1	Antibiograms and Molecular Characterization of Drug Resistance of
2	Mycobacterium abscessus complex from Patients with Multidrug-Resistant
3	Pulmonary Tuberculosis (MDR TB) Infection
4	
5	Kenneth A. Bongulto, a# Concepcion F. Angb, Esperanza C. Cabreraa#
6	
7	^a Biology Department, College of Science, De La Salle University, Manila,
8	Philippines
9	bCollege of Medicine, University of the Philippines, Manila, Philippines
10	
11	Running Head: Drug Resistance of Mycobacterium abscessus complex
12	
13	#Address correspondence to Kenneth A. Bongulto, kenneth_bongulto@dlsu.edu.ph,
14	or Esperanza C. Cabrera, esperanza.cabrera@dlsu.edu.ph
15	K.A.B. and E.C.C. contributed equally to this work.
16	Keywords: Antibiograms, Molecular characterization, Mycobacterium abscessus,
	Mycobacterium massiliense

18 ABSTRACT

19	In the Philippines, acid fast bacilli positive sputum samples commonly treated as
20	TB due to Mycobacterium tuberculosis (MTB) complex. However, Mycobacterium
21	abscessus (MAB) complex is often found in MTB cultures, or in patients confirmed
22	negative for TB through sputum microscopy and culture. Hence, patients
23	with MAB infections are mistakenly prescribed six-month anti-TB treatments. In this
24	study, MAB complex isolates from MDRTB patients were identified and further
25	sub-speciated using the mass 3210 gene. Antimicrobial susceptibility was tested using
26	broth microdilution and resistance genes erm(41), rrs, rrl, gyrA, and gyrB were
27	studied for mutations. Majority were susceptible to amikacin, azithromycin,
28	clarithromycin, and moxifloxacin [MAB: 100%, 100%, 100%, 81.8%, respectively; M.
29	massiliense (MAM): 100%, 100%, 100%, 60%, respectively]. 50% MAM and 63.6%
30	MAB were susceptible to cefoxitin; 60% MAM and 45.5% MAB were susceptible to
31	ciprofloxacin; 72.7% MAB, and 10% MAM were susceptible to doxycycline. Inducible
32	resistance to azithromycin and clarithromycin was found in 27.3% MAB and 30%
33	MAM. 42.9% MAB complex isolates were MDR. Macrolide resistant MAB and
34	MAM had T28 sequevar, showing functional erm(41) responsible for inducible
35	resistance. Unexpectedly, full length erm(41) was found in MAM. Therrl gene in these
36	isolates showed no point mutations, indicating T28 sequevar as cause of inducible
37	resistance. All fluoroquinolone resistant isolates showed Ala-83 in gyrA
38	fluoroquinolone resistant-dependent region (QRDR) and Arg-447 and Asn-464
39	in gyrB QRDR. These are associated with resistance to the drug.
40	

41 INTRODUCTION

42	In the Philippines, one of the most common rapidly growing mycobacteria (RGM) from
43	patients with multiple drug resistant tuberculosis (MDR-TB) infection is M. abscessus
44	complex. This non-tuberculous Mycobacterium (NTM) species is usually found in TB
45	culture, either growing alongside with M. tuberculosis or after the patient has been
46	confirmed negative for pulmonary tuberculosis through direct sputum smear
47	microscopy (DSSM) and TB culture. Pulmonary diseases caused by the M. abscessus
48	complex are extremely hard to manage for these species are found to be resistant to
49	anti-tuberculous agents. Patients with M. abscessus infection do not receive appropriate
50	treatment for they are considered to have chronic TB and MDR-TB. As a result,
51	patients are prescribed a six-month anti-TB treatment which is not appropriate for M .
52	abscessus infections. Interestingly, there is no known study in the Philippines regarding
53	the antimicrobial resistance profile of <i>M. abscessus</i> complex. NTM studies are
54	overshadowed by pulmonary TB research studies and therefore, clinicians are not
55	guided on the treatment for NTM infections. Moreover, detection of NTM species
56	is not part of the routine procedure in the clinical microbiology laboratory. Treatment
57	failure to both first-line anti-TB drugs rifampicin and isoniazid is linked to infection
58	with multidrug-resistant M. tuberculosis (MDR-TB). Gler et al. (2012) showed very
59	high rates (83% to 97%) of MDR-TB infections in the Philippines in 2012. Because
60	MDR TB is often associated with the occurrence of <i>M. abscessus</i> complex in clinical
61	samples, the present study aimed to characterize local isolates of <i>M. abscessus</i> complex
62	from patients with multidrug-resistant pulmonary tuberculosis in terms of their
63	antimicrobial susceptibility profiles and determine the genetics of the antibiotic

64	resistance. More specifically, this study aimed to determine the phenotypic
65	characteristics of <i>M. abscessus</i> complex using colony morphology, growth rate, and
66	pigmentation; to determine subspecies of the M. abscessus complex isolates using
67	amplification and sequencing of the mass_ 3210 gene; to assess susceptibility of M.
68	abscessus complex to antimicrobials (clarithromycin CLR, azithromycin AZM,
69	amikacin AMK, ciprofloxacin CIP, moxifloxacin MXF, cefoxitin FOX, and
70	doxycycline DOX) commonly used against it; and to determine the mechanism of
71	antibiotic resistance by conducting sequence analysis of the drug resistance related
72	genes [erm(41), rrl, rrs, gyrA, and gyrB] in selected isolates.
73	

MATERIALS AND METHODS 74

75 **Study Site and Bioethical Clearance**

76 All procedures involving handling of infectious materials (culture, DNA extraction,

77 NTM identification, and drug susceptibility tests) were conducted in the P3 laboratory

78 of the National Center for Pulmonary Research, Lung Center of the Philippines. The

79 study sought approval form the Institutional Ethics Review Board of the Lung Center

80 of the Philippines. The requirement for informed consent was waived since the isolates

81 from the stock cultures to be studied were anonymized, but bioethical clearances from

82 the De La Salle University – Manila, and the Lung Center of the Philippines were

83 procured.

84

85 Study Isolates and Identification of *Mycobacterium abscessus*

86 The sample size computation for an interval estimate of population

- 87 was used to determine the required sample size of *M. abscessus* complex isolates for the study. This is as follows: $n = t_2 x p (1-p) / m_2$, where
- n is the required sample size, t is the confidence level at 95% (standard value of 1.96),
- p is the estimated prevalence of NTM, and m is the relative precision (Charan &
- 90 Biswas, 2013). The prevalence rate used for the sample size computation was from the
- 91 report of Siapno *et al.* (2016) on a retrospective study of 6,886 specimens from NTM
- 92 infection in a tertiary hospital in the Philippines, which was 2.28%. The relative
- 93 precision used was one-fifth of the prevalence which was 0.00456. Since the prevalence
- rate was small, the precision of 5% seemed to be inappropriate. A conservative choice
- would be one-fourth or one-fifth of prevalence as the amount of precision in the case
- 96 of small prevalence (Pourhoseingholi *et al.*, 2013). The computed sample size of 20
- 97 was based on NTM, and the study adapted this as 20 *M. abscessus* complex. One hundred seventeen (117) NTM clinical isolates collected from patients with
- 98 multiple drug-resistant TB infections and were confirmed MPT64 antigen negative
- 99 were obtained from the Programmatic Management of Drug Resistant Tuberculosis
- 100 (PMDT) TB culture located at the National Center for Pulmonary Research, Lung
- 101 Center of the Philippines from which these 20 isolates identified to be *M. abscessus* complex were taken.
- 102

103 **Phenotypic characterization of** *Mycobacterium abscessus* **complex**

104 Freshly grown 5 to 7-day old cultures of *M. abscessus* complex were subjected to

105 phenotypic characterization. Colony morphology was determined by observing the

106 colonies grown on Ogawa medium. There are two possible morphotypes of *M*.

