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Digital cytometry is opening up new avenues to better under-
stand the heterogeneous cell types present within the tumor mi-
croenvironment. While the focus is towards elucidating immune
and stromal cells as clinical correlates, there is still a need to
better understand how a change in tumor cell phenotype, such
as the epithelial-mesenchymal transition, influences the immune
contexture. To complement existing digital cytometry methods,
our objective was to develop an unsupervised gene signature
capturing a change in differentiation state that is tailored to the
specific cellular context of breast cancer and melanoma, as a il-
lustrative example. Towards this aim, we used principal compo-
nent analysis coupled with resampling to develop unsupervised
gene expression-based state metrics specific for the cellular con-
text that characterize the state of cellular differentiation within
an epithelial to mesenchymal-like state space and independently
correlate with metastatic potential. First developed using cell
line data, the orthogonal state metrics were refined to exclude
the contributions of normal fibroblasts and to provide tissue-
level state estimates based on bulk tissue RNAseq measures. The
resulting gene expression-based metrics for differentiation state
aim to inform a more holistic view of how the malignant cell
phenotype influences the immune contexture within the tumor
microenvironment.
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Introduction

Tissues are comprised of a diverse set of different cell types
that help maintain homeostasis. Oncogenesis is associated
with a shift in the cellular composition of a tissue that can be
revealed with increasing confidence through direct measure-
ment, such as scRNA-seq, or using digital methods to decon-
volute bulk tissue samples (1). Given the correlation with
response to immunotherapies, the current focus has been on
quantifying immune cell types present within the tumor mi-
croenvironment (2, 3). There is also an increasing appreci-
ation for characterizing the heterogeneity among malignant
cells that may arise in the same anatomical location (4, 5).
Given our interest in understanding functional heterogeneity

of malignant cells that originate within a particular anatomi-
cal organ rather than uncertainty in etiology, we will focus on
breast cancer and melanoma as Li et al. show that melanoma
and breast cancer cell lines seem to cluster most uniformly
while other cell lines defined by anatomical origin seem to
have a more heterogeneous composition (6).

While the tumor cells that arise in the skin and breast
seem to be most similar, patient treatment strategies and
outcomes can be diverse. Initial treatment strategies are
guided by specific molecular alterations that can be targeted
by drugs: aromatase inhibitors for ER-positive breast can-
cer, anti-HER2 antibodies for HER2-positive breast cancer,
or small molecule inhibitors for BRAF V600E-positive or C-
KIT-positive melanoma (7, 8). However, dissemination of
primary tumors to vital organs like liver, brain, and lungs
is a key limiter for patient survival in breast cancer and
melanoma. Specifically, the 5-year survival rate for patients
with localized disease versus distant metastases drops from
98% to 23% and from 99% to 27% for melanoma and breast
cancer, respectively (9). In contrast, patient survival for tu-
mors that originate in vital organs is limited by the degree to
which malignant cells locally disrupt organ function. Thus
the importance of distal dissemination in determining patient
outcomes can vary based on the tissue of origin.

The distal dissemination and growth of malignant cells
- metastasis - is a complex process thought to involve dy-
namic re-engagement of biological processes used during
development that enable migrating cells to form tissues.
For carcinomas, initiating metastasis is thought to occur
through a process called the epithelial-mesenchymal transi-
tion (EMT). EMT is the functional consequence of engaging
a genetic regulatory network that downregulates the expres-
sion of genes associated with an epithelial phenotype and up-
regulates genes associated with a mesenchymal phenotype.
Breast carcinoma primarily originates from either luminal ep-
ithelial cells or basal myoepithelial cells within the mammary
gland (10). In contrast to breast cancer, melanoma arises
from the oncogenic transformation of melanocytes, which
follow a different developmental trajectory along the neural
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crest than epithelial cells but also involves a process similar
to EMT (11). While much of cell specification is imprinted
epigenetically via DNA methylation and histone modifica-
tions, significant functional changes, such modifications in
cell state due to EMT, may occur within these epigenetic
constraints. To characterize cell state based on gene expres-
sion, supervised methods have been predominantly used for
developing gene signatures that characterize the epithelial-
mesenchymal transition. While effective, supervised meth-
ods can perform poorly if the strategy is based on misinfor-
mation, such as sample misclassification or prior biases as to
the number of cell states or defining genes. While used less
frequently, unsupervised methods for feature extraction and
selection are advantageous as they can be data-driven (12).
Here, our objective was to develop an unsupervised gene sig-
nature capturing this change in phenotype that is tailored to
the specific cellular context of breast cancer and melanoma,
as a illustrative example.

Results
RNA-sequencing provides an estimate of protein
abundance. We first asked whether assaying the same genes
using different transcriptomics profiling platforms provides
the same information. To do this, we compared gene ex-
pression levels assayed by either Agilent microarray or by
Illumina RNA-sequencing for the same samples (Figure 1).
Expression values obtained by RNA-seq are in units of tran-
scripts per million (TPM) while the Agilent Microarray re-
sults are in terms of intensity units. Using samples obtained
as part of the breast cancer arm of the TCGA, we focused
on genes that have been associated with host immunity, as
these genes are likely to span a broad dynamic range within
these samples. As the TCGA samples are obtained from ho-
mogenized bulk samples of tumor and matched normal breast
tissue, expression of these genes could be from the malignant
cells, like GATA3 expression by breast cancer cells, or from
immune cell infiltrates, like the potential expression of IL4
and IL5 by infiltrating T helper type 2 cells.

Generally, comparing the same row across the two panels
illustrates the poor correspondence between intensity units
and read counts (TPM). A subset of genes, like HLA-DRA
and HLA-DPA1, exhibit both high microarray intensity units
and read counts while other genes, like TBX21 and FASLG,
exhibit high microarray intensity units but have low read
counts. In addition, the dynamic range observed among these
samples is different depending on the platform used, as il-
lustrated in the heatmap by TBX21 and IL17F. Using Illu-
mina RNAseq, TBX21 is constrained to the low end of the
color spectrum (dark to royal blue) while the dynamic range
spans the middle to upper end of the color spectrum (green
to red) when assayed using Agilent microarray. Similarly,
IL17F transcripts were not detected by RNA-seq in 87% of
the samples but the Agilent microarray shows a rather high
average intensity with variation among the samples. The dif-
ference in average intensities among genes and in variance
among samples assayed by these two platforms suggest that
the information provided by these two platforms is not en-

tirely the same.
We next asked whether the observed transcript abundance

observed by RNA-seq corresponds to protein abundance. For
this, we compared RNA-seq counts reported for cell lines as-
sociated with the Cancer Cell Line Encyclopedia with pro-
tein abundance for the same cell lines measured using Re-
verse Phase Protein Array (RPPA). We filtered the respec-
tive data sets to those cell lines that were reported in both
data sets and for genes where there was a positive corre-
lation coefficient greater than 0.36 between read counts in
RPKM and normalized RPPA values. From the initial data
sets, 283 cell lines and 147 genes were retained for analy-
sis after filtering. Next, we determined whether the pairs of
mRNA and protein measurements share a common value for
steady-state transcript abundance that corresponds to steady-
state protein abundance measured above background. To do
this, we applied a protein expression model to each gene
measured across the cell lines where protein abundance was
assumed to be a saturable function of transcript abundance
(Fig. 2A). Using the fitted curve, the threshold of transcript
reads for detecting a change in protein abundance 2.5% above
background was back calculated. Example data sets and the
corresponding curve fits for the genes CLDN7, AXL, JAG1,
and CDH1 are shown in Figure 2B. Interestingly, the maxi-
mum value in the distribution in calculated threshold values
corresponded to 1 RPKM (Fig 2C). As the average intensity
units and read counts (TPM) for a given gene across samples
do not correlate, these results imply that the average inten-
sity obtained by microarray does not correlate with protein
abundance.

