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Abstract 
 
Polygenic scores are increasingly powerful predictors of educational achievement. It is 
unclear, however, how sets of polygenic scores, which partly capture environmental effects, 
perform jointly with sets of environmental measures, which are themselves heritable, in 
prediction models of educational achievement. 
 
Here, for the first time, we systematically investigate gene-environment correlation (rGE) and 
interaction (GxE) in the joint analysis of multiple genome-wide polygenic scores (GPS) and 
multiple environmental measures as they predict tested educational achievement (EA). We 
predict EA in a representative sample of 7,026 16-year-olds, with 20 GPS for psychiatric, 
cognitive and anthropometric traits, and 13 environments (including life events, home 
environment, and SES) measured earlier in life. Environmental and GPS predictors were 
modelled, separately and jointly, in penalized regression models with out-of-sample 
comparisons of prediction accuracy, considering the implications that their interplay had on 
model performance. 
 
Jointly modelling multiple GPS and environmental factors significantly improved prediction 
of EA, with cognitive-related GPS adding unique independent information beyond SES, 
home environment and life events. We found evidence for rGE underlying variation in EA 
(rGE = .36; 95% CIs = .29, .43). We estimated that 38% (95% CIs = 29%, 49%) of the GPS 
effects on EA were mediated by environmental effects, and in turn that 18% (95% CIs =12%, 
25%) of environmental effects were accounted for by the GPS model. Lastly, we did not find 
evidence that GxE effects collectively contributed to multivariable prediction.  
 
Our multivariable polygenic and environmental prediction model suggests widespread rGE 
and unsystematic GxE contributions to EA in adolescence.   
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/865360doi: bioRxiv preprint 

https://doi.org/10.1101/865360
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multivariable G-E interplay of educational achievement 
3 

 
 

Introduction 
 
Education is compulsory in nearly all countries because it provides children with the skills, 
such as literacy and numeracy, that are essential for successfully participating in society. 
How well children perform at school, indicated by their educational achievement (EA), 
predicts many important life outcomes, especially further education and occupational status 
(1). Quantitative genetic research based on twin studies showed that EA is 60% heritable 
throughout the school years (2, 3). These studies also suggested that about 20% of the 
variance of EA and other learning-related traits can be ascribed to shared environmental 
factors, for example growing up in the same family and going to the same school. However, 
the picture became more complicated with the discovery that ostensible measures of the 
environment associated with educational achievement showed genetic influence – most 
notably, parents’ educational attainment, socio-economic status (SES) and aspects of the 
home environment (4).  

Quantitative genetic theory distinguishes two types of interplay between genetic and 
environmental effects, genotype-environment correlation (rGE) and genotype-environment 
interaction (GxE) (5). rGE occurs when an individual’s genotype covaries with 
environmental exposures. There are three types of rGE: passive, active and evocative. Passive 
rGE results from the inheritance of both genetic propensities and environments linked to 
parental genotypes. That is, individuals inherit from parents a genetic predisposition to a 
particular trait, but parental genotypes are also associated with rearing environments that, in 
turn, increase the likelihood of developing a particular trait. For example, individuals with 
stronger genetic predispositions to educational attainment tend to grow up in higher 
socioeconomic status families (6). Evocative rGE happens when individuals’ genetic 
propensities evoke a response from the surrounding environment; for example children’s 
predisposition to higher food intake might elicit restrictive food behaviors from their parents 
(7). Active rGE results from individuals actively selecting environments that are linked to 
their genetic propensity; for example, individuals with a higher genetic predisposition to 
educational attainment tend to migrate to economically prosperous regions that offer greater 
educational opportunities (8). 

GxE, on the other hand, refers to genetic moderation of environmental effects. That is, when 
the effects of environmental exposures on phenotypes depend on individuals’ genotypes. 
Equivalently, environmentally moderated genetic effects occur when genetic effects on a 
phenotype depend on environmental exposures. Importantly, however, rGE may confound 
GxE effects (9). For example, if a genetic predisposition for a particular trait is found in a 
particular environment, it is difficult to know whether this represents rGE between the trait 
and the environment or true GxE. As before, this picture becomes even more complicated 
when we consider that environments are themselves heritable.  
 
Research on GxE was rejuvenated when it became possible to include measured genetic and 
environmental factors in statistical models. Hundreds of studies were published purporting to 
show interactions between candidate genes and environmental measures as they predict 
behavioural traits. For example, a seminal GxE study in the field (10) showed that carriers of 
two copies of the short serotonine allele on the 5HTT gene exposed to adversity had an 
increased the risk for depression compared to their genetic counterpart. However, GxE effects 
such as these have a poor replication history (11, 12). The main problem with this approach is 
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that it ignores the high polygenicity of complex traits, with a reductionist focus on single 
‘candidate’ variants. This combined with typically small sample sizes, underpowered to 
detect the very small effects that can be expected for GxE, lead to a failure to replicate (13).  
 