107	abscessus complex, namely: the smooth and rough colonies. Growth rate was also
108	determined by checking the presence of visible colonies on Ogawa media on a daily
109	basis. Pigmentation was determined by observing the color of the colonies on the
110	Ogawa medium. Mycobacterium abscessus complex is comprised of non-
111	photochromogens. All isolates were tested using the Ziehl Neelsen method to confirm
112	the presence of acid fast bacilli (AFB) and to check the purity of the culture. More so,
113	Kudoh method was conducted in cultures with contaminants. This involved adding 5%
114	NaOH to the culture of <i>M. abscessus</i> complex grown in 7H9 broth in a ratio of 1:1 (v/v)
115	The processed isolates were re-incubated at 37°C for 5 to 7 days. AFB smear was
116	conducted again, to check for purity and to confirm presence of acid-fast bacilli.
117	
117 118	Identification of subspecies of Mycobacterium abscessus complex
	Identification of subspecies of <i>Mycobacterium abscessus</i> complex One hundred seventeen (117) NTM clinical isolates were screened for the identification
118	
118 119	One hundred seventeen (117) NTM clinical isolates were screened for the identification
118 119 120	One hundred seventeen (117) NTM clinical isolates were screened for the identification of <i>M. abscessus</i> and <i>M. massiliense</i> isolates. All isolates were grown in Middlebrook
 118 119 120 121 	One hundred seventeen (117) NTM clinical isolates were screened for the identification of <i>M. abscessus</i> and <i>M. massiliense</i> isolates. All isolates were grown in Middlebrook 7H9 broth enriched with albumin dextrose catalase (ADC). These were incubated at
 118 119 120 121 122 	One hundred seventeen (117) NTM clinical isolates were screened for the identification of <i>M. abscessus</i> and <i>M. massiliense</i> isolates. All isolates were grown in Middlebrook 7H9 broth enriched with albumin dextrose catalase (ADC). These were incubated at 37°C for 5 to 7 days or until turbidity was observed and checked for purity. New stock
 118 119 120 121 122 123 	One hundred seventeen (117) NTM clinical isolates were screened for the identification of <i>M. abscessus</i> and <i>M. massiliense</i> isolates. All isolates were grown in Middlebrook 7H9 broth enriched with albumin dextrose catalase (ADC). These were incubated at 37°C for 5 to 7 days or until turbidity was observed and checked for purity. New stock cultures were prepared in Ogawa butt-slants to serve as working stocks, and in
 118 119 120 121 122 123 124 	One hundred seventeen (117) NTM clinical isolates were screened for the identification of <i>M. abscessus</i> and <i>M. massiliense</i> isolates. All isolates were grown in Middlebrook 7H9 broth enriched with albumin dextrose catalase (ADC). These were incubated at 37°C for 5 to 7 days or until turbidity was observed and checked for purity. New stock cultures were prepared in Ogawa butt-slants to serve as working stocks, and in

127 5 to 7 day-old cultures using Bio-Rad Chelex resin (Al-Mutairi *et al.*, 2011) as follows:

128 A loopful of mycobacterial isolate was suspended in a 200 μ L solution containing 40mg

129 Chelex100 and 100 mL of water. The resulting material was kept at 95°C for 20

130	minutes. It was centrifuged for 15 minutes at 12,000 x g. The supernatant was
131	transferred to a sterile Eppendorf® tube and was used as the source of DNA for the
132	one-step multiplex PCR assay. The one-step multiplex PCR assay designed by Chae et
133	al. (2017) was used (1) to discriminate pan-mycobacterial from non-mycobacterial
134	species by amplifying the16S rRNA gene, (2) to distinguish between MTB complex
135	and NTM species in mycobacteria by amplifying the $rv0577$, (3) to identify M.
136	tuberculosis by amplifying the RD9, (4) to identify M. tuberculosis Beijing family by
137	amplifying the <i>mtbk_20680</i> , and (5) to identify the five major NTM species and
138	subspecies by amplifying IS1311 (M. avium), DT1 (M. intracellulare), mass_3210 (M.
139	abscessus and M. massiliense), mkan_rs12360 (M. kansasii).
140	
141	The PCR mixture was comprised of 1) 2x Prime TAq Premix (Genet Bio., Ltd.
142	Daejeon, South Korea) containing Prime Taq DNA polymerase 1 unit/10ul, 2X reaction
143	buffer, 4mM MgCl ₂ , enzyme stabilizer, sediment, loading dye (pH 9.0), and 0.5 mM
144	of each dATP, dCTP, dGTP, and dTTP; 2) 10 pmole of each of the following forward
145	and reverse primers of rv0577F (5'-GAG ATA CTC GAG TGG CGA A-3'), rv0577R
146	(5'-CAA CGC GAC AAA CCA CCT AC-3'), DT1F (5'-AAG GTG AGC CCA GCT
147	TTG AAC TCC A-3'), DT1R (5'-GCG CTT CAT TCG CGA TCA TCA GGT G-3'),
148	mtbk_20680F (5'-TTA TGC CAG AAA TAC ACC CGC G-3'), mtbk_20680R (5'-
149	AAT CGC GGG CTT GTG GCT AC-3'), 16S rRNAF (5'-GAG ATA CTC GAG TGG
150	CGA AC-3'), 16S rRNAR (5'-CAA CGC GAC AAA CCA CCT AC-3'), RD9F (5'-
151	GTG TAG GTC AGC CCC ATC C-3'), RD9R (5'-GTA AGC GCG TGG TGT GGA-
152	3'), IS1311F (5'-TCG ATC AGT GCT TGT TCG CG-3'), IS1311R (5'-CGA TGG

153 TGT CGA GTT GCT CT-3'), mass_3210F (5'-GCT TGT TCC CGG TGC CAC AC-

154 3'), mass_3210R (5'-GGA GCG CGA TGC GTC AGG AC-3'), mkan_rs12360F (5'-

ACA AAC GGT GTG TCG CAA TGT GCC A-3'), and *mkan_rs12360*R (5'-TGT

- 156 CGA GCA GAC GTT CCA GGA CGG T-3'), respectively; 3) 2 μl DNA template;
- and 4) sterile deionized distilled water. The cycling condition included an initial
- denaturation step at 95°C for 10 minutes, then 30 cycles at 96°C for 45 seconds, 61.5°C
- 159 for 45 seconds, and 72°C for 40 seconds, followed by 72°C for 10 minutes for the final
- 160 extension. The amplicons were analyzed using 2% gel for 40 minutes at 100 V in 0.5X
- 161 TBE buffer. The gels were visualized using the Bio-Rad ImageLab gel reader (Bio-Rad
- 162 Laboratories Inc. USA).
- 163

164 Antimicrobial Susceptibility Testing

165 The mycobacterial isolates were cultured on Ogawa medium at 37°C for 5 to 7 days.

166 Suspensions were prepared by aseptically sweeping the confluent portion of growth on

167 the Ogawa medium with a sterile loop. Growth on the sterile loop was transferred to

168 4.5 mL of sterile water containing glass beads (7 to 10 3-mm beads) until the turbidity

169 matched the 0.5 McFarland standard with an approximate organism density of 1×10^{5}

- 170 colony forming units ml-1 (CFU/mL). The final inoculum with 5×102 CFU/mL was
- 171 prepared by transferring 50 μ l of the suspension to a tube containing 10 ml of cation
- adjusted Mueller-Hinton broth (CLSI M24-A2, 2011).