Collectively, this common threshold value has two impli-
cations. First, there are some genes that have a high sen-
sitivity of detection using Agilent microarrays such that the
observed changes may not be functionally important. From
Figure 1, it seems that IL17F, TBX21, FASLG, KLRD1,
IFNG, CCL17, and IL10 are but a few examples (i.e., high
microarray intensity but very low read counts) in that dataset.
Without knowing the detection sensitivity by microarray, tra-
ditional approaches using a z-score metric may give equal
weight to changes in gene expression driven by a biological
signal as to changes dominated by random noise. Second, the
threshold value provides a rationale for filtering genes that
are likely to have a low information content when developing
gene signatures for phenotypes that are not well defined.

Gene expression patterns in breast cancer cells are
captured by a single component. Given the variety
of breast cancer subtypes reported in the literature, we
next asked how many different genetic regulatory networks
(GRN) are at work in breast cancer. GRNs associated with
development commonly contain transcription factors that in-
teract via positive feedback such that the target genes are ei-
ther co-expressed or expressed in a mutually exclusive fash-
ion (13). Given the interest in functional responses, we are
focusing on patterns of gene expression in response to sig-
nal processing by the genetic regulatory network rather than
trying to identify the topology of the GRNs. In motivating
this study, we made four assumptions. First, we assumed
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that oncogenic mutations alter the peripheral control of GRN
but do not alter the core network topology, where signals
processed by a GRN change cell phenotype by engaging a
unique gene expression pattern. Second, malignant cells de-
rived from a particular anatomically-defined cancer repre-
sent the diverse ways that hijacking these GRNs can pro-
vide a fitness advantage to malignant cells within the tumor
microenvironment. Third, culturable tumor cell lines repre-
sent a sampling of these ways in which GRNs are hijacked
in a particular anatomical location. Fourth, the process of
isolating these malignant cells from tumor tissue to gener-
ate culturable cell lines does not bias this view. It follows
then that the number of different GRNs can be identified by
analyzing the transcriptional patterns of genes likely to par-
ticipate in GRNs among an ensemble of tumor cells lines
that share a common tissue of origin. We focused our at-
tention on 780 genes that have been previously associated
with the epithelial-mesenchymal transition and related Gene
sets in MSigDB v4.0. and analyzed the expression of these
genes among breast cancer cell lines included in the CCLE
database as assayed by RNA-sequencing using a workflow
summarized in Figure 3. To identify coordinately expressed
genes, we used Principal Component Analysis (PCA), a lin-
ear statistical approach for unsupervised feature extraction
and selection that enables the unbiased discovery of clusters
of genes that exhibit coherent patterns of expression (i.e., fea-
tures) that are independent of other gene clusters (14). The
relative magnitude of the resulting gene expression patterns
can be inferred from the eigenvalues, which is shown in Fig-
ure 4. Specifically, PC1 and PC2 captured 65% and 14% of
the variance, respectively. Additional principal components
each captured less than 4% of the variance.

One of the challenges with PCA is that no clear rules ex-
ist to determine how many principal components to consider,
such as a gap statistic in clustering (15). To select an appro-
priate number of PCs (i.e., features), we established a thresh-
old for determining significance relative to a null distribu-
tion. Specifically, we applied the same PCA to a synthetic
noise dataset generated from the original data by randomly
resampling with replacement the collection of gene expres-
sion values and assigning the values to particular gene-cell
line combinations. The resulting set of eigenvalues represent
the values that could be obtained by random chance if the un-
derlying dataset has no information, which are shown as the
dotted red line in Figure 4A. In comparison to the null distri-
bution, only the first two PC were above the threshold. The
variance captured by the remaining PCs were below the null
PCA distribution suggesting that any potential biological in-
terpretations of these additional PCs could also be explained
by random chance. Therefore we focused on the first two
PCs.

As variance in read counts is proportional to abundance,
gene projections along the PC1 axis were proportional to
the average read counts of the corresponding gene among
the samples. Measured transcript abundance is proportional
to the basal gene expression associated with cell specifica-
tion and technical artifacts associated with RNA sequencing.

Genes were retained for further analysis that were expressed
above the 1 RPKM threshold in more that 5% of the cell lines.
Next, we focused on the projection of retained genes along
principal components 2 and 3. The projections were anno-
tated with horizontal and vertical dotted lines that enclose
95% of the projections from the null distribution. While the
majority of the genes were distributed around the origin, a
subset of genes were projected along the extreme of the PC2
axis (outside of the dotted vertical lines) and had no signifi-
cant projection along the PC3 axis (inside of the dotted hor-
izontal lines). The list of genes associated with either the
high PC2/null PC3 or the low PC2/null PC3 groups are listed
in Supplemental Table S1 and contained 128 and 101 genes,
respectively. As the projection of Vimentin (VIM - yellow
dot in Figure 4C) and E-cadherin (CDH1 - blue dot in Fig-
ure 4C) were prototypical for these two groups of genes, the
high PC2/null PC3 genes were annotated as a mesenchymal
signature (i.e., a de-differentiated state) genes and the low
PC2/null PC3 group were annotated as an epithelial signa-
ture (i.e., a terminally differentiated state). In contrast to
supervised approaches that use Vimentin and E-cadherin as
the basis to identify associated genes (e.g., (16, 17)), the ap-
proach used here is unsupervised whereby the association of
Vimentin and E-cadherin with these two opposite groups of
genes emerges naturally from the data.

