :O1 :O2 :O3

constitutive [30]
TF production

Induced [25]

TF competition
decoy sites [25]
inducer conc. [27]

Thermodynamic model ~ 1/(1+R*)

 F
ol

d 
ch

an
ge

 F
ol

d 
ch

an
ge

10 -1 10 0 10 1 10 2
10 -2

10 -1

10 0

vary # of decoy sites
vary TF production rate

Constitutive TF where:

Autoregulated TF:

target gene
TF gene

Kinetic model ~ 1/(1+R*)

 F
ol

d 
ch

an
ge

 F
ol

d 
ch

an
ge

Scaled free TF (R*) Scaled free TF (R*)

Scaled free TF (R*) Scaled free TF (R*)

Fig. 5: Comparison of SIM motif fold-change data to deterministic model predictions. (A) Fold-change vs
scaled free TF in the thermodynamic model for a collection of simple repression data where free TF is controlled
through a diverse range of mechanisms. The data collapses to the deterministic model predictions. (B-D) Fold-
change vs scaled free TF in simulations using the actual free TFmeasured in simulation. The data for a constitutive
expressed TF where free TF is varied by changing TF production rate (purple circles) or number of decoy sites
(purple stars) collapses to the deterministic solution, however, the regulation of genes in the SIM motif (target:
blue line, TF gene: red line) both diverge from the deterministic solution in opposing ways, giving rise not only to
asymmetry but a disagreement with deterministic modeling for both genes.
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