173

174 Antimicrobial susceptibility testing of *M. abscessus* complex isolates was performed

using the gold standard assay recommended by the Clinical Laboratory Standards

176	Institutes (CLSI M24-A2, 2011) which is the microdilution technique. BBL cation
177	adjusted Mueller-Hinton (CAMH) Broth (BD, Franklin Lakes, NJ, USA) with 5%
178	OADC was used as the medium for the tests. Tests on the mycobacterial strains were
179	conducted in 96-well microplates. The broth microdilution method is traditionally set
180	up as two-fold dilutions. The following working ranges were used for the mycobacteria:
181	the concentration range for amikacin, cefoxitin, and azithromycin was 0.25 to 256
182	μ g/mL; the concentration range for clarithromycin, ciprofloxacin, doxycycline, and
183	moxifloxacin was 0.0625 to 64 μ g/mL (CLSI M24-A2, 2011). All antimicrobial drugs
184	used for the antimicrobial susceptibility test were procured from Sigma Aldrich
185	(Merck Group, USA). To determine the amount of antimicrobial agent
186	powder needed for a standard solution, the formula outlined in the CLSI M24-A2, 2011
187	was used.
188	
189	The thoroughly mixed antimicrobial dilutions (100 μ l) were dispensed into each well,

190 except for the 11th well, which is a drug-free well for bacterial growth control. The 1st

191 well contained 200 μ l of CAMHB and served as the negative control. A total of 100

192 μ l of the final inoculum was dispensed in the second well up to the 11th well. The final

193 volume in each well was 200 μ l. Reference strain of antimicrobial susceptible M.

peregrinum $ATCC^{\text{®}}$ 700686 was tested along with the test clinical isolates to serve as 194

195 the quality control. The inoculated 96-well microplate were sealed and incubated at

196 37°C. The MIC values for amikacin, cefoxitin, doxycycline, ciprofloxacin,

197 moxifloxacin, azithromycin and clarithromycin were read on the third day after the

198 inoculum was added. The MICs of azithromycin and clarithromycin for isolates

199	showing susceptible results on the third day were read again on the 7 th day and 14 th day
200	to determine the presence of inducible resistance to the macrolides (Nie et al., 2014).
201	Inducible resistance to macrolides was concluded once the mycobacterial strains
202	showed azithromycin or clarithromycin susceptibility on the third day and resistance
203	on the 7th or 14th day (Lee et al., 2014). Thirty microliters of a freshly prepared 0.01%
204	of 10X resazurin (Accumed International, Westlake, Ohio) reagent were added to all
205	wells in the microplate. A blue color in the well was interpreted as no growth, while a
206	pink color was scored as growth. The MIC was defined as the lowest drug concentration
207	which prevented the color change from blue to pink (Franzblau et al., 1998). Each test
208	was done in triplicate.

209

210 PCR amplification of *rrl*, *erm*(41), *rrs*, *gyrA*, and *gyrB* genes

211 Sequencing of *rrl* and *erm*(41) genes was conducted to compare and analyze the

- 212 characteristics of the susceptible and resistant *M. abscessus* strains to AZM and CLR,
- 213 respectively. The primer sets are as follows: *erm*(41)F (5'-GAG CGC CGT CAC AAG

214 ATG CAC A-3'), erm(41)R (5'-GAC TTC CCC GCA CCG ATT CCA C-3'), rrlF (5'-

- 215 GTA GCG AAA TTC CTT TGT CGG-3'), and *rrl*R (5'-TTC CCG CTT AGA TGC
- 216 TTT CAG-3') (Nash et al., 1995; Nash et al., 2009). The primer sets for the
- 217 amplification of the amikacin resistance-related gene are rrsF (5'-CAG TAC AGA
- 218 GGG CTG CGA ACG-3') and *rrs*R (5'-AAG GAG GTG ATC CAG CCG CA-3')
- 219 (Prammananan et al., 1998). To characterize resistant M. abscessus strains to CIP and
- 220 MXF, sequence analysis of the fluoroquinolone resistant-dependent region (QRDR) of
- the gyrA and gyrB genes was conducted. The primer sets are: gyrAF (5'-GGG CAT

222 CTA AAG CCG CTG AGA-3'), gyrAR (5'-GAC GAT GGC GCG CTG ACG T-3'),

- 223 gyrBF (5'-GCA GAT GCT AAA ACG GTT GTG A-3') and gyrBR (5'-CTC GTA
- AGT ACG ACG GCA CAA-3') (Guillemin et al., 1998).
- 225

226 **RESULTS and DISCUSSION**

227

228 Phenotypic Characterization of Mycobacterium abscessus complex

- 229 The *M. abscessus* complex isolates were characterized based on colony
- 230 morphology, growth rate, and pigmentation. The isolates tended to aggregate and form
- biofilms on the third day of incubation in 7H9 broth medium incubated at 37_oC.
- Biofilms were visible both on the surface and at the bottom of the tubes. The enriched
- 233 cultures of *M. abscessus* complex from 7H9 medium were grown in Ogawa butt slants
- to determine the proportion of smooth and rough colonies. Growth on the surface of
- the Ogawa medium was observed on the third day of incubation at 37_{\circ} C.
- 236

237 The phenotypic characteristics of the 21 *M. abscessus* complex isolates are shown in

Figures 1 and 2, and Table 1. Smooth colonies of *M. abscessus* and *M. massiliense*

239 were moist, shiny, and round, while the rough colonies were dry, waxier, and wrinkled.

- 240 The smooth colony of *M. abscessus* complex expresses glycopeptidolipid (GPL) on its
- 241 cell wall and forms biofilms, while rough colony of *M. abscessus* complex does not
- form biofilms due to minimal amounts of GPL (Howard *et al.*, 2006; Byrd & Lyons,

243 1999). Moreover, rough colony of *M. abscessus* is associated with virulence compared

to the smooth colony of *M. abscessus*. In the present study, a total of 7 isolates (63.6%)

245	of <i>M. abscessus</i> and 3 (30.0%) <i>M. massiliense</i> isolates were characterized to have
246	smooth colonies, while 4 (36.4%) M. abscessus and 7 (70.0%) M. massiliense isolates
247	produced rough colonies. All M. abscessus and M. massiliense isolates were buff -
248	colored and were categorized as nonphotochromogens, i.e., they were non-pigmented
249	whether they were grown in the dark or in the presence of light. All (100%, 21/21)
250	isolates that grew in Ogawa medium were acid fast. NTM appears as shorter rods
251	compared to <i>M. tuberculosis</i> when viewed microscopically.
252	
253	Subspecies identification of Mycobacterium abscessus complex isolates
254	The subspecies of the 117 clinical isolates that were found to be negative for MPT64
255	were identified using multiplex PCR. Among the 117 clinical isolates, 11 (9.4%) were
256	identified as M. abscessus and 10 (8.5%) were M. massiliense (Figure 4). The
257	remaining isolates were identified as <i>M. tuberculosis</i> (15%, 17/114), other NTM
258	species (53.8%, 63/117), and other microorganisms (14%, 16/114). It is also
259	noteworthy that all 117 isolates were found negative using the MPT64 antigen kit, but
260	some were identified as <i>M. tuberculosis</i> using the one-step multiplex PCR assay. These
261	results may infer that mixed colonies of <i>M. tuberculosis</i> and NTM might be present in
262	the stock cultures from the bank specimens. Purification was conducted on all identified
263	M. abscessus complex isolates. Positive controls of M. abscessus and M. massiliense,
264	which were clinical isolates from the bank specimens in the National Center for
265	Pulmonary Research – TB laboratory that were previously identified by reverse blot
266	hybridization assay were tested along with the <i>M. abscesus</i> complex test isolates.
267	