In complex traits, very few individual variants capture more than a tiny fraction of trait 
variance (14). Genome-wide polygenic scores (GPS) are the missing piece for investigating 
the interplay between genes and environment because they can theoretically capture genetic 
influences up to the limit of SNP-based heritability, which is usually 25-50% of the total 
heritability for behavioural traits. GPS are indices of an individual’s genetic propensity for a 
trait and are typically derived as the sum of the total number of trait-associated alleles across 
the genome, weighted by their respective association effect size estimated through genome-
wide association analysis (15). A GPS derived from a genome-wide association study of 
educational attainment (years of schooling) (16) predicts up to 15% of the variance of EA 
(17). As more powerful GPS become available, they have begun to be used widely in 
research on GxE (18-23) and rGE (7, 24-27).  
 
Recently it has been possible to dissect the role of parental genetics on child achievement by 
splitting the parental genome into transmitted alleles (indexing passive rGE) and non-
transmitted alleles (indexing environmentally transmitted parental genetic effects). The latter 
demonstrated that parental genotypes are associated with the environment they provide for 
the child (28, 29). In fact, a growing body of evidence is showing the importance of 
considering gene-environment correlation when assessing polygenic effects on trait variation 
(30, 31), especially for educationally relevant traits. Paralleling quantitative genetics results, a 
key point is that environmental measures are themselves heritable and GPS effects can be 
mediated by the environment, while environmental effects can be accounted for by genetics 
(genetic confounding). In this sense, polygenic scores for cognitive traits are not pure 
measures of genetic predisposition: their predictive power also captures environmental 
effects. For the same reason, environmental measures are not pure measures of the 
environment.  
 
Rather than examining rGE and GxE for single polygenic scores and environmental 
measures, here we look at sets of GPS (32) and environmental measures. A multivariable 
approach is especially warranted for EA because twin analyses show that the high heritability 
(60%) of EA reflects many genetically influenced traits, including personality and behaviour 
problems in addition to cognitive traits (33, 34). Correspondingly, EA GPS is associated with 
a wide range of  traits, including psychiatric, anthropometric and behavioural traits (35). 
Similarly, environmental predictors of EA are also intercorrelated (e.g. SES and home 
environment). However, it is not yet clear how sets of polygenic scores, partly capturing 
environmental effects, perform jointly with sets of environmental measures, which are 
themselves heritable, and the effect that their interplay (rGE and GxE) might have on 
prediction.        
 
Here for the first time we systematically investigate the interplay of GPS and environmental 
measures in the multivariable prediction of tested educational achievement. We jointly 
analyse multiple GPS and multiple environmental measures, considering the effect of their 
interplay in out-of-sample prediction. Specifically, we test the joint prediction of 20 well-
powered GPS for psychiatric, cognitive and anthropometric traits and 13 proximal and distal 
measured environments including life events, home environment and SES (see methods for 
descriptions of all measures). First, we model polygenic scores (henceforth G model) and 
environmental measures (henceforth E model), separately and jointly (full model), to predict 
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educational achievement in penalized regression models (36) with out-of-sample tests of 
prediction accuracy. To investigate the relative contributions of the employed predictors to 
the full model, we carry out post-selection estimation (37) of partial regression coefficients, 
testing independent effects of single GPS and environmental measures.  Second, we separate 
direct from mediated effects of the multivariable G and E models on EA and assess rGE 
defined in terms of the GPS and environmental measures employed. Finally, we assess GxE 
using a hierarchical group-lasso technique (38) to systematically discover two-way 
interactions between all GPS and environmental measures, and test their improvement in 
prediction of EA. 
 