The Epithelial and Mesenchymal state measures strat-
ify intrinsic subtypes of breast cancer and metastatic
potential. Using these two sets of genes, we developed a
state metric to quantify the extent of a gene expression signa-
ture associated with epithelial differentiation and mesenchy-
mal de-differentiation using a normalized sum over all of the
genes associated with a signature. While the PCA results
suggest that these two sets of genes are inversely related, the
metrics were designed to represent each state independently
such that cells that exhibit a pure phenotype would have val-
ues of 1 and 0 associated with their respective state metrics
and cells with mixed phenotypes could potentially have val-
ues of 1 for both state metrics. Next we calculated the state
metric values for all of the breast cancer cell lines, where their
projections in state space are shown in Figure 5. Interestingly,
the breast cancer cell lines largely followed a linear recipro-
cal relationship between epithelial (E) and mesenchymal (M)
states (dotted line in Figure 5) and were segregated by intrin-
sic PAM50 subtype (18). While HER2, Luminal A, Lumi-
nal B, and Basal subtypes all have a high E signature, they
progressively increased in their M signature. The Claudin
Low subset spanned the greatest range with some express-
ing a high E and moderate M signatures (e.g., HCC1569,
MDAMB361, HMEL) and others with a low E and high M
signatures (e.g., BT549 and HS578T). Of note, a subset of
the Claudin Low cell lines (e.g., HS742T, HS343T, HS281T,
HS606T, and HS274T) with high M and very low E sig-
natures have been suggested by the CCLE to be fibroblast-
like (see Cell_lines_annotations_20181226.txt). Function-
ally, cells with low E and high M signatures had a high
propensity for metastasis while the propensity for metasta-
sis was low in cell lines with high E and low M signatures
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(19).

We next assessed the epithelial and mesenchymal state
metrics in breast cancer cells assayed using scRNA-seq
(20) (see Figure 5B). Similar to the cell lines, the samples
were spread across the epithelial to mesenchymal spectrum
roughly ordered by their corresponding intrinsic subtype,
where HER2 subtype had a high E/low M signature and the
basal subtype had the highest M signature without much of a
reduction in their E signature. Overall the state values were
farther below the reciprocal trendline than any of the cell line
sampled. As gene-level reads by scRNA-seq are frequently
missing (i.e., a dropout read)(21), we imputed missing val-
ues to assess whether the distribution in the E/M state values
were a result of read dropouts (see Figure 5C). While read
imputation shifted the cell state metrics toward the recipro-
cal trendline, the heterogeneity among the cell measurements
was lost. Overall, it is unclear whether scRNA-seq measure-
ments can be used to identify biological heterogeneity sep-
arately from heterogeneity introduced by technical limits of
the assay.

While single-cell methods are rapidly emerging as tool
to assay human tissue samples, bulk transcriptomic assays
of tumor tissue samples, like those acquired as part of the
Cancer Genome Atlas are more abundant. More samples
increases the statistical power for identifying clinical, cel-
lular, and genetic correlates of the epithelial-mesenchymal
transition. However, applying the epithelial/mesenchymal
state metrics to interpret RNA-seq assays of bulk tumor tissue
samples requires some additional filtering steps as bulk RNA-
seq measurements averages over the heterogeneous normal
and malignant cell types present within the tissue. In terms
of a gene signature for the epithelial-mesenchymal transition,
many of the genes commonly associated with acquiring mes-
enchymal function are associated with fibroblasts, a relatively
common cell type in epithelial tissues. Thus, an enrichment
of genes associated with the epithelial-mesenchymal transi-
tion may be explained solely by a shift in the prevalence of
fibroblasts within the tissue sample. To deconvolute fibrob-
last genes from the state metrics, we obtained a list of 2500
genes that were uniquely associated (Area under ROC curve
> 0.5) with a cluster annotated as fibroblasts using scRNAseq
data obtained from a digested normal skin sample obtained
human female. This cluster contained about 1/3 of the cell
samples measured within the CD45-negative population of
the digested skin sample (see Supplemental Figure S1). Us-
ing this fibroblast gene list, overlapping genes were removed
from the state metrics and highlighted in yellow in Supple-
mental Table S1. All but one of the genes removed were
contained within the mesenchymal gene list.

Gene expression assayed from a bulk tissue sample re-
flects the combined contributions of non-malignant cells plus
the changes induced by oncogenic transformation, and re-
ciprocal changes due to de-differentiation among malignant
cells. Observable changes depend on the relative contribu-
tions of each cell source. As the unsupervised PCA analy-
sis of the cell line data suggested that genes associated with
EMT can be revealed by identifying a reciprocal pattern of

gene expression, we performed Ridge logistic regression us-
ing the sample annotation to obtain regression coefficients
for the list of EMT genes that passed the fibroblast filter (n
= 158). The regression coefficients were used to filter the
list of EMT genes for consistency with the reciprocal gene
signature identified in the CCLE analysis. Genes that passed
the consistency filter were used to define the epithelial and
mesenchymal state metrics for bulk tissue samples. Of note,
E-cadherin (CDH1) and CEACAM1 were associated with
the epithelial state metric while N-cadherin (CDH2), Wnt-
inducible signaling pathway protein 1 (WISP1/CCN4), and
matrix metallopeptidase 3 (MMP3) were associated with the
mesenchymal state metric. The list of genes associated with
the corresponding state metrics are summarized in Supple-
mental Table S2.

Next, we projected the BRCA tissue samples in EMT
space using the two tissue-based state metrics. Similar to
the CCLE analysis, all samples clustered along the recipro-
cal SME versus SMM line but exhibited greater dispersion.
Samples obtained from normal breast tissue clustered sep-
arately from breast cancer samples (Figure 6), with normal
breast tissue samples having the highest values for the ep-
ithelial state and lower values, on average, for the mesenchy-
mal state. Among the different clinical breast cancer sub-
types, the median value for SME progressively decreased
from ER/PR+ (luminal), HER2+, and triple negative (TN:
ER-/PR-/HER2-) subtypes. The mesenchymal projections
were for both ER/PR+ and HER2+ subsets were about equal
and higher than the TN samples. We note that, while the
HER2+ samples were roughly equal to the ER/PR+ along the
SMM axis, the HER2+ samples were lower than the ER/PR+
samples along the SME axis, which aligns with clinical ob-
servations. For instance, patients with HER2+ subtype of
breast cancer are at increased risk for developing metastatic
lesions compared to TN and luminal subtypes (22). The two
different state metrics seem to capture gene signatures that
help anchor a cell to it’s designated location within the tis-
sue and that promotes active migration, respectively. In other
words, reducing SME corresponds to raising the anchor and
increasing SMM corresponds to hoisting the sail. In sum-
mary, both cell-level and tissue-level EMT state metrics pro-
vide an estimate of metastatic potential and a digital measure
of malignant cell differentiation state in the context of breast
cancer.

Gene expression patterns in melanoma cells are also
captured by a single component. Using the same work-
flow as the breast cancer analysis (Figure 3), we applied prin-
cipal component analysis to the expression of EMT-related
genes assayed in an ensemble of XX melanoma cell lines as-
sociated with the Cancer Cell Line Encyclopedia (Figure 7).
We focused on the first two principal components, PC1 and
PC2, that captured 80% and 6% of the variance, respectively.
Additional principal components each captured less than 4%
of the variance. PC1 captured the variance associated with
read abundance, as gene projections along the PC1 axis were
proportional to the average read counts among the samples.
Vimentin (VIM) and fibronectin (FN1) were two of the most
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highly expressed genes while members of the Wnt family
were some of the genes with low expression (e.g., WNT1,
WNT6, WNT8B, WNT3A, WNT8A, WNT9B). Genes re-
tained for further analysis were expressed above the 1 RPKM
threshold in more than 5% of the cell lines.