268	All mycobacteria showed the 506bp band corresponding to the 16S rRNA internal
269	control which was specific only to all mycobacterial species. M. abscessus isolates
270	showed the expected 310bp band and M. massiliense showed the 1145bp band using
271	the primers for mass_3210. The mass_3210 is a specific gene previously identified
272	and used to discriminate between M. abscessus complex species (Chae et al., 2017).
273	Further analysis of the mass_3210 aligned sequences of representative isolates showed
274	two clustered groups: MAB01-MAB05 and MAS01-MAS05 (Figure 4). This result
275	implies that MAB01-MAB05 isolates clustered together, showing that they belonged
276	to one subspecies (<i>M. abscessus</i>). On the other hand, MAS01-MAS05 isolates grouped
277	together, showing that they belonged to M. massiliense subspecies.
278	
270	Drug resistance Profile of Muschasterium absassus complex

279 **Drug-resistance Profile of** *Mycobacterium abscessus* **complex**

280 Results of the antimicrobial susceptibility assay of the *M. abscessus* complex are shown 281 in Table 2. The present study showed that amikacin was the most active agent against 282 all *M. abscessus* and *M. massiliense* isolates with an MIC of $<1\mu$ g/ml for both groups. 283 These are in conformity with the results of the study of Nie *et al.* in 2014 which showed 284 that the susceptibility rate of *M. abscesuss* to AMK was 98%. Likewise, Park et al. 285 (2008) reported a 99% susceptibility rate of *M. abscessus* to AMK, while Kim *et al.* 286 (2015) reported the susceptibility rate of *M. abscessus* and *M. massiliense* to AMK as 287 91.2% and 100%, respectively. The susceptibility of all isolates to amikacin in the 288 present study may be attributed to the current treatment regimen for MDR-TB in the 289 country which is comprised of kanamycin and not amikacin. Amikacin resistant 290 isolates are not positively selected for to survive and thus are not disseminated.

292	On the other hand, FOX was shown to be less potent in vitro against M. abscessus and
293	M. massiliense isolates compared to amikacin. Although there were no M. abscessus
294	isolates that were resistant to the drug, and a low 10% of the M. massiliense were
295	resistant to the agent, 63.6% of the M. abscessus and 50% of the M. massiliense isolates
296	were only moderately susceptible to cefoxitin. The remaining 36.4% and 40% of the
297	M. abscessus and M. massiliense isolates were susceptible to it. The results are
298	comparable to those of Nie et al. (2014) that showed 0% resistant M. abscessus isolates,
299	while 53% were moderately susceptible. Koh et al. (2010) likewise showed no resistant
300	isolates of <i>M. abscessus</i> and only 1% resistance rate in <i>M. massiliense</i> against FOX.
301	Lee et al. (2015) reported resistance rate of 1.3% in M. abscessus subsp. massiliense
302	and 0% for <i>M. abscessus</i> subsp. <i>abscessus</i> against FOX.
303	
303 304	Susceptibility rates of <i>M. abscessus</i> complex isolates in the present study showed that
	Susceptibility rates of <i>M. abscessus</i> complex isolates in the present study showed that MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> (81.8% susceptible) and <i>M</i> .
304	
304 305	MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> (81.8% susceptible) and <i>M</i> .
304 305 306	MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> (81.8% susceptible) and <i>M. massiliense</i> (60% susceptible) compared to CIP against <i>M. abscessus</i> (9.1%
304305306307	MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> (81.8% susceptible) and <i>M. massiliense</i> (60% susceptible) compared to CIP against <i>M. abscessus</i> (9.1% susceptible) and <i>M. massiliense</i> (20% susceptible). This is consistent with other studies
 304 305 306 307 308 	MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> (81.8% susceptible) and <i>M. massiliense</i> (60% susceptible) compared to CIP against <i>M. abscessus</i> (9.1% susceptible) and <i>M. massiliense</i> (20% susceptible). This is consistent with other studies showing that MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> and <i>M. massiliense</i>
 304 305 306 307 308 309 	MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> (81.8% susceptible) and <i>M. massiliense</i> (60% susceptible) compared to CIP against <i>M. abscessus</i> (9.1% susceptible) and <i>M. massiliense</i> (20% susceptible). This is consistent with other studies showing that MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> and <i>M. massiliense</i> compared to CIP (Kim <i>et al.</i> , 2015; Lee <i>et al.</i> , 2014; Koh <i>et al.</i> , 2010). On the other
 304 305 306 307 308 309 310 	MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> (81.8% susceptible) and <i>M. massiliense</i> (60% susceptible) compared to CIP against <i>M. abscessus</i> (9.1% susceptible) and <i>M. massiliense</i> (20% susceptible). This is consistent with other studies showing that MXF has better <i>in vitro</i> activity against <i>M. abscessus</i> and <i>M. massiliense</i> compared to CIP (Kim <i>et al.</i> , 2015; Lee <i>et al.</i> , 2014; Koh <i>et al.</i> , 2010). On the other hand, DOX was found to be more potent against <i>M. abscessus</i> (72.7% susceptible)

314

315	Macrolides, specifically, AZM and CLR are the drugs of choice for the treatment of
316	infections caused by the M. abscessus complex. The present study reported 100%
317	susceptibility rate for both M. abscessus and M. massiliense isolates on the 3rd day of
318	incubation. However, inducible resistance to both CLR and AZM were found in M.
319	abscessus MAB04 with MICs of >16ug/ml for both drugs on the 7th day of incubation,
320	while <i>M. abscessus</i> MAB07 showed inducible resistance to AZM with an MIC of
321	$16\mu g/ml$ on the $7th$ day, and inducible resistance to CLR on the 14 th day (MIC
322	16µg/ml). Mycobacterium abscessus isolate MAB09 showed inducible resistance to
323	both CLR (>16 μ g/ml) and AZM (>16 μ g/ml) on the 14th day of incubation. Inducible
324	resistance in <i>M. abscessus</i> was expected since they have a functional erm(41) gene
325	(Kim et al., 2015; Koh et al., 2010; Nash et al., 2009). On the other hand, three M.
326	massiliense isolates (MAS04: >16µg/ml, MAS06: >16µg/ml, MAS10: >16µg/ml)
327	exhibited inducible resistance to CLR and AZM on the 14th day. This is contrast with
328	previous studies (Kim et al., 2015; Koh et al., 2010) which demonstrated that inducible
329	resistance to CLR was only present in <i>M. abscessus</i> and not in <i>M. massiliense</i> .
330	Nevertheless, our results support the findings of Li et al. (2017) and Shallom et al.
331	(2013) showing that <i>M. massiliense</i> exhibited an inducible resistance to CLR. Lastly,
332	the MIC of the test drugs for the susceptible reference M. peregrinum ATCC 700686
333	used for quality control were all in accordance with the tentative quality control ranges
334	for rapidly growing mycobacteria as indicated in the CLSI M24-A2 (2011) guidelines.
335	
336	The resistance phenotypes of $M_{abs}cassus$ complex isolates are summarized in Table

336 The resistance phenotypes of *M. abscessus* complex isolates are summarized in Table

337 3. Overall, 42.9% (9/21) of the *M. abscessus* complex isolates were found MDR; 14.3%

338 of which were *M. abscessus* isolates and 28.6% of were *M. massiliense* isolates. MDR

is defined as resistance to at least one agent in three or more antimicrobial categories

- 340 (Magiorakos *et al.*, 2012).
- 341
- Although the MDR percentage obtained in the study is lower than the 97.2% MDR

343 report of Candido *et al.* (2104), where *M. abscessus* complex isolates were found to be

- resistant to five or more antimicrobial agents, the emergence of multidrug-resistant *M*.
- 345 *abscessus* complex isolates in the country is of serious concern which impacts on the

346 current treatment regimen given to patients with *M. abscessus* infection. This calls for

- 347 the need to conduct antimicrobial susceptibility testing of clinical isolates of *M*.
- 348 *abscessus* complex for better management of the patients, and for the prevention of the

349 selection for resistant strains to survive and be disseminated.