 
Results 
 
Joint modelling of GPS and environmental effects  
 
We tested three models for association with EA: all genetic factors (polygenic scores; G 
model), all environmental factors (measured environments; E model), and a joint model of all 
factors (full model). Joint modelling of both GPS and environmental measures achieved the 
best out-of-sample prediction compared to the G or E models considered separately. The full 
model predicted 37% of the variance (95% CI = 31.2, 43.1) in EA (Figure 1 panel A, 
Supplementary Table S2), an improvement of 7% in prediction compared to the E model 
(30.6%; 95% CI = 24.5, 36.6; Supplementary figure S1) and up to 19% improvement 
compared to the G model (18.8%; 95% CI = 13.5, 25.1; Supplementary Figure S2). Nested 
comparisons of the full model vs the G and E models separately suggested that the difference 
in out-of-sample prediction accuracy between models (Figure 1 panel B, Supplementary 
Table S2b) was significant for both the full model vs E (R2 median diff = 6.4%; 95% CI = 
3.4, 9.7) and the full model vs G (R2  median diff = 18.16%; CI = 13.0, 23.3). Next, we 
untangled the specific independent contributions of GPS and measured environments to 
variation in EA. 
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Figure 1. Out of sample prediction of educational achievement. Panel A = Hold-out set 
prediction of EA for the environmental (E), multi-polygenic score (G) and full (joint 
Environmental and GPS model) prediction models. Error bars are 95% bootstrapped 
confidence intervals.  Panel B = bootstrapped median R2 difference between the full model 
and E and G models in the hold-out set, representing independent (non-mediated) genetic 
effects (Full model - E) and independent environmental effects (Full model - G). Panel C = 
Joint prediction model used in hold-out set prediction (i.e. Full model). Figure shows 
variables selected via repeated cross-validation in the training set, and relative importance. 
Note. GPS = Genome-wide polygenic score, ENV = Environmental measures. ASD = 
Autism Spectrum Disorder, BIP = Bipolar Disorder, BMI = Body Mass Index, EA3 = 
educational attainment, IQ3 = intelligence, OCD = Obsessive Compulsive Disorder, PTSD = 
Post-Traumatic Stress Disorder, SCZ = Schizophrenia. 
 
 
Best-model and coefficient estimation 
 
The best model (full model) selected via repeated cross-validation in the training set included 
24 predictors, 13 of which were GPS (orange) while 11 were environments (blue) (Figure 1, 
panel C). Of these top EA-increasing variables were SES in early life, followed by the GPS 
for educational attainment (EA3 GPS) and the GPS for intelligence (IQ3 GPS), while the top 
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trait decreasing variable was chaos at home at age 12. In terms of coefficient estimation, 
partial regression coefficients in post-selection inference analyses (Figure 2 and 
Supplementary Table S3) showed that EA3 GPS and IQ3 GPS remained significant in the 
model after adjusting for the other predictors, with the conditional coefficients indicating that 
2.7% of the variance in EA was explained by the EA3 GPS (β = 0.16; 95% CI = 0.12, 0.20; p 
= 2.35E-10) and 1.4% by the IQ3 GPS (β = 0.12; 95% CI =0.08, 0.15; p = 8.29E-9).  
 
SES remained the most powerful predictor in the conditional model (β = 0.362; 95% CI 
=0.322, 0.394; p = 1.41E-14). Other environmental exposures that remained significant were 
‘chaos at home’ at age 12 (β = -0.16; 95% CI =-0.19, -0.13; p = 1.036987e-19) and four life 
events experienced in the past year (all trait decreasing), including ‘moving to a new school’ 
(β = -0.07; 95% CI -0.10, -0.04; p = 2.22E-5), ‘involved with drugs’ (β = -0.06; 95% CI -
0.09, -0.03; p = 7.06E-4), ‘being hospitalized’ (β = -0.04; 95% CI -0.07, -0.01; p = 2.77E-2), 
and ‘loss of a parent job’ (β = -0.04; 95% CI -0.08, -0.01; p = 1.97E-02). SES, EA3 GPS, IQ3 
GPS and ‘chaos at home’ were significant in all three models (i.e. naive, hold-out and 
conditional).  
 
 
 

 
 
 
Figure 2. Partial regression coefficients, and 95% CIs around estimates. Naive = partial 
regression coefficients from multiple regression of selected variables in Training set; Hold-
out = partial regression coefficients of selected variables in the hold-out set; Conditional = 
partial regression coefficients of training set for selected variables estimated with a 
conditional probability from a truncated distribution (see method section).  
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rGE and mediated environmental vs GPS effects 
 
Supplementary Table S2a shows prediction model estimates for all models considered, and 
Supplementary Table S2b reports nested comparisons of out-of-sample prediction accuracy 
(R2) for the full model vs. E and the full model vs. G. We tested the correlation between the 
EA predicted values from the G model (Gea) and the E model (Eea) in the hold-out-set. This 
was r = .36 (95% CIs = .29, .43), indicating the extent of overlapping information between 
the G and E models in out-of-sample prediction or, in other words, of rGE (as defined by the 
variables employed) underlying variation in EA. Then we proceeded to test the extent to 
which G and E effects on EA were reciprocally mediated (see methods). Supplementary Table 
S4 shows results of mediation analyses. We found evidence for environmentally mediated 
genetic effects (indirect path: β = 0.16; bootstrapped 95% CI 0.13, 0.20) and genetically 
mediated environmental effects (indirect path: β = 0.10; bootstrapped 95% CI 0.07, 0.13). 
The effects of Gea on EA (β = 0.43; bootstrapped 95% CIs = 0.36, 0.50) were reduced by 38% 
after introduction of the Eea mediator in the model (β = 0.27; bootstrapped 95% CIs = 0.19, 
0.34); these effects can be interpreted as the direct G model contributions to EA not 
accounted for by the E model. In other words, 38% of G effects on EA were explained by 
environmental mediation. Similarly, the direct Eea effects on EA (β = 0.55; bootstrapped 95% 
CIs = 0.5, 0.60) were subject to a reduction of 18% (β = 0.45; bootstrapped 95% CIs = 0.39, 
0.51) after introduction of Gea as a mediator in the model, indicating partial genetic mediation 
of environmental effects (i.e. genetic confounding). 
 