Next, we focused on the projection of retained genes along
PC2 and PC3 axes. The projections were annotated with hor-
izontal and vertical dotted lines that enclose 95% of the pro-
jections from the null distribution. While the majority of the
genes were distributed around the origin, a subset of genes
were projected along the extreme of the PC2 axis (outside
of the dotted vertical lines) and had no significant projection
along the PC3 axis (inside of the dotted horizontal lines). The
list of genes associated with either the high PC2/null PC3 or
the low PC2/null PC3 groups are listed in Supplemental Ta-
ble S1 and contained 26 and 90 genes, respectively. In con-
trast to the breast cancer results, the projection of Vimentin
(VIM - yellow dot in Figure 7C) and E-cadherin (CDH1 -
blue dot in Figure 7C) were not associated with either of
these two groups of genes. As the high PC2/null PC3 group
included MITF, a master regulator of melanocyte differentia-
tion, and the low PC2/null PC3 group included a number of
EMT-related genes (e.g., FN1, TCF4, ZEB1, TWIST2, and
WISP1), these two gene sets were annotated as a terminally
differentiated signature (i.e., an epithelial-like state) and a de-
differentiated signature (i.e., a mesenchymal-like state), re-
spectively.

Projections of the melanoma cell lines in differentiation
state space were calculated using the two gene signatures
(Figure 8). Similar to the breast cancer cell lines, the
melanoma cell lines largely followed a linear reciprocal re-
lationship between terminally differentiated (SMT ) and de-
differentiated (SMD) states (dotted line in Figure 8). The
majority of cell lines exhibited primarily a terminally differ-
entiated signature with some expression of de-differentiated
genes while only a small subset of the cell lines exhibited pri-
marily a de-differentiated signature. The gene signatures for
single melanoma cells were also highly heterogeneous due to
dropout of gene reads.

Using state metrics refined for use with tissue samples
(see Supplemental Table S2), samples acquired from be-
nign melanocytic nevi and untreated primary melanoma tis-
sue were projected onto the state space. Of note, CEA-
CAM1 and MITF were associated with the differentiated
state and three genes - CEACAM1, CGN, and HPGD -
were shared with the breast cancer epithelial state met-
ric. The de-differentiated state metric had five genes -
WISP1/CCN4, EDNRA, FOXC2, SERPINE1, and SPOCK1
that were shared with the breast cancer mesenchymal state
metric. While samples were more narrowly distributed in
state space compared to the cell lines (Figure 9), all of
the benign nevi exhibited higher terminally differentiated
(SMT ) and tended to have lower de-differentiated values
(SMD). The samples from primary melanoma were color-
coded based on the annotated Breslow’s depth, where higher
values were associated with lower terminal differentiation
scores. Using Breslow’s depth as a surrogate measure of

metastatic potential (23), tissue-level EMT state metrics pro-
vide an estimate of metastatic potential and a digital mea-
sure of malignant cell differentiation state in the context of
melanoma.

Terminal differentiation is associated with distinct
gene signatures while de-differentiation seems to en-
gage common gene regulatory networks. The sepa-
rate gene signatures generated for breast cancer cells and
melanoma cells using an unsupervised approach provide an
opportunity to identify unique and shared aspects of the ge-
netic regulatory mechanisms underpinning cell specification,
as summarized in Figure 9. Specifically, we used DAVID
to identify genes with transcription factor activity using
the GOTERM_MF_ALL: Sequence_specific_DNA_binding
+ UP_Keywords:DNA_binding. In the breast cancer cell
lines, nine transcription factors were upregulated in cells with
a terminally differentiated phenotype, including GRHL2 and
OVOL2 that have been associated with enforcing epithelial
differentiation (24). Correspondingly, five transcription fac-
tors were upregulated in melanoma cells, including MITF
that is essential for melanocyte differentiation (25). Inter-
estingly, there was no overlap in the genes with transcription
factor activity in the two differentiated cell signatures. In
contrast, melanoma and breast cancer cell lines that exhib-
ited a de-differentiated phenotype shared five transcription
factors, including TWIST2 and ZEB1. De-differentiation
in breast cancer cell lines were also associated with an ad-
ditional six transcription factors, including TWIST1 (26).
Overall, the analysis of these transcription factors is consis-
tent with specificity in phenotype as a consequence of engag-
ing gene regulatory networks unique to a specialized cell sub-
set while de-differentiation seemed to engage common gene
regulatory networks that facilitate the loss of cell specificity.

Discussion
Here we used an unsupervised feature extraction and se-
lection approach based on principal component analysis
and resampling to identify state metrics for the epithelial-
mesenchymal transition in breast cancer and melanoma.
Given the importance for identifying patients with tumors
likely to metastasize, a number of gene signatures have been
developed to predict the prevalence of tumor cells with a
epithelial-mesenchymal transition signature (16, 17, 27–29).
Supervised approaches are most common (16, 17, 27, 28),
where samples are classified a priori. For instance, Koplev et
al. (28) develop gene signatures that average over all anatom-
ical locations while Levine and coworkers (27, 30) classify
training samples a priori into one of three cell states: ep-
ithelial, mesenchymal, or hybrid E/M. Rokavec et al. gen-
erate features based on co-expression with E-cadherin and
Vimentin (17). While effective, supervised methods can per-
form poorly if the strategy is based on misinformation, such
as sample misclassification or prior biases as to the number
of cell states or defining genes. We also note that state met-
rics developed using microarray technology (e.g., (16)) are
not likely relevant for interpreting data based on RNA se-
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quencing, given the unclear relation between transcriptome
and protein abundance as assayed using microarray technol-
ogy. While rarely used, the data-driven nature of unsuper-
vised methods for feature extraction and selection are attrac-
tive (12). For instance, Umeyama et al. used an unsuper-
vised approach for feature extraction to identify genes as-
sociated with metastasis (31). To illustrate this data-driven
approach, we have focused on breast cancer and melanoma,
where metastatic dissemination to vital organs are key lim-
iters of patient survival. In summary, we hope that our devel-
oped state metrics find use alongside other digital cytometry
tools to better understand how oncogenic transformation al-
ters the immune contexture within the tumor microenviron-
ment.

Methods
’Omics Data. Transcriptomics profiling of the same sam-
ples using both Agilent microarray and Illumina RNA
sequencing for the breast cancer arm (BRCA) of the Cancer
Genome Atlas was downloaded from TCGA data com-
mons. Values for gene expression, expressed in RPKM,
for the cell lines contained within the Cancer Cell Line
Encyclopedia were downloaded from the Broad data com-
mons (Website: https://portals.broadinstitute.org/ccle File:
CCLE_RNAseq_081117.rpkm.gct accessed 12/22/2017).
Reverse phase protein array (RPPA) results for the cancer
cell lines were obtained from the M.D. Anderson pro-
teomics website (Website: https://tcpaportal.org/mclp/ File:
MCLP-v1.1-Level4.txt accessed 6/15/2018) (6). Single-
cell gene expression (scRNA-seq) for breast cancer and
melanoma cells expressed in TPM were downloaded from
the Gene Expression Omnibus (GEO) entries GSE75688 and
GSE72056, respectively. 10X Genomics scRNA-seq data for
CD45-negative cells digested from a normal human female
skin sample and expressed in counts of gene-level features
was downloaded from European Bioinformatics Institute
(EMBL-EBI) ArrayExpress entry E-MTAB-6831. RNAseq
data expressed in counts assayed in samples acquired from
benign melanocytic nevi and untreated primary melanoma
tissue and associated annotation were downloaded from
GEO entry GSE98394.