350

351 Molecular Characterization of Drug-resistance of *Mycobacterium abscessus*

352 **comple**x

353 In the present study, the *erm*(41) gene of all the *M. abscessus* and *M. massiliense*

354 isolates with inducible resistance was amplified. All three *M. abscessus* isolates

- 355 (MAB04, MAB07, MAB09) showing inducible resistance to CLR and AZM were
- found to have a full-length *erm*(41) gene of 892bp. These isolates with the full-length
- 357 *erm*(41) gene have a T28 sequevar which is associated with inducible resistance to

358 macrolides. Such resistance can affect the current treatment regimen of a patient, thus

359 contributing to the hurdles towards successful treatment. Interestingly, all three *M*.

360	massiliense isolates (MAS04, MAS06, MAS10) with an MIC of >16ug/ml harbored a
361	full-length erm(41) gene that is present only in M. abscessus (Nash et al., 2009),
362	instead of the expected truncated $erm(41)$ gene . This finding supports the results of
363	other studies (Lipworth et al., 2018; Shallom et., 2013), which also reported the
364	presence of a functional erm(41) gene in M. massiliense leading to a resistant
365	phenotype. The mutation patterns of the macrolide-resistant M. abscessus complex
366	isolates are summarized in Table 4. Caution should thus be practiced in using the
367	erm(41) gene in identifying subspecies of M. abscessus complex.
368	
369	Among the six macrolide-resistant isolates, MAB4 showed the most number of
370	nucleotide substitutions in the erm(41) gene. MAB4 is also the only isolate that showed
371	inducible resistance to both azithromycin and clarithromycin earliest on the 7th day.
372	Such polymorphisms include nucleotide substitutions in positions A238G, C253A,
373	A255T, and A312C, all of which lead to missense mutations. Additionally, all isolates
374	harbored the T28 sequevar which is associated with inducible resistance to macrolides.
375	Aside from harboring a thymine at position 28 (T28), the remaining isolates, except for
376	MAB4 and MAB7, showed base substitution at position 168 (G168C). Nevertheless,
377	this only resulted in silent mutation. In addition, base substitution at position 255
378	(A255G) was found in all isolates, except for MAB4, which also resulted to a silent
379	mutation, thus no observable effect on the organism's phenotype.
380	
381	The 836 bp amplicons of the <i>rrl</i> gene of macrolide resistant isolates of <i>M. massiliense</i>
387	did not show mutations in positions 2057, 2058 and 2059 which are commonly

did not show mutations in positions 2057, 2058 and 2059 which are commonly

383 associated with acquired resistance (Wallace et al., 1996; Bastian et al., 2011; Maurer 384 et al., 2014). Hence, the macrolide resistance shown in these isolates in the study can 385 be attributed to its T28 sequevar in the erm(41) gene. There were three M. abscessus 386 isolates that showed inducible resistance to macrolides which is attributed to the T28 387 sequevar of the erm(41) gene. 388 Sequence analysis of the gyrA quinolone resistance-determining region (ORDR) 389 revealed only one nucleotide substitution(T252C) present in *M. abscessus* complex 390 isolates, while four nucleotide substitutions (T1443C, C1458T, C1479A, C1494T) 391 were observed in the gyrB QRDR (Table 5). Nevertheless, all observed nucleotide 392 substitutions in the gyrA and gyrB QRDR only caused silent mutations, which do not

393 cause observable effect on the organism's phenotype. However, it was also observed

394 that all fluoroquinolone resistant isolates of *M. abscessus* complex showed the presence

395 of an alanine residue at position 83 (Ala-83) in the gyrA QRDR. The presence of Ala-

396 83 is different from those reported in susceptible bacteria harboring a serine residue at

397 position 83 (Ser-83) (Yoshida *et al.*, 1990). Moreover, all ciprofloxacin resistant

isolates harbored an arginine residue at position 447 (Arg-447), and an asparagine

residue at position 464 (Asn-464) in the *gyrB* QRDR. These amino acid substitutions

400 are different from those found in susceptible bacteria harboring a lysine at position 447

401 (Lys-447) and a serine at position 464 (Ser-464_ (Yoshida *et al.*, 1991). These results

402 are in accordance with other studies (Esfahani *et al.*, 2016; de Moura *et al.*, 2012;

403 Guillemin *et al.*, 1998; Guillemin *et al.*, 1995;), showing that substitutions of amino

404 acids at these positions are associated with acquired resistance to fluoroquinolones. It

405 is hypothesized that the presence of these amino acids could decrease the interaction

bioRxiv preprint doi: https://doi.org/10.1101/864447; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

406	between the quinolone drug and the gyrase A and B subunit-DNA complex (Guillemin
407	<i>et al.</i> , 1998).

- 408
- 409 To our knowledge, this is the first study to assess the drug resistance profile including
- 410 determination of the genetic mechanisms of drug resistance of *M. abscessus* complex
- 411 in the Philippines. Therefore, the findings of this study presented a potential area of
- 412 interest about nontuberculous mycobacteria (NTM) that need to be explored.
- 413
- 414 Based on the findings of the study, correct identification of *M. abscessus* complex

415 subspecies is important because their responses to anti-TB medications vary from one

416 subspecies to another. Isolation and identification of NTM species, which are not parts

417 of the routine procedure in most clinical microbiology laboratory in the Philippines is

418 important to understand the issues on NTM in clinical samples.

419

420

421 ACKNOWLEDGMENTS

422 This research was supported by a grant from the Department of Science and

- 423 Technology through the Accelerated Science and Technology Human Resource
- 424 Development Program National Science Consortium (ASTHRDP-NSC).

REFERENCES

427	1.	Al-Mutairi NM, Ahmad S, Mokkadas E. 2011. Performance comparison of
428		Four methods for detecting multidrug-resistant Mycobacterium tuberculosis
429		strains. International Journal of Tuberculosis and Lung Diseases 7(2):66-69.
430	2.	Bastian S, Veziris N, Roux AL. 2011. Assessment of clarithromycin
431		susceptibility in strains belonging to the Mycobacterium abscessus group by
432		erm(41) and rrl sequencing. Antimicrobial Agents Chemotherapy 55: 775-781.
433	3.	Byrd TF & Lyons CR. 1999. Preliminary characterization of a Mycobacterium
434		abscessus mutant in human and murine models of infection. Infection and
435		Immunity 67(9): 4700-4707.
436	4.	Candido PHC, Nunes LDS, Marques EA, Folescu TW, Coelho FS, de Moura
437		VCN, da Silva MG, Gomes KM, da Silva Lourenco MC, Aguiar FS, Chitolina
438		F, Armstrong DT, Leao SC, Neves FPG, de Quieroz Mello FC, Duarte RS.
439		2014. Multidrug-Resistant Nontuberculous Mycobacteria Isolated from Cystic
440		Fibrosis Patients. Journal of Clinical Microbiology 52(8): 2990-2997.
441	5.	Chae H, Han SJ, Kim SY, Ki CS, Huh HJ, Yong D, Koh WJ, Shin SJ. 2017.
442		Development of a one-step multiplex PCR assay for differential detection of
443		Major Mycobacterium species. Journal of Clinical Microbiology.
444		doi:10.1128/JCM.00549-17.
445	6.	Charan J, Biswas T. 2013. How to calculate sample size for different study
446		designs in medical research? Indian Journal of Psychological Medicine 35(2):
447		121-126.
448	7.	Clinical and Laboratoy Standards Institute 2011. Susceptibility Testing of