Discovery of GxE effects and multivariable prediction 
 
We finally tested all possible two-way interactions jointly modelled by means of a 
hierarchical group lasso procedure (i.e. glinternet, see methods). Out of the possible 528 two-
way interactions between all study variables (i.e. interactions between and within sets of GPS 
and environmental measures), 22 two-way interactions were detected by the hierarchical 
group-lasso technique (glinternet, Supplementary Table S5), half of which were GxE 
interactions. Figure 3 depicts an interaction network from the trained glinternet model. Out-
of-sample prediction accuracy did not improve over the joint G and E model (R2 = 36.5%; 
95% CI = 30, 43). We then introduced the 11 GxE interactions found in the full elastic net 
model to test whether they improved the prediction of EA over the full model that had only 
considered additive effects of GPS and environmental measures. Similar to the glinternet 
model, there was no improvement in out-of-sample prediction accuracy (R2 = 36.72%; 95% 
CI = 30.1, 42.83). Supplementary Table S2 shows fit statistics for the glinternet and elastic 
net models. Supplementary Table S5 reports GxE interactions detected by the hierarchical 
lasso model.  
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Figure 3. Interaction network of glinternet model. 
Note. E = Environmental measure, G = Genome-wide polygenic score. 
AN = Anorexia Nervosa, ASD = Autism Spectrum Disorder, ADHD = Attention-Deficit 
Hyperactivity Disorder, BIP = Bipolar Disorder, EA3 = educational attainment, IQ3 = 
intelligence, MDD = Major Depressive Disorder, SWB = Subjective Well-Being, OCD = 
Obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, SCZ = 
Schizophrenia. 
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Discussion 

 
We tested the joint prediction accuracy of sets of multiple environmental measures and 
polygenic scores in prediction models of educational achievement, and considered the effect 
of their interplay in out-of-sample prediction. Three main findings emerged from our 
analyses. First, the joint modelling of multiple GPS and related environmental exposures 
improved the prediction of EA, consistent with theory (39). Second, paralleling quantitative 
genetic research, we found consistent evidence of rGE effects underlying variation in EA 
(rGE = .36; 95% CIs = .29, .43). Lastly, we did not find evidence that GxE effects play a role 
in multivariable prediction of EA. 
 
Our multivariable GPS model alone predicted 18.8% of the variance in EA. Integration of 
multiple polygenic scores in the same model can be expected to increase as sample size in 
genome-wide association studies (GWAS) increases (40). Here we constructed GPS in 
lassosum (41) based on previous observations that lassosum tends to perform better than 
more traditional approaches (17, 41) for educationally relevant traits. However, other 
methods for GPS construction can be expected to yield similar results when considering 
multivariable GPS penalized approaches, with performance of the relative approaches likely 
to converge as accuracy of GWAS estimates increases.  
 
Of interest were the relative contributions of the single GPS to the model in out-of-sample 
prediction. In post-selection inference analyses, IQ3 and EA3 were the only GPS 
independently associated with variation in EA after adjusting for measured environments and 
polygenic scores. This indicated that both these GPS contributed unique predictive 
information beyond other related, proxy environmental predictors (e.g. SES, parental 
educational attainment), and polygenic scores. Similarly, we found that several environments 
were independently predictive of EA. The best predictor was early life SES, a composite of 
parental educational attainment, employment status and maternal age at first birth, which 
alone predicted 13% of the variance in the conditional model. Several life events and chaos at 
home were also important predictors in the model, with negative independent effects on EA. 
Polygenic scores, however, improved the prediction of EA on top of the environment with a 
19% increase in accuracy (from 30% to 37%). It is noteworthy that EA3 and IQ3 GPS were 
both significant in post-selection inference models after adjusting for SES, home environment 
and proximal environmental effects. This suggested that cognitive-relevant GPS 
independently captured variation beyond environmental variables and variance due to rGE in 
our model.  
 