Non-linear regression of protein abundance to mRNA
expression. All data was analyzed in R (V3.5.1) using the
’stats’ package (V3.5.1). For each gene where complemen-
tary CCLE and RPPA data exist and for which their correla-
tion coefficient was above 0.36, the non-linear function,

Yprotein = a+ b ·XmRNA

XmRNA+ c
, (1)

was regressed using the nls function to the resulting protein
(Yprotein) and transcript (XmRNA) abundance data. As the
RPPA values are normalized, the parameters a and b repre-
sent the background value and maximum detectable increase
above background, respectively, while the parameter c rep-
resents the midpoint in transcript abundance within the dy-
namic range of the assay. A minimum in the summed squared

errors between model-predicted and observed RPPA values
were used to determine the optimal values of the model pa-
rameters. Using the optimal values, a threshold was esti-
mated independently for each gene based on the transcript
abundance that yields a 2.5% increase in protein abundance
above background.

Statistical analysis for cell-level signatures. Principal
component analysis (PCA) was performed on log base 2
transformed RPKM values using the prcomp function on the
CCLE RNA-seq data, which was filtered to 780 genes previ-
ously associated with epithelial-mesenchymal transition. The
collective list of genes were assembled from prior studies
(16, 32–36) and additional gene sets from MSigDB V4.0
including: “EPITHELIAL TO MESENCHYMAL TRAN-
SITION" and “REACTOME TGF BETA RECEPTOR SIG-
NALING IN EMT EPITHELIAL TO MESENCHYMAL
TRANSITION". PCA was applied to the genes to extract
the features, where the resulting eigenvectors capture the rel-
ative influence of a gene’s expression on a specific principal
component and the eigenvalues represent how much infor-
mation contained within the dataset is captured by a specific
principal component. Drawing upon conventional hypothesis
testing where significance is established by rejecting the null
hypothesis that experimental observations could be explained
by random chance, we used a resampling approach to estab-
lish a null hypothesis related to the eigenvalues, that is to
determine the true rank of the noisy expression matrix. The
resampling approach involved repetitively applying PCA (n =
1000) to a synthetic noise dataset with the same dimensions
that was generated from the original data by randomly resam-
pling with replacement from the collection of gene expres-
sion values and assigning the values to particular gene-cell
line combinations. The resulting distribution of eigenvalues
and eigenvectors represent the values that could be obtained
by random chance if the underlying dataset has no informa-
tion (i.e., the null PCA distribution). Principal components
with eigenvalues greater than the null PCA distribution were
used to define the principal subspace for subsequent analysis,
that is the selection of features. Similarly, the distribution in
the projection of genes within the null PCA space were used
to determine whether the projection of a gene along a particu-
lar PC axis was explained by random chance or not by setting
thresholds along the PC2 and PC3 axes that enclosed 95% of
the null PCA space. The PC projection of genes relative to
the null PCA space was used to refine the extracted features.

A metric was developed to estimate the extent that a
cell exhibits a gene signature corresponding to a “Epithe-
lial/Terminally Differentiated" versus “Mesenchymal/De-
differentiated" state. The state metrics (SM ) quantify the
cellular state by averaging over a normalized expression level
of each gene in the signature (readsi, expressed in TPM) ac-
cording to the formula:

SM = 1
ngs

ngs∑
i=1

readsi
readsi+2Ki

. (2)

The genes included in a signature with their corresponding
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Ki values are listed in Supplemental Table S1 and ngs cor-
responds to the number of genes within a signature. The Ki

values were estimated by clustering the log2 expression of
each gene into two groups using the k-means method and the
value was set as the mid-point in expression between the two
groups.

Statistical analysis for tissue-level signatures. Genes
differentially expressed in normal epithelial fibroblasts were
obtained by analyzing single-cell RNAseq data of normal
skin obtained using a Genomics 10x platform and a bioin-
formatics workflow based on the scater (V1.12.2) and SC3
(V1.12.0) packages in R. Briefly, scRNAseq data were fil-
tered to retain samples that had less than 50% of the reads
in the top 50 genes and to remove outlier samples based on
PCA analysis. Gene-level features were limited to those that
were expressed at greater than 1 count in more than 10 cell
samples. Read depth was normalized using a variant of CPM
contained within the scran (V1.12.1) package, which devel-
ops a sample-specific normalization factor repetitive sample
pooling followed by deconvoluting a sample-specific factor
by linear algebra. Following from Davidson et al. (37), fi-
broblasts were annotated based on co-expression of COL1A1
and COL1A2. Samples were clustered and genes differen-
tially associated with each cluster were identified using the
SC3 workflow (V1.14.0) using default parameters (see Fig-
ure S1).

Prior to logistic regression analysis, TCGA BRCA data
and the benign nevi and melanoma data were filtered to re-
move sample outliers and normalized based on housekeeping
gene expression (38). Using normal versus tumor annotation
associated with the data, ridge logistic regression was per-
formed on log base 2 transformed TPM and median-centered
values using the glmnet package (V2.0-18), which was lim-
ited to EMT-related genes identified in the CCLE analysis
and not associated with normal fibroblasts. To minimize
overfitting, ridge logistic regression was repeated 500 times
using a subsample of the original data set using the genes
associated with each signature separately. In each iteration,
the samples were randomly assigned in an 80:20 ratio be-
tween training and testing samples. Regression coefficients
were captured for each iteration using a lambda value that
minimized the misclassification error of a binomial predic-
tion model estimated by cross-validation. Accuracy was as-
sessed using the testing samples. Genes were determined to
have a consistent expression pattern if greater than 95% of
the distribution in regression coefficients had the correct sign.
Similarly to the cell-level analysis, state metrics were devel-
oped for bulk tissue-level RNAseq measurements to estimate
the extent that a tissue sample exhibits a gene signature cor-
responding to a “Epithelial/Terminally Differentiated" versus
“Mesenchymal/De-differentiated" state. The genes included
in a signature and their corresponding Ki values are listed in
Supplemental Table S2.
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Figure Legends
Figure 1 - Heatmaps for the expression of a subset of genes in the breast cancer arm of the TCGA study as-
sayed using Illumina RNA-seq (A) and using Agilent microarray (B). Samples obtained from tumor tissue (black) versus
matched normal tissue (yellow) are indicated at the bottom of the heatmaps. The genes and samples are similarly ordered in
both panels. Values were log2 normalized.