449		Mycobacteria, Nocardiae, and other Aerobic Actinomycetes, approved
450		standard, 2md ed. CLSI document M24-A2. Wayne, PA: Clinical Laboratory
451		and Standards Institute.
452	8.	de Moura VCN, de Silva MG, Gomes KM, Coelho FS, Sampaio JLM, Mello
453		FCQ, Lourenco MCS, Amorim ELT, Duarte RS. 2012. Phenotypic and
454		Molecular Characterization of Quinolone Resistance in Mycobacterium
455		abscessus subsp. bolletii recovered from Postsurgical Infections. Journal of
456		Medical Microbiology 61: 115-125.
457	9.	Esfahani BN, Esfahani FSZ, Bahador M, Moghim S, Radaei T, Yazdi HR, Safaei
458		HG, Fazeli H. 2016. Analysis of DNA gyrA Gene Mutation in Clinical and
459		Environmental Ciprofloxacin-Resistant Isolates of Non-Tuberculous
460		Mycobacteria Using Molecular Methods. Jundishapur Journal of Microbiology
461		9(3):e30018.
462	6.	Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A,
463		Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH. 1998. Rapid,
464		Low-Technology MIC Determination with Clinical Mycobacterium
465		tuberculosis Isolates by Using the Microplate Alamar Blue Assay. Journal of
466		Clinical Microbiology 36(2): 362-366.
467	7.	Gler MT, Macalintal LE, Raymond LO, Guilatco R, Quelapio MI, Tupasi
468		TE. 2012. Multidrug-Resistant Tuberculosis among Previously Treated
469		Patients in the Philippines. International Journal of TB and Lung Disease 15:5.
470	8.	Guillemin I, Jarlier V, Cambau E. 1998. Correlation between quinolone

bioRxiv preprint doi: https://doi.org/10.1101/864447; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

472	mycobacteria. A	Antimicrobial Agents and	Chemotherapy 39:2145-2149.
	J	\mathcal{O}	1.2

- 473 9. Guillemin I, Cambau E, Jarlier V. 1995. Sequences of conserved region in the
- 474 A subunit of DNA gyrase from nine species of the genus Mycobacterium:
- 475 phylogenetic analysis and implication for intrinsic susceptibility to quinolones.
- 476 Antimicrobial Agents Chemotherapy 39: 2145-2149.
- 477 10. Howard ST, Rhoades E, Recht J, Pang X, Alsup A, Kolter R, Lyons CR, Byrd
- 478 TF. 2006. Spontaneous reversion of *Mycobacterium abscessus* from a smooth
- to a rough morphotype is associated with reduced expression of
- 480 glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology
- 481 152(6):1581-90.
- 482 **11.** Kim SY, Kim CK, Bae IK, Jeong SH, Yim JJ, Jung JY, Park MS, Kim YS, Kim
- 483 SK, Chang J, Kang YA. 2015. The drug susceptibility profile and inducible
- 484 resistance to macrolides of *Mycobacterium abscessus* and *Myycobacterium*
- 485 *massiliense* in Korea. Diagnostic Microbiology and Infectious Disease 81:107-
- 486 111.
- 487 12. Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Shin
 488 SJ, Huitt GA, Daley CL, Kwon OJ. 2010. American Journal of Respiratory and
 489 Critical Care Medicine. 183(3).
- 490 **13.** Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. 2015.
- 491 *Mycobacterium abscessus* complex infections in human. Emerging Infectious
 492 Diseases 21(9):1638-1646.
- 493 14. Lee SH, Yoo HK, Kim SH, Koh WJ, Kim CK, Park YK, Kim HJ. 2014. The
 494 drug resistance profile of *Mycobacterium abscessus* group strains in Korea.

495		Annals of Laboratory Medicine 34(1): 31-37.
496	15.	Li B, Yang S, Chu H, Zhang Z, Liu W, Luo W, Ma W, Xu X. 2017.
497		Relationship between Antibiotic Susceptibility and Genotype in Mycobacterium
498		abscessus Clinical Icolates. Frontiers in Microbiology 8: 1739.
499	16.	Lipworth S, Hough N, Leach L, Morgan M, Jeffrey K, Andersson M, Robinson
500		E, Smith EG, Crook D, Peto T, Walker T. 2018. Whole-Genome Sequencing for
501		Predicting Clarithromycin Resistance in Mycobacterium abscessus.
502		Antimicrobial Agents Chemotherapy. doi: 10.1128/AAC.01204-18.
503	17.	Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG,
504		Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice
505		LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. 2012.
506		Multidrug- resistant, extensively drug-resistant and pandrug-resistant bacteria:
507		an international expert proposal for interim standard definitions for acquired
508		resistance. Clinical Microbiology and Infection 18: 268-281.
509	18.	Maurer FP, Castelberg C, Quiblier C, Bo'ttger EC, Somosko'vi A. 2014.
510		Erm(41)- dependent inducible resistance to azithromycin and clarithromycin in
511		clinical isolates of Mycobacterium abscessus. Journal of Antimicrobial
512		Chemotherapy, 69: p.1559–1563.
513	19.	Nash KA, Brown-Elliott BA, Wallace RJ Jr. 2009. A novel gene, erm(41),
514		Confers inducible macrolide resistance to clinical isolates of Mycobacterium
515		abscessus but is absent from Mycobacterium chelonae. Antimicrobial Agents
516		Chemotherapy 53:1367-1376.
517	20.	Nash KA, Inderlied CB. 1995. Genetic basis of macrolide resistance in

518		Mycobacterium avium isolated from patients with disseminated disease.
519		Antimicrobial Agents and Chemotherapy 39:2635-30.
520	21.	Nie W, Duan H, Huang H, Lu Y, Bi P, Chu N. 2014. Species identification of
521		Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus
522		subsp. <i>bolletii</i> using <i>rpoB</i> and <i>hsp65</i> , and susceptibility testing to eight
523		Antibiotics. International Journal of Infectious Diseases 25: 170-174.
524	22.	Park S, Kim S, Park EM, Kim H, Kwon OJ, Chang CL, Lew WJ, Park YK, &
525		Koh WJ 2008. In vitro antimicrobial susceptibility of Mycobacterium
526		abscessus in Korea. Journal of Korean Medical Science 23: 49 – 52.
527	23.	Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y,
528		Böttger EC, Wallace RJ Jr. 1998. A single 16S ribosomal RNA substitution
529		is responsible fro resistance to amikacin and other 2-deoxystreptamine
530		aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae.
531		Journal of Infectious Diseases 177:1573-81.
532	24.	Pourhoseingholi MA, Vahedi M, Rahimzadeh M. 2013.Sample size
533		calculation in medical studies. Gastroenterology and Hepatology from Bed to
534		Bench 6(1):14-17.
535	25.	Shallom SJ, Gardina PJ, Myers TG, Sebastian Y, Conville P, Calhoun LB,
536		Tettelin H, Olivier KN, Uzel G, Sampaio EP, Holland SM, Zelazny AM. 2013.
537		New Rapid Scheme for Distinguishing the Subspecies of the Mycobacterium
538		abscessus Group and Identifying Mycobacterium massiliense Isolates with
539		Inducible Clarithromyicn Resistance. Journal of Clinical Microbiology 51:
540		2943-2949.