A central finding of the current study emerged when we separated direct and indirect effects 
of the GPS and environmental models by statistically testing for rGE. We found significant G 
mediation of the prediction of EA by the E model. This is in line with several quantitative and 
molecular genetics findings (42-44). However,  since it would be unreasonable to assume a 
causal effect of E on G (i.e. E does not change DNA sequence), in the sense employed here G 
acts as a ‘confounder’ -- in causal modelling parlance, ‘third variable confounding’ -- of E 
effects on EA (E <- G -> EA). That is, because our G model is associated with both the E 
model and EA, it partly induces an association between the E model and EA in addition to the 
independent effects of E on EA. This rGE effect explained 18% of the E effects on EA. 
Different types of genetic confounding have been described in detail elsewhere (45).  
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Conversely, we also found evidence of environmental mediation of the G model effects on 
EA. The E model explained 38% of the GPS model effects on EA. This result is also in line 
with research in quantitative genetics (46) and molecular genetics (27-29). A growing body 
of evidence points to the rGE conclusion that genetic effects on cognitive trait variation are 
partly environmentally mediated (25), which is likely to be due to passive rGE. Passive rGE 
emerges because parents create a family environment that corresponds to their genotypes and, 
by extension, also correlates with the genotypes of their offspring. Alternative mechanisms 
include evocative and active rGE effects. As noted elsewhere (26) these possibilities are not 
mutually exclusive. However, in order to disentangle these rGE effects, different study 
designs are needed, for example, looking within families at the effects of maternal and 
paternal non-transmitted genotypes on child outcomes. Disentangling the different underlying 
mechanisms to the predicted variance in this regard is an issue for future studies, but out of 
the scope of the present investigation. Here for the first time we show that reciprocal indirect 
effects between multivariable E and G prediction models explain a substantial proportion of 
variation of their direct effects on EA. These results provide converging evidence with recent 
research looking at rGE underlying parenting and children educational attainment (27). Both 
genetic confounding and environmental mediation are important factors to take into account 
in the prediction of EA. 
 
Lastly, we applied a hierarchical group-lasso model (glinternet) to automatically detect two-
way interactions. This model helped us to identify GxE effects that show strong hierarchy 
(see methods), which would have otherwise been difficult to detect due to the great multiple-
testing burden relative to the sample size of the present study. Furthermore, since glinternet 
performs shrinkage and grouping before testing for interaction effects, this enabled discovery 
of interactions that would have been confounded by strong main effects of correlated 
predictors. In other words, because the coefficients of main effects have been regularized 
(that is shrunk, see Methods), their fit is reduced, which facilitates the discovery of 
interaction effects (38). However, neither the full glinternet model including all discovered 
pairwise interactions, nor the elastic net model including two-way GxE effects, improved out-
of-sample prediction accuracy over the full model. One possible explanation for this finding 
is that GxE effects are typically very small, and that the trade-off between true effect and 
variance introduced in the model, signal to noise ratio, was too small. It is important to note, 
however, that application of this method in larger datasets, or using different phenotypes with 
different genetic architectures, might be fruitful for hypothesis-free GxE discovery. 
 
Our findings parallel those from quantitative genetic studies in humans, which reported 
widespread rGE, but little evidence for GxE. Even quantitative genetic studies of nonhuman 
animals found little evidence for GxE (47), even though they afford more powerful research 
designs for testing interactions. One possible explanation is that measured GxE effects are 
unsystematic and idiosyncratic. In other words, nonlinear effects might be too noisy in 
multivariable prediction models such as those employed here, suggesting that GxE might be 
more important to be considered for inference in statistical models, rather than in the context 
of predicting phenotypic differences. In other words, statistically modelling of GxE 
interactions might be a powerful tool for explanatory modelling (theory building or testing), 
for which effect estimates do not need to be sizeable to be informative, while for prediction 
modelling the opposite is true. As large multidimensional biobank datasets become 
increasingly available, the integration of multi-omics data with multiple environmental 
measures will become more common. Here, we provide an indication of the effects of 
integrating multiple GPS and environmental measures in prediction models of EA and the 
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effect that their interplay has on prediction accuracy in a population cohort of adolescents 
aged 16 years.  
 
Our results are limited to the variables employed in our analyses. For example, we modelled 
exposures that are typically defined as environmental; however, many other variables can be 
argued to capture environmental influences. Likewise, we included a broad range of GPS that 
are currently available as the most predictive for cognitive, psychiatric and anthropometric 
outcomes, but other GPS may also be relevant. Finally, we focused here on EA but predictive 
models of other complex traits are likely to yield different results, because EA shows 
comparatively great shared environmental influences (30). This suggests that rGE is likely to 
be stronger for EA than for other behavioural traits, such as personality traits and social-
emotional competencies. Regarding our analytical approach, we focused on GxE interactions 
that obeyed strong hierarchy as identified by the group lasso technique. Future studies could 
relax this assumption and include interactions where one of the main effect sizes is not 
significant. Finally, although it is a strength of our study that we used measured 
environmental exposures, we note that methods for inferring GxE without measured 
environmental data are emerging that have reported GxE for some complex traits (48). The 
extent to which these effects are systematic, stable, and generalizable to EA remains to be 
determined. 
 