Figure 2 - RPPA measurements were used to determine a threshold for biologically significant changes in gene
expression. The model for protein dependence on gene expression (A) where representative data (black circles) and model
fits (dotted black line) are shown for CLDN7, AXL, JAG1, and CDH1 (B). (C) The distribution in threshold values calculated
for all 147 genes. In (B), the vertical red dotted line indicates the threshold value and the melanoma and breast cancer cell lines
are highlighted by red and blue circles.

Figure 3 - Data workflow for identifying epithelial/differentiated versus mesenchymal/de-differentiated state met-
rics. Workflow contains three decision points: unsupervised feature extraction (FE)/feature selection (FS) based on PCA, a
binary fibroblast filter, and a consistency filter based on Ridge logistic regression of annotated samples.

Figure 4 - Two opposing gene signatures were identified among the cohort of breast cancer cell lines. (A ) Scree
plot of the percentage of variance explained by each principal component, where the dotted line corresponds to variance ex-
plained by the null principal components. (B) Projection of the genes along PC1 and PC2 axes, where the font color corresponds
to the mean read counts among cell lines (blue-yellow-red corresponds to high-medium-low read counts). (C) Projection of the
genes along PC2 and PC3 axes, where the dotted lines enclose 90% of the null PCA distribution along the corresponding axis.

Figure 5 - The different subsets of breast cancer were clustered along a reciprocal epithelial to mesenchymal
state axes. Log2 projections along the epithelial (SME) and mesenchymal (SMM ) state axes for each breast cancer cell line
included in the CCLE (A) and primary breast cancer cells (B and C). Values for SME and SMM were estimated by bulk
RNA-seq data for cell lines associated with the CCLE and by scRNA-seq data for primary tumor cells (20). (C) Log2 state
projections are compared for primary breast cancer cells as originally reported and with dropout values imputed using the values
averaged over the rest of the sample population, where grey lines connect the original state values to state values determine
after imputation. Symbols were colored based on previously annotated breast cancer PAM50 subtypes: basal - red, claudin low
- yellow, HER2 - pink, luminal A - blue, luminal B - black. In panel A, the metastatic potential of a subset of cell lines were
annotated based on a recent study (19): low metastatic potential - grey circle, high metastatic potential - red circle. The dotted
line corresponds to a reciprocal relationship between the SME and SMM state metrics (i.e., SME = 1 - SMM ).

Figure 6 - The samples from normal breast tissue and breast cancer were clustered separately along a reciprocal
epithelial to mesenchymal state axes. Using EMT genes that passed the gene filter workflow, each sample contained
within the breast cancer (BrCa) arm of the TCGA was projected along the epithelial (SME) versus mesenchymal (SMM ) state
axes using the corresponding bulk RNA-seq data. Symbols were colored based on normal breast tissue (green) or clinical breast
cancer subtype: ER/PR+ - blue, HER2 - pink, triple negative (TN) - red. The dotted line corresponds to a reciprocal relationship
between the SME and SMM state metrics (i.e., SME = 1 - SMM ).

Figure 7 - Two opposing gene signatures were identified among the cohort of melanoma cell lines. (A) Scree plot
of the percentage of variance explained by each principal component, where the dotted line corresponds to variance explained
by the null principal components. (B) Projection of the genes along PC1 and PC2 axes, where the font color corresponds to the
mean read counts among cell lines (blue-yellow-red corresponds to high-medium-low read counts). (C) Projection of the genes
along PC2 and PC3 axes, where the dotted lines enclose 90% of the null PCA distribution along the corresponding axis.

Figure 8 - Melanoma cell lines and primary single melanoma cells are distributed along path between extremes in
differentiation states. Projections along the terminally differentiated (SMT ) versus de-differentiated (SMD) state axes for
each melanoma cell line included in the CCLE (A) and primary melanoma cells (B). Values for the terminally differentiated
and de-differentiated state metrics were estimated by RNA-seq data for cell lines associated with the CCLE and by scRNA-seq
data for primary melanoma cells. Symbols for primary melanoma cells were colored differently for each patient sample. The
dotted line corresponds to a reciprocal relationship between the SMT and SMD state metrics (i.e., SMT = 1 - SMD).

Figure 9 - Gene expression patterns associated with benign melanocytic nevi and primary melanoma tissue
samples are distributed along path between extremes in differentiation states. Projections along the terminally differ-
entiated (SMT ) versus de-differentiated (SMD) state axes for 78 tissue samples obtained from common acquired melanocytic
nevi (n = 27, green circles) and primary melanoma (n = 51). The primary melanoma samples are colored based on the Breslow’s
depth (blue: 0.1 mm to red: 10+ mm). The dotted line corresponds to a reciprocal relationship between the SMT and SMD