541	26.	Siapno RP,	King Kay Cl	B, Visperas	JC. 2016. 7	The Incidence	of Mycobacterium

- 542 Other than Tuberculosis Isolated in Specimens Suspected of Tuberculosis in a
- 543 Tertiary Hospital in the Philippines: A Retrospective Study. Philippine Journal
- 544 of Internal Medicine (54):4
- 545 27. Sowajassatakul A, Prammananan T, Cahiprasert A, Phunpruch S. 2014. Molecular
- 546 characterization of amikacin, kanamycin, and capreomycin resistance in M/XDR-
- 547 TB strain isolates in Thailand.
- 548 28. Wallace RJ, Meier A, Brown BA. 1996. Genetic basis for clarithromycin resistance
- 549 among isolates of *Mycobacterium chelonae* and *Mycobacterium abscessus*.
- 550 Antimicrobial Agents Chemotherapy 40: p.1676–1681.
- 551 29. Yoshida Y, Bogaki M, Nakamura M, Yamanaka LM, Nakamura S. 1991.
- 552 Quinolone Resistance-Determining Region in the DNA Gyrase gyrB Gene of
- 553 *Escherichia coli*. Antimicrobial Agents and Chemotherapy 35: 1647-1650
- 30. Yoshida Y, Bogaki M, Nakamura M, Nakamura S. 1990. Quinolone Resistance-
- 555 Determining Region in the DNA Gyrase gyrA Gene of *Escherichia coli*.
- 556 Antimicrobial Agents and Chemotherapy 34: 1271-1272.
- 557

558 Figure Legends

559	Figure 1. Biofilm formation of <i>M. abscessus</i> complex in 7H9 medium (A). Colony
560	morphology of <i>M. abscessus</i> complex isolates showing two morphotypes: rough and
561	smooth colonies (B). All isolates are nonphotochromogens (non-pigmented).
562	
563	Figure 2. Positive AFB smear result under 1000x magnification, with immersion oil.
564	
565	Figure 3. One-step Multiplex PCR Assay results using primers for mass_3210 gene.
566	Molecular marker (100 plus bp); Ctrl MAB: <i>M. abscessus</i> control (310bp mass_3210
567	amplicon) and the Mycobacterium-specific16S rRNA internal control (506bp); Ctrl
568	MAS: <i>M. massiliense</i> control (1145bp mass_3210 amplicon) and the <i>Mycobacterium</i>
569	specific 16S rRNA internal control (506bp). MAS = M . massilience; MAB = M .
570	abscessus.
571	
572	Figure 4. Neighbor-joining tree based on mass_3210 sequences. Dendrogram showing
573	the clustering of <i>M. abscessus</i> isolates (MAB01-MAB05) and <i>M. massiliense</i> isolates
574	(MAS01-MAS05) together with mass_3210. The IS_1311 sequence which is specific

575 to *M. avium* complex (MAC) was used as the outgroup.

Table 1. Phenotypic characteristics of *M. abscessus* and *M. massiliense* isolates from patients with MDR TB infections.

Study ID	AFB Smear	Growth Rate	Pigmentation	Colony Morphology
MAB01	+	Day 3	buff	smooth
MAB02	+	Day 3	buff	rough
MAB03	+	Day 3	buff	rough
MAB04	+	Day 3	buff	smooth
MAB05	+	Day 3	buff	smooth
MAB06	+	Day 3	buff	smooth
MAB07	+	Day 3	buff	rough
MAB08	+	Day 3	buff	rough
MAB09	+	Day 3	buff	smooth
MAB10	+	Day 3	buff	smooth
MAB11	+	Day 3	buff	smooth
MAS01	+	Day 3	buff	rough
MAS02	+	Day 3	buff	rough
MAS03	+	Day 3	buff	rough
MAS04	+	Day 3	buff	rough
MAS05	+	Day 3	buff	smooth
MAS06	+	Day 3	buff	smooth
MAS07	+	Day 3	buff	rough
MAS08	+	Day 3	buff	smooth
MAS09	+	Day 3	buff	rough
MAS10	+	Day 3	buff	rough

MAB = M. abscessus; MAS = M. massiliense

585 Table 2. Antimicrobial susceptibility test results of *M. abscessus* and *M. massiliense*

586 using broth microdilution method against seven (7) antimicrobial drugs.

Antimicrobial Drugs	<i>M. abscessus</i> subspecies (n)	Results read on	MIC range (ug/ml)	Susceptible No. (%)	Moderately Susceptible No. (%)	Resistant No. (%)
Amiltonin	<i>M. abscessus</i> (n=11)	Day 2	<1	11 (100%)	0	0
Cefoxitin	M. massiliense (n=10)	Day 3	<1	10 (100%)	0	0
Amikacin Cefoxitin Ciprofloxacin Moxifloxacin Doxycycline	<i>M. abscessus</i> (n=11)	D 2	4-64	4 (36.4%)	7 (63.6%)	0
	M. massiliense (n=10)	Day 3	16-128	4 (40.0%)	5 (50.0%)	1 (10.0%)
Cinnefleresin	<i>M. abscessus</i> (n=11)	D 2	0.125-8	1 (9.1%)	4 (36.4%)	6 (54.5%)
Ciprofloxacin	M. massiliense (n=10)	Day 3	0.25-16	2 (20.0%)	6 (60.0%)	2 (20.0%)
Mariflamatin	<i>M. abscessus</i> (n=11)		0.125-2	9 (81.8%)	2 (18.2%)	0
Moxifloxacin	M. massiliense (n=10)	Day 3	0.5-16	6 (60.0%)	3 (30.0%)	1 (10.0%)
	M. abscessus (n=11)		0.25-32	8 (72.7%)	1 (9.1%)	2 (18.2%)
Doxycycline	M. massiliense (n=10)	Day 3	0.125-16	1 (10.0%)	3 (30.0%)	6 (60.0%)
		Day 3	<0.06-1	11 (100%)	0	0
	M. abscessus (n=11)	Day 7	0.125- >16	9 (81.8%)	0	2 (18.2%)
Azithaomuoin		Day 14	0.25->16	7 (63.6%)	1 (9.1%)	3 (27.3%)
Azithromycin	M. massiliense (n=10)	Day 3	<0.06-1	10 (100%)	0	0
		Day 7	0.125-1	10 (100%)	0	0
		Day 14	0.125- >16	7 (70%)	0	3 (30%)
		Day 3	< 0.06-0.5	11 (100%)	0	0
	M. abscessus (n=11)	Day 7	<0.06- >16	9 (81.8%)	1 (9.1%)	1 (9.1%)
Clarithromycin		Day 14	<0.06- >16	7 (63.6%)	1 (9.1%)	3 (27.3%)
		Day 3	< 0.06-2	10 (100%)	0	0
	M. massiliense (n=10)	Day 7	< 0.06-2	10 (100%)	0	0
		Day 14	0.25->16	7 (70%)	0	3 (30%)

587 a extended incubation up to 14 days to determine inducible resistance to macrolides

Study	Subspecies	Antimicrobial Agents Subspecies							
ID	Identification	AZM	CLR	AMK	FOX	CIP	MXF	DOX	MDR*
MAB01	M. abscessus	S	S	S	М	R	S	М	+
MAB02	M. abscessus	S	S	S	Μ	Μ	S	S	-
MAB03	M. abscessus	S	S	S	Μ	S	S	S	-
MAB04	M. abscessus	IR	IR	S	Μ	S	S	S	-
MAB05	M. abscessus	S	S	S	Μ	R	S	S	-
MAB06	M. abscessus	S	S	S	Μ	R	S	S	-
MAB07	M. abscessus	IR	IR	S	S	Μ	S	S	-
MAB08	M. abscessus	S	S	S	S	R	S	S	-
MAB09	M. abscessus	IR	IR	S	Μ	R	Μ	R	+
MAB10	M. abscessus	S	S	S	Μ	R	S	S	-
MAB11	M. abscessus	S	S	S	Μ	Μ	Μ	R	+
MAS01	M. massiliense	S	S	S	S	Μ	S	Μ	-
MAS02	M. massiliense	S	S	S	М	S	S	Μ	-
MAS03	M. massiliense	S	S	S	S	S	Μ	R	-
MAS04	M. massiliense	IR	IR	S	Μ	S	S	М	+
MAS05	M. massiliense	S	S	S	Μ	S	Μ	R	+
MAS06	M. massiliense	IR	IR	S	R	R	Μ	R	+
MAS07	M. massiliense	S	S	S	Μ	М	Μ	S	-
MAS08	M. massiliense	S	S	S	Μ	R	R	R	+
MAS09	M. massiliense	S	S	S	Μ	М	S	R	+
MAS10	M. massiliense	IR	IR	S	Μ	Μ	S	R	+

588 Table 3. Resistance phenotypes of *M. abscessus* and *M. massiliense* in the study

589 Antimicrobial agents tested AZM (Azithromycin), CLR (Clarithromycin), AMK (Amikacin), FOX

590 (Cefoxitin), CIP (Ciprofloxacin), MXF (Moxifloxacin), DOX (Doxycycline). The letter S is for susceptible,

591 M indicates moderate susceptible, R is for resistant, and IR stands for inducible resistant isolate. The

592 hyphen indicates that the isolate is not MDR while the (+) sign indicates that the isolate is MDR. Multidrug-

593 resistant (MDR) is defined as resistance to at least one agent in three or more antimicrobial categories

594 (Magiorakos et al., 2012).