In conclusion, we found evidence for rGE in prediction models of EA that systematically 
tested the interplay between polygenic scores and measured environments within a 
hypothesis-free multivariable prediction framework. When integrating multiple GPS and 
environmental measures into comprehensive prediction models, their correlations must be 
taken into account. Separate effects of environmental and polygenic scores cannot just be 
assumed to add up because pervasive rGE affects prediction.  
 
 
Methods 
 
Sample  
 
We test our models using data from 16 year olds from the UK Twin Early Development 
Study (TEDS; 49), a large longitudinal study involving 16,810 pairs of twins born in England 
and Wales between 1994-1996, with DNA data available for 10,346 individuals (including 
3,320 dizygotic twin pairs and 7,026 unrelated individuals). Ethical approval for TEDS has 
been provided by the King’s College London Ethics Committee (reference: PNM/09/10–
104). Parental consent was obtained before data collection. Genotypes for the 10,346 
individuals were processed with stringent quality control procedures followed by SNP 
imputation using the Haplotype Reference Consortium (release 1.1) reference panels. Current 
analyses were limited to the genotyped and imputed sample of 7,026 unrelated individuals. 
Following imputation, we excluded variants with minor allele frequency <0.5%, Hardy-
Weinberg equilibrium p-values of <1 × 10−5. To ease computational demands, we selected 
variants with an info score of 1, resulting in 515,000 SNPs used for analysis (see the 
supplementary information for a full description of quality control and imputation 
procedures).  
 
Measures 
 
Dependent measure: Educational Achievement 
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Educational achievement was measured as the self-reported mean grade of three core subjects 
(English, math and science) scored by the individuals at age 16 in their standardized UK 
General Certificate of Secondary Education (GCSE) exams. 
EA was operationalized as the mean grade of the three compulsory subjects, with results 
coded from 4 (G, or lowest grade) to 11 (A+, or highest grade). These self-report measures 
are highly replicable and show high genetic and phenotypic correlations with teacher 
scores(50). The variable distribution was slightly left skewed (similar to the national average) 
and subject to a rank based inverse normal transformation to approximate a normal 
distribution.   
 
Environmental measures 
 
Socio economic status: SES at recruitment (mean age = 18 months) was calculated as a 
composite of mother and father qualification levels ranging from 1 = ‘no qualifications’ to 8 
= ‘postgraduate qualification’, mother and father employment status (51), and mother’s   
age on birth of first child.  
 
Chaos at home: as a measure of home environment a shortened version of the Confusion, 
Hubbub and Order Scale (52) was used to measure children’s perception of chaos in the 
family environment at age 12. Children rated the extent to which they agree (range: ‘not 
true’, ‘quite true’ or ‘very true’) to six items:  ‘I have a regular bedtime routine’ (reversed 
coded), ‘You can’t hear yourself think in our home’, ‘It’s a real zoo in our home’, ‘We are 
usually able to stay on top of things’ (reversed coded), ‘There is usually a television turned 
on somewhere in our home’ and ‘The atmosphere in our house is calm’ (reverse coded). The 
Chaos score was computed as the mean of the rated items.  
 
Life events: Self-reported life events experienced in the past year were measured (at age 16) 
using a shortened version of the Coddington life events (53). Individuals had to report on 20 
items that might have happened in the past year, by responding yes (coded as 1) if the event 
had happened or no (coded as 0) if it didn’t happen. Items included stochastic, proximal 
events such as “death of a close friend or relative”, “being hospitalized”, as well as family-
wide events e.g. “loss of a parent job”, “decrease in parental income”. When considering 
prediction of educational achievement, educationally relevant items were removed from the 
models (i.e. “failing exam” and “outstanding achievement”). Items being endorsed by fewer 
than 100 people were discarded from analyses. A total of 11 life events were retained in 
analyses. All items were considered separately in prediction models (i.e. they were not 
aggregated in a scale). 
 
Supplementary Table S1 reports descriptive statistics for variables employed in this study, 
separately by training and test sets.  
 
Genome-wide polygenic scores (GPS) 
 
GPS for 20 cognitive, anthropometric and psychopathological traits were constructed using 
Lassosum (41). Lassosum is a penalized regression approach applied to GWAS summary 
statistics. In lassosum we try to minimize the following loss function:  
 
yTy + (1 – s) 𝛽 T XrT Xrβ - 2β Tr + sβTβ + 2λ||β||1  
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Here λ controls the L1 penalty (L1 norm, (54)). The notation ||β||1 describes the L1 norm of a 
coefficient vector β, defined as  
 
||β||1 = ∑|β|.  
 