state metrics (i.e., SMT = 1 - SMD).
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Figure 10 - Venn diagram illustrating overlap in genes contained in the opposing state metrics for terminally
differentiated/epithelial versus de-differentiated/mesenchymal extracted from breast cancer (blue circle) and
melanoma (red circle) cell lines. The subset of the genes listed below the Venn diagram were annotated with transcrip-
tion factor GO terms.
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Fig. 1. Heatmaps for the expression of a subset of genes in the breast cancer arm of the TCGA study assayed using Illumina RNA-seq (A) and using Agilent
microarray (B). Samples obtained from tumor tissue (black) versus matched normal tissue (yellow) are indicated at the bottom of the heatmaps. The genes and samples are
similarly ordered in both panels. Values were log2 normalized.
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Fig. 2. RPPA measurements were used to determine a threshold for biologically significant changes in gene expression. The model for protein dependence on gene
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Fig. 4. Two opposing gene signatures were identified among the cohort of breast cancer cell lines. (A) Scree plot of the percentage of variance explained by each
principal component, where the dotted line corresponds to variance explained by the null principal components. (B) Projection of the genes along PC1 and PC2 axes, where
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Fig. 5. The different subsets of breast cancer were clustered along a reciprocal epithelial to mesenchymal axes. Log2 projections along the epithelial (SME ) and
mesenchymal (SMM ) state axes for each breast cancer cell line included in the CCLE (A) and primary breast cancer cells (B and C). Values for SME and SMM were
estimated by bulk RNA-seq data for cell lines associated with the CCLE and by scRNA-seq data for primary tumor cells (20). (C) Log2 state projections are compared for
primary breast cancer cells as originally reported and with dropout values imputed using the values averaged over the rest of the sample population, where grey lines connect
the original state values to state values determine after imputation. Symbols were colored based on previously annotated breast cancer PAM50 subtypes: basal - red, claudin
low - yellow, HER2 - pink, luminal A - blue, luminal B - black. In panel A, the metastatic potential of a subset of cell lines were annotated based on a recent study (19): low
metastatic potential - grey circle, high metastatic potential - red circle. The dotted line corresponds to a reciprocal relationship between the SME and SMM state metrics
(i.e., SME = 1 - SMM ).
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Fig. 7. Two opposing gene signatures were identified among the cohort of melanoma cell lines. (A) Scree plot of the percentage of variance explained by each
principal component, where the dotted line corresponds to variance explained by the null principal components. (B) Projection of the genes along PC1 and PC2 axes, where
the font color corresponds to the mean read counts among cell lines (blue-yellow-red corresponds to high-medium-low read counts). (C) Projection of the genes along PC2
and PC3 axes, where the dotted lines enclose 90% of the null PCA distribution along the corresponding axis.
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Fig. 8. Melanoma cell lines and primary single melanoma cells are distributed along path between extremes in differentiation states. Projections along the
terminally differentiated (SMT ) versus de-differentiated (SMD ) state axes for each melanoma cell line included in the CCLE (A) and primary melanoma cells (B). Values for
the terminally differentiated and de-differentiated state metrics were estimated by RNA-seq data for cell lines associated with the CCLE and by scRNA-seq data for primary
melanoma cells. Symbols for primary melanoma cells were colored differently for each patient sample. The dotted line corresponds to a reciprocal relationship between the
SMT and SMD state metrics (i.e., SMT = 1 - SMD ).
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Fig. 9. Gene expression patterns associated with benign melanocytic nevi and primary melanoma tissue samples are distributed along path between extremes
in differentiation states. Projections along the terminally differentiated (SMT ) versus de-differentiated (SMD ) state axes for 78 tissue samples obtained from common
acquired melanocytic nevi (n = 27, green circles) and primary melanoma (n = 51). The primary melanoma samples are colored based on the Breslow’s depth (blue: 0.1 mm
to red: 10+ mm). The dotted line corresponds to a reciprocal relationship between the SMT and SMD state metrics (i.e., SMT = 1 - SMD ).
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ANXA9 0.578 MYO5C 0.331 AKAP12 2.053 MFAP5 2.074 BIK -2.759 ASPN -3.222 RHOD -0.186
AP1M2 2.493 OCLN 1.859 AKAP2 3.118 MME 1.766 CCL3 -5.000 BGN 2.914 S100A4 5.840
ARAP2 -0.552 OR7E14P -2.318 AKT3 0.416 MMP14 3.304 CEACAM1 -1.634 C1S 3.186 SERPINB2 2.400
ARHGAP8 1.490 OVOL2 -1.155 ANK2 0.601 MMP2 3.829 CGN -2.178 CDH11 0.196 SERPINE1 5.626
ATP2C2 0.658 PDGFB -0.006 ANKRD1 1.447 MMP3 -0.991 CKMT1A -3.799 CFB -2.397 SFRP4 -2.295
B3GAT1 -4.481 PKP3 3.550 ASPN -2.623 MXRA7 5.608 CTLA4 -3.172 CFH 0.952 SPOCK1 3.602
BIK -0.863 POF1B -1.516 AXL 2.334 MYL9 5.899 DLL3 -0.614 CLU 2.266 SULF1 1.976
BLNK -1.428 PPL 1.218 BAG2 3.569 NID2 2.901 EDNRB 0.359 COL1A1 5.727 TCF4 0.102
BMP7 0.620 PRSS8 1.555 BGN 3.131 OLFML2B 1.328 EN2 -2.698 COL3A1 3.561 TFPI 1.789
BSPRY -0.611 PTK6 0.001 C1S 3.335 PAPPA -0.115 ERBB3 1.506 COL5A1 3.086 TGFBI 7.149
C1orf106 0.560 RAB25 2.438 C7orf10 1.725 PCOLCE 5.904 ESRP1 -1.928 COL5A2 4.597 THBS2 4.502
C4orf19 -0.366 RBM47 2.246 CALD1 6.281 PDGFC 3.280 FOXD3 -2.372 COL6A1 6.709 THY1 2.529
CDH1 2.795 S100A14 4.046 CCL2 1.510 PDGFRA -0.202 FXYD3 -0.741 COL6A2 5.868 TNXB -0.760
CDS1 1.006 SCNN1A 1.824 CD68 3.038 PDGFRB 0.881 GPR56 2.428 COL6A3 2.436 TPM2 5.480
CEACAM1 -0.966 SEPP1 0.991 CDH11 1.460 PHLDA1 4.056 HPGD -3.570 COMP -1.689 TWIST2 -0.122
CEACAM6 1.792 SH2D3A 1.585 CDH2 2.593 PITX2 -0.019 LEF1 0.291 CXCL12 -0.942 VCAN 3.364
CGN 1.288 SHANK2 2.091 CFH 0.413 PLAUR 4.775 LLGL2 -2.142 CYP1B1 0.958 VEGFC 2.386
CKMT1A 0.521 SLC37A1 1.335 CLIC4 6.784 PMP22 4.088 MITF 2.097 DCN 1.695 WISP1 -1.139
CLDN4 3.878 SORL1 0.433 COL1A1 7.342 POSTN 2.347 MTUS1 -1.067 DES -3.426 WNT2 -4.060
CLDN7 3.118 SPINT1 2.939 COL3A1 4.258 PROCR 2.922 MYH14 -1.413 EDNRA -2.070 WNT5A 2.285
CNKSR1 1.476 SPINT2 5.621 COL5A1 4.259 PRRX1 1.135 SP5 -6.085 EGFR 1.402 WNT5B 1.010
CX3CR1 -4.771 ST14 1.517 COL5A2 3.450 RCN3 4.002 TMC6 -0.954 EPS8L2 0.890 ZEB1 1.984
CXCR4 0.197 TMC6 2.345 COL6A1 4.820 RECK 1.117 TUBBP5 -4.963 FAP 3.289
CYP4B1 -2.086 TMPRSS2 -0.925 COL6A2 4.411 S100A4 6.135 FBN1 3.869
DENND2D 1.285 TSPAN1 2.975 COL6A3 3.274 SACS 2.466 FGF1 0.675
DSC2 -0.117 TSPAN15 2.498 COMP -2.248 SDC2 5.076 FGF2 2.188
EDN2 -0.828 TTC39A 1.812 COPZ2 3.117 SERPINB2 1.275 FHL1 3.489
EFNA1 2.368 TUBBP5 -2.023 CTSB 8.252 SERPINE1 5.902 FN1 9.974
EHF 1.234 VAMP8 3.649 CXCL3 -0.315 SERPINE2 5.411 FOXC2 -0.834
ELF3 3.414 VAV3 0.658 CYBRD1 3.701 SFRP4 -1.523 FST 3.630
EPCAM 3.550 WNT3A -4.542 DAB2 3.127 SH3KBP1 3.938 GADD45G -3.399
EPHA1 1.955 WNT4 -1.102 DCN 2.442 SMARCA1 3.121 GJA1 1.946
EPN3 1.083 WNT7B 1.009 DDR2 2.484 SPARC 6.576 GLT8D2 0.526
EPS8L1 3.622 EDNRA -1.472 SPOCK1 3.964 GREM1 3.220
ERBB3 2.885 EMP3 5.080 SRPX 2.604 IFITM2 4.612
ESRP1 1.288 FAP 1.059 SULF1 2.944 IGFBP3 6.190
ESRP2 1.782 FBN1 4.146 TCF4 0.705 IL1R1 1.252
EVPL 0.234 FGF1 -0.793 TFPI 2.062 INHBA 2.436
EXPH5 -0.989 FHL1 2.511 TGFB1 4.092 ITGBL1 2.227
F11R 3.294 FN1 8.443 TGFB1I1 3.009 KRT14 1.237
FA2H -1.889 FOSL1 3.395 THBS2 1.126 KRT16 -1.959
FBP1 1.225 FOXC2 -2.174 THY1 3.625 KRT7 1.856
FOXA1 1.528 FST 2.555 TIMP3 3.708 LGR5 -3.329
FXYD3 4.244 FSTL1 6.206 TMEFF1 0.365 LOX 3.878
GADD45G 0.490 GAS1 -0.239 TMEM158 1.520 LOXL2 5.806
GALNT3 1.907 GEM 2.394 TNC 3.234 LRRC15 -0.003
GPX2 -0.492 GFPT2 1.976 TNFAIP6 -0.824 MALL 0.019
GRB7 1.676 GJA1 2.267 TPM2 6.350 MFAP5 0.136
GRHL2 0.121 GLI2 -0.830 TRPC1 1.437 MMP2 5.236
HOXC13 0.223 GLT8D2 1.557 TUBB6 7.243 MXRA5 -1.889
HPGD -2.173 GREM1 2.165 TWIST1 -0.148 MYL9 4.994
ICA1 1.509 HMGA2 1.081 TWIST2 -2.302 NID2 1.253
IL1RN -1.966 HTRA1 4.465 VCAN 2.709 NOTCH3 1.644
IL20RA -1.730 IFITM3 6.742 VEGFC 3.036 NT5E 5.491
IRF6 0.688 IGFBP3 6.102 VIM 7.107 PAPPA -0.187
JUP 4.203 ITGA5 5.433 WISP1 -1.528 PCOLCE 4.551
KRT8 7.266 ITGB1 9.185 WNT2 -3.475 PDGFC 1.425
LAD1 1.200 LEPRE1 5.248 WNT5A 2.457 PDGFRA 0.445
LLGL2 2.833 LGALS1 10.947 WNT5B 1.454 PDGFRB 1.315
LSR 3.936 LHFP 2.623 ZEB1 1.196 PLAU 2.161
MAP7 1.737 LOX 3.766 POSTN 2.399
MST1R 1.087 LOXL2 5.430 PRRX1 2.462