595 **Table 4.** Single nucleotide polymorphisms (SNPs) in the *erm*(41) gene associated with 596 macrolide-resistant isolates of *M. abscessus* and *M. massiliense*

	T28	T159	G168	T231	A238	G249	C253	A255	A312	A330	T336	A414
Study ID	<u>T</u> GG (Trp)	GG <u>T</u> (Gly)	GT <u>G</u> (Val)	GA <u>T</u> (Asp)	<u>A</u> TA (Ile)	GC <u>G</u> (Ala)	<u>C</u> TA (Leu)	CT <u>A</u> (Leu)	CA <u>A</u> (Glu)	АТ <u>А</u> (Ile)	AG <u>T</u> (Ser)	CG <u>A</u> (Arg)
MAB4	-	С	-	С	G (Val)	Α	A (Ile)	T (Ile)	C (His)	С	С	G
MAS4	-	-	С	-	-	-	-	G	-	-	-	-
MAB7	-	-	-	-	-	-	-	G	-	-	-	-
MAB9	-	-	С	-	-	-	-	G	-	-	-	-
MAS6	-	-	С	-	-	-	-	G	-	-	-	-
MAS10	-	-	С	-	-	-	-	G	-	-	-	-

597 MAB = M. abscessus; MAS = M. massiliense. The base substitution site is underlined for each codon

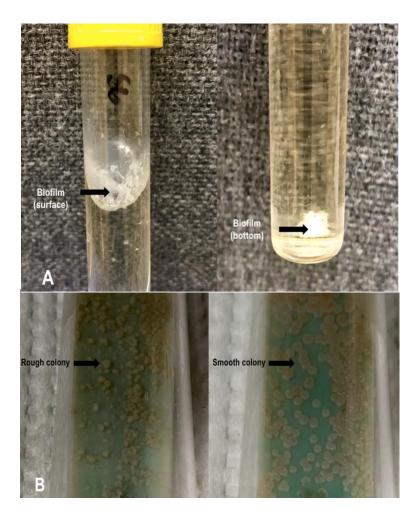
sequence. The hyphen indicates that the base is the same in the type strain sequence *Mycobacterium*

599 abscessus ATCC 19977. The type strain M. abscessus is intrinsically susceptible but has inducible

600 resistance to macrolides. T28 is associated with inducible-macrolide resistance. Bases of DNA:

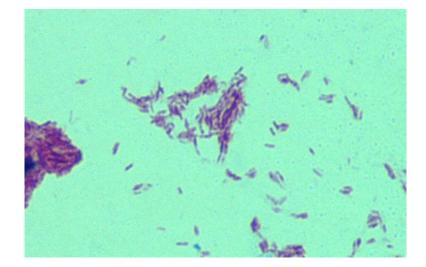
601 Adenine (A), Guanine (G), Cytosine (C), and Thymine (T).

602 **Table 5**. Single nucleotide polymorphisms (SNPs) observed in the quinolone resistancedetermining region *of gyr*A and *gyr*B of

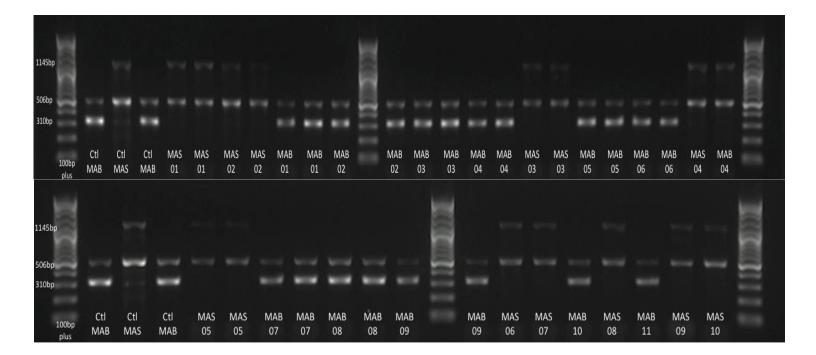

	gyrA gene	gyrB gene							
Study ID	T252	T1443	T1458	C1479	C1494 AA <u>C</u>				
Study ID	TA <u>T</u>	GG <u>T</u>	ТТ <u>С</u>	CG <u>C</u>					
	(Tyr)	(Gly)	(Phe)	(Arg)	(Asn)				
MAB1	С	С	Т	-	-				
MAB5	С	С	Т	Α	-				
MAB6	С	С	Т	-	-				
MAB8	С	С	Т	-	-				
MAB9	-	-	-	-	Т				
MAS6	-	-	-	-	Т				
MAB10	С	С	Т	-	-				
MAS8	С	С	Т	-	-				

603 fluoroquinolone-resistant isolates of M. abscessus and M. massiliense

604 MAB = *M. abscessus*; MAS = *M. massiliense*. The base substitution site is underlined for each codon


sequence. The hyphen indicates that the base is the same in the type strain sequence *Mycobacterium*

606 abscessus ATCC 19977. Bases of DNA: Adenine (A), Guanine (G), Cytosine (C), and Thymine (T).



607 Figure 1. Biofilm formation of *M. abscessus* complex in 7H9 medium (A). Colony

- 608 morphology of *M. abscessus* complex isolates showing two morphotypes: rough and
- 609 smooth colonies (B). All isolates are nonphotochromogens (non-pigmented).

Figure 2. Positive AFB smear result under 1000x magnification.

- 611 Figure 3. One-step Multiplex PCR Assay results using primers for *mass_3210* gene.
- 612 Molecular marker (100 plus bp); Ctrl MAB: *M. abscessus* control (310bp mass_3210
- 613 amplicon) and the Mycobacterium-specific16S rRNA internal control (506bp); Ctrl
- 614 MAS: M. massiliense control (1145bp mass_3210 amplicon) and the Mycobacterium-
- 615 specific 16S rRNA internal control (506bp). MAS = M. massilience; MAB = M.
- 616 *abscessus*.

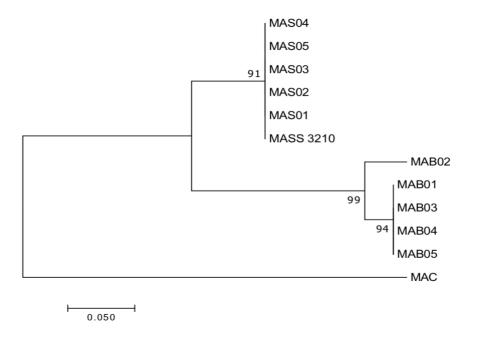


Figure 4. Neighbor-joining tree based on *mass_3210* sequences. Dendrogram showing
the clustering of *M. abscessus* isolates (MAB01-MAB05) and *M. massiliense* isolates
(MAS01-MAS05) together with *mass_3210*. The *IS_1311* sequence which is specific

620 to *M. avium* complex (MAC) was used as the outgroup.

bioRxiv preprint doi: https://doi.org/10.1101/864447; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.