While s is another tuning parameter controlling the L2 penalty (|β|2, the sum of the squared 
betas). Here s has the additional constraint of being between 0 and 1. When 𝜆 = 0 and s = 1 
the problem becomes unconstrained. 
 
Tuning parameters, 𝜆 and s, are chosen in the validation step (this is akin to optimization that 
can be performed in p-value thresholding methods). We used our training set to perform 
parameter tuning optimizing (with respect to R2) polygenic scores against EA. LD was 
accounted for via a reference panel, here the same as the training set sample, and estimation 
of LD blocks was performed using LD regions defined in (55). 
 
We created cognitive and educationally relevant polygenic scores for educational attainment 
(16), intelligence (56), and income (57). We also created polygenic scores for mental health-
related traits: autism spectrum disorder (58), major depressive disorder (MDD; 59), bipolar 
disorder (BIP; 60), schizophrenia (SCZ; 61), attention deficit hyperactivity disorder (ADHD; 
62), obsessive compulsive disorder (OCD; 63), anorexia nervosa (AN; 64), post-traumatic 
stress disorder (PTSD; 65), depressive symptoms (66), mood swings (67), subjective well-
being (66), neuroticism (68), irritability (67), insomnia (69), and risk taking (70). Finally, we 
created polygenic scores for height and BMI (71). Supplementary Table S6 reports 
information on these summary statistics, while Supplementary Table S7 reports parameter 
tunings for the lassosum GPS.  
 
Analyses  
 
All variables were first regressed on age, sex, 10 genetic principal components and 
genotyping chip. The obtained standardized residuals were used in all subsequent analyses.  
 
Penalised regression  
 
We fit elastic net regularization (72) models for EA. Elastic Net minimizes the residual sum 
of squares (RSS) subject to the L1 penalty, which consist of the sum of the absolute 
coefficients and the L2 penalty which consist of the sum of the squared coefficients, 
performing parameters shrinkage and variable selection at the same time (72). 
  
Elastic net tries to minimise the following loss function: 
 
||y − X𝛽||2 + λ(α*|β|1 + (1−α)*|β|2)  
 
where  
 
||y − X𝛽||2 is the residual sum of squares 
 
|β|2 is the sum of the squared betas (the L2 penalty)  
 
|β|1 is the sum of the absolute betas (the L1 penalty)  
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Here α determines the mixing of penalties, where the first parameter introduces sparsity while 
the second shrinks correlated predictors towards each other. 𝜆 is a tuning parameter that 
control the effect of the penalty terms over the regression coefficients. When α = 1 the 
solution is equivalent to a LASSO regression, while when α = 0 the solutions is equivalent to 
a Ridge regression.  
For every alpha multiple Lambdas exists, and the optimal combination of tuning parameters 
is determined by repeated cross-validation. For every model tested we split the sample in a 
training test (80%) and a hold-out set (20%) treated independently with respect to data 
wrangling. In the training set we perform 10-fold repeated cross-validation to select the 
model that minimises the Root Mean Square Error (RMSE) – that is the tuning parameter for 
which the cross-validation error is the smallest. The model performance is then assessed by 
the variance explained (R2) in the independent hold-out test set. After separately training 
penalized regression models we compare the best E vs G vs joint prediction models using 
standard prediction accuracy and loss function indices in the hold-out set.  
 
Bootstrapping: For every model tested we sampled with replacement from the data (1000 
times) to calculate bootstrapped confidence intervals for the out-of-sample prediction 
accuracy (R2). Confidence intervals were defined as the 2.5th and 97.5th percentiles of the R2 
distributions obtained from bootstrapping. Then we calculated median differences for each 
pairwise R2 distribution between models, and calculated 95% confidence levels as the 2.5 and 
97.5 percentiles of these distributions. If the interval didn’t contain 0 we concluded that the 
pairwise model R2 difference was significantly different from 0 with a α level of .05. 
 
Post selection inference: For every model tested we conducted inference of models 
coefficients after selection of most informative predictors performed by Elastic Net, that is 
effect sizes, p-values and confidence levels around the prediction estimates. 
Post-selection inference (37) refers to the practice of attempting to accurately estimate 
prediction coefficients after a model selection has been performed. If we fit the optimal 
model’s selected predictors in a multiple regression model in the training set (that is where 
the selection has been performed) our confidence in the estimates will tend to be over-
optimistic. On the other hand, estimation of these parameters in a hold-out set would not be 
subject to this problem. The hold-out set, however, will typically be smaller than the training 
set, leading to wide confidence intervals. In addition, the results will be dependent on the 
random split (80-20) performed. A third way is to calculate P-values conditional to the 
selection that has been made in the training set.  
 