Supplemental Table S1: List of genes and associated Ki values for state metrics developed separately for breast cancer and melanoma cell lines based on CCLE gene expression.  Genes that overlap 
with the fibroblast gene list are highlighted in yellow.

Dedifferentiated Signature
Melanoma Cell Lines

Mesenchymal SignatureEpithelial Signature Differentiated Signature
Breast Cancer Cell Lines

Table S1. List of genes and corresponding Ki values for state metrics developed separately for breast cancer and melanoma
cell lines based on CCLE gene expression. Genes that overlap with the fibroblast gene list are highlighted in yellow.
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GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

GENE_SYMBOL Ki (log2 
TPM)

ALDH3B2 6.539 ADAM12 5.020 ARAP2 7.068 ACTA2 5.441
ANK3 3.420 ASPN 6.415 CEACAM1 3.160 DES 0.960
B3GAT1 -1.558 CDH2 1.919 CGN 5.204 EDNRA 4.051
BMP7 2.158 CLIC4 8.028 CKMT1A 0.384 FGF1 1.751
C1orf106 1.896 CTSB 9.211 FXYD3 7.425 FOXC2 -3.978
C4orf19 2.445 EDNRA 4.930 HPGD 6.467 GADD45G 1.786
CDH1 8.627 FOXC2 1.352 MITF 7.339 INHBA 1.962
CEACAM1 4.592 IFITM3 10.371 MTUS1 3.385 KRT16 2.625
CGN 5.918 ITGA5 5.987 MYH14 5.677 KRT7 7.880
CLDN4 8.052 MMP3 3.602 NID2 3.067
CLDN7 7.632 POSTN 9.209 NOTCH3 4.381
CX3CR1 3.235 SERPINE1 6.068 PDGFRB 5.254
DSC2 4.658 SPOCK1 4.503 SERPINE1 2.100
EHF 6.185 SULF1 6.699 SPOCK1 1.611
EPHA1 4.359 TGFB1 6.076 TPM2 4.213
EXPH5 2.720 WISP1 3.690 VEGFC 1.694
FA2H 2.587 WISP1 3.202
GPX2 1.897 WNT5A 2.836
GRB7 5.585
HPGD 1.641
ICA1 5.752
IL20RA 3.761
IRF6 7.491
JUP 8.885
MSX2 4.256
POF1B 2.093
PPL 5.551
SH2D3A 3.672
TMPRSS2 3.378
TUBBP5 1.727
WNT3A -2.375
WNT4 2.885

Supplemental Table S2: List of genes and associated Ki values for refined state metrics based on TCGA breast cancer tissue samples 
and tissue samples of common acquired melanocytic nevi and primary melanoma.  Genes that overlap in the state metrics between 
breast cancer and melanoma are highlighted in green.

Differentiated SignatureEpithelial Signature
TCGA Breast Cancer Tissue Samples

Mesenchymal Signature De-differentiated Signature
Melanocytic Nevi and Melanoma Tissue Samples

Table S2. List of genes and associated Ki values for refined state metrics based on TCGA breast cancer tissue samples
and tissue samples of common acquired melanocytic nevi and primary melanoma. Genes that overlap in the state metrics
between breast cancer and melanoma are highlighted in green.
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Figure S1. Consensus matrix for sample similarity and clustering. The symmetric 1034x1034 
matrix is colored in element(i,j) by similarity in assigning cells i and j to the same cluster when 
the clustering parameters are changed. A similarity score of 0 (blue) indicates that the two cells 
are always assigned to different clusters while a score of 1 (red) indicates that the two cells are 
always assigned to the same cluster. The similarity of the samples are also illustrated by the 
dendrograms shown on the top and side. The top bar indicates whether the cell was annotated
as a fibroblast based on COL1A1 and COL1A2 expression (aqua – fibroblast, pink – other).   
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Fig. S1. Consensus matrix for similarity and clustering of cell samples. The symmetric 1034x1034 matrix is colored in element(i,j)
by similarity in assigning cells i and j to the same cluster when the clustering parameters are changed. A similarity score of 0 (blue)
indicates that the two cells are always assigned to different clusters while a score of 1 (red) indicates that the two cells are always
assigned to the same cluster. The similarity of the samples are also illustrated by the dendrograms shown on the top and side. The
top bar indicates whether the cell was annotated as a fibroblast based on COL1A1 and COL1A2 expression (aqua – fibroblast, pink –
other).
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