Briefly, after selection is performed, accurate estimation of a given partial regression 
coefficient can be approximated by a truncated normal distribution: 
 
β^ ∼ TNa,b(β, 𝝉2)  
 
With mean β, variance 𝝉2 and boundaries of the truncated normal distribution (TN) ‘a’ and 
‘b’ given by the data and the selection procedure, in this case the predictors, the active set 
(the variables with non 0 coefficients selected by our model) and λ (37). We refer elsewhere 
to a thorough discussion of the topic (73), with a focus on lasso like approaches. Here we 
compare results from the three procedures: the ‘naive’ estimation of partial regression 
coefficients in the training set, estimation of coefficients in the hold-out set, and the 
conditional estimation of p-values performed using the R package ‘SelecitveInference’ (74). 
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rGE 
 
We quantified rGE in two ways. First, the hold-out set predicted EA values from the GPS 
(enceforth Gea) and environmental (henceforth Eea) models can be tested for correlation. In 
this sense the covariance between these variables would be an indication of overlapping 
information between E and G underlying EA, i.e. rG,E = cor(Gea,Eea). Second, another way to 
quantify rGE is by modelling E and G effects in a mediation model (Figure 4), considering 
the indirect effects of G on EA via E, and vice versa the indirect effects of E on EA via G. We 
used the predicted EA values from the GPS and environmental models (i.e. Gea and Eea) to test 
mediation models in the hold-out set. We fit a structural equation model (SEM) in ‘lavaan’ 
(71) to test whether and to what extent E and G effects on EA were reciprocally mediated. 
Panel B is a schematic representation of a mediation model, where βC is the effect of a 
predictor X on an outcome Y, βa the effect of X on the mediator (M), and βb the effect of M 
on Y after adjusting for X. βC’ corresponds to the effects of the predictor on the outcome 
when controlling for the mediator (i.e. when the full equation is estimated). If the effects are 
reduced (partial mediation) or are not different from 0 (full mediation) then there is evidence 
for mediation. We quantify the proportion of the mediated effects as (β C- βC’) / βC (72) and 
test for significance of the indirect path using bootstrapping (with 1000 repetitions). 
 
Figure 4 represent direct and indirect effects of the G model effects on EA mediated by E 
(panel B), and of the E model effects on EA mediated by G (panel C). While panel B 
represents a causal model where we estimate the environmentally mediated G effects on EA, 
panel C is a statistical abstraction since it would be unreasonable to assume a causal 
relationship of E on G. Here we model G as mediator to estimate the third variable 
confounding effects underlying the relationship between E and EA, as mediating and 
confounding effects have been shown to be equivalent in a linear context (75). 
 
  

 
Figure 4. Panel A = schematic representation of mediation analysis; βC = effect of a 
predictor X on an outcome Y; βa = effect of X on a mediator (M); βb = effect of M on Y after 
adjusting for X; βC’ = effect of X on Y after adjusting for M. Panel B = Directed acyclic 
graph (DAG) showing Eea mediated effects of Gea on EA in the hold out-set; βge = causal path 
between Gea and Eea equivalent to rG,E ; βeEA = direct independent Eea effects on EA; βgEA = 
total Gea effects on EA. Panel C = DAG showing Gea mediated effects on EA (genetic 
confounding, see methods and discussion); βeg = causal path between Eea and Gea equivalent 
to rG,E; βgEA = direct independent Gea effects on EA; βeEA = total Eea effects on EA. 
Note. Yellow paths represent G model effects, blue paths represent E model Effects.  
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GxE 
 
After fitting the joint GPS and environmental models, we apply a hierarchical lasso procedure 
to automatically search the feature space for interactions, and retrain our models introducing 
GxE interactions. With 33 predictors there is a total of 33(33-1)/2 = 528 possible 2-ways 
interactions. Testing all models separately would imply a multiple testing burden (e.g. 
bonferroni correction .05/820 = 9E-5), in addition to the expected low signal to noise ratio for 
GxE effects. Here we employ a hierarchical group lasso approach to automatically search for 
two-way interactions, implemented in the R package ‘glinternet’ (38) (group-lasso interaction 
network). Glinternet leverages group lasso, an extension of LASSO, to perform variable 
selection on groups of variables, dropping or retaining them in the model at the same time, to 
select interactions. As noted above, the L1 regularization produces sparsity. Glinternet uses a 
group lasso for the variables and variable interactions, which introduces a strong hierarchy: 
an interaction between two variables can only be picked by the model if both variables are 
also selected as main effects. That is, interactions between two predictors are not considered 
unless both predictors have non-zero coefficients in the model. Once two-way interactions 
obeying strong hierarchy were identified, we selected GxE interactions (i.e. GPS that interact 
with environmental variables) and reintroduced them in our best elastic net models to test 
whether the test set prediction accuracy improved beyond the full (joint E-G) prediction 
model.  
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