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ABSTRACT 

While membrane contact sites (MCS) between intracellular organelles are abundant1, and 

cell-cell junctions are classically defined2, very little is known about the contacts between 

membranes that delimit extracellular junctions within cells, such as those of chloroplasts 

and intracellular parasites. The malaria parasite replicates within a unique organelle, the 

parasitophorous vacuole (PV) but the mechanism(s) are obscure by which the limiting 

membrane of the PV, the parasitophorous vacuolar membrane (PVM), collaborates with 

the parasite plasma membrane (PPM) to support the transport of proteins, lipids, 

nutrients, and metabolites between the cytoplasm of the parasite and the cytoplasm of the 

host erythrocyte (RBC). Here, we demonstrate the existence of multiple micrometer-sized 

regions of especially close apposition between the PVM and the PPM. To determine if these 

contact sites are involved in any sort of transport, we localized the PVM nutrient-

permeable and protein export channel EXP2, as well as the PPM lipid transporter 

PfNCR1. We found that EXP2 is excluded from, but PfNCR1 is included within these 

regions of close apposition. Thus, these two different transport systems handling 
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hydrophilic and hydrophobic substances, respectively, assume complementary and 

exclusive distributions. This new structural and molecular data assigns a functional 

significance to a macroscopic membrane domain.  

 

INTRODUCTION 

Morbidity and mortality in malaria are due to the apicomplexan Plasmodium spp. 

replicating within the host RBC. During its initial invasion of the erythrocyte, the parasite 

invaginates the RBC plasma membrane to form the PV as a second barrier3,4. The parasite must 

install its own, unique transport systems in order to import and export everything it needs for its 

survival and proliferation5–7. Understanding the underlying transport mechanisms between the 

parasite and its host is useful to identify drug targets. Yet, these crucial transport systems remain 

incompletely understood for both hydrophilic and hydrophobic substances. 

A PVM channel, permeable to water-soluble nutrients like monosaccharides and amino 

acids5, is formed by the 'exported protein 2' or EXP28. EXP2 also facilitates protein export, by 

serving as the protein-permeant pore for the 'Plasmodium translocon of exported proteins' 

(PTEX)9. A number of PPM channels, including several that are specific for particular nutrients 

have been identified and studied10,11. However, it is not known how lipid substances are 

transported across the PV, since the two limiting membranes have never been seen to connect or 

to transport membrane vesicles between each other6. The PPM resident protein 'Plasmodium 

Niemann-Pick C1-related protein' (PfNCR1) is essential for lipid homeostasis12 but it is 

unknown how it functions. It is not clear how the PV is organized, in order to support the 

transport of such a large variety of substrates.  

Here we hypothesize that the structure of the PV is built such that it can support direct 

exchange of lipids across the PV space, directly between the PPM and PVM, in regions that can 

be defined as membrane contact sites (MCS).  

RESULTS 

Regions of close PVM-PPM apposition exist 

Thin-sections of parasitized red cells were examined in the electron microscope (EM) to 

determine the separation distance between PVM and PPM. Since transport across the PV is most 

active in the trophozoite stage, i.e. the stage when parasites have begun to accumulate hemozoin 

and grow the fastest but have not begun to divide13, only this stage was considered. An example 

image is shown in (Figure 1A). The distribution of separation distances between PVM and PPM 
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in such organisms was found to be bimodal, indicating two distinct structural regions: regions of 

“close membrane apposition”, separated by ~10 nm, and regions of “PV lumen” with wider 

membrane separation distances of 20-30 nm. To control for possible artifacts introduced by 

chemical fixation, infected red cells were also prepared by a quick-freeze, freeze-fracture method 

that preserved cells in their most lifelike state. Still, these two distinct types of regions could be 

clearly discerned (Figure 1B). In conclusion, these two distinct differences in separation are 

narrow enough that they could be bridged by protein complexes that could interconnect the PVM 

and PPM membranes, and thus are candidates for membrane contact sites1.  

EXP2 localizes in domains of the PVM 

A functionally characterized marker of the PVM, EXP28, was used to investigate the 

domain structure of the PVM. To test domain formation in fixed but label-free, unmodified 

parasites (NF54), an immunofluorescence assay using EXP2 antibodies was performed. EXP2 

was found in patches, interrupted by stretches of PVM devoid of anti-EXP2 label (Figure 2A). 

To test if these regions of EXP2 were domains in living parasites and to control for chemical 

fixation artefacts, a parasite line bearing a C-terminal mNeonGreen (mNG) fusion to the 

endogenous copy of EXP2 (EXP2-mNG) was examined14. In these parasites, the mNG signal 

also was found in continuous patches, interrupted by stretches of PVM devoid of mNG (Figure 

2B). To quantify and visualize these apparent domains of EXP2, we developed a simple tool: a 

projection of the maximum fluorescence intensity from the inside of the parasite onto a sphere. 

This results in a map of the fluorescence signal of the periphery of the parasite (Figure 2 C-E). 

Both samples show a protein domain coverage on the order of 50% around the parasite (Figure 

2F).  

Two physically independent techniques to visualize EXP2 spatial organization indicate 

its domain structure. Thus, EXP2-mNG can serve as a robust and readily detected marker for 

such PVM domains, labeling regions of protein export and transport of small water-soluble 

molecules. 

EXP2 co-localizes with PV lumen  

The EM-findings of two regions with distinct PVM-PPM separation-distances and the 

light microscopy findings of domains for protein export and nutrient import represented by 

EXP2 led us to hypothesize that these features could be correlated. 

To determine the distribution of the EXP2-domains relative to PV domains with distinct 

lumenal space, their localization was carefully mapped. Thus, a fluorescent label for the PV 
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lumen was required that could be compared with the distribution of EXP2-mNG. To this end, 

mRuby3 was targeted to the PV lumen using the signal peptide of HSP101 (PV-mRuby3)15. To 

verify that PV-mRuby3 would serve as a genuine label of the PV lumen, correlative 

light/electron microscopy after cryo-thin sectioning was performed16. PV-mRuby3 was indeed 

found to localize to the regions of wider separation between PVM and PPM, confirming that it 

would serve a label for the accessible PV space (Figure 3A). 

Co-expression and two-color imaging of EXP2-mNG and PV-mRuby3 demonstrated a 

clear-cut colocalization of both labels around the periphery of the parasite (Figure 3B). The mean 

Pearson-correlation coefficient for the analyzed sample is 0.81 CI [0.78, 0.83] (Figure 3C) as a 

mathematical measure for the degree of signal overlap, with numbers from -1 (perfectly anti-

correlated), 0 (not correlated) to 1 (perfectly correlated). 

Thus, EXP2 distribution can be correlated with regions of the wide mRuby3 accessible 

lumen exists. Within the limits of optical microscopy, they colocalize. Therefore, protein export, 

nutrient import, and presumably aqueous waste export occurs in the regions of the PV lumen.  

The lipid transporter PfNCR1 anti-localizes with EXP2 and the PV lumen 

Sites of close membrane contact are implicated in direct transfer of lipids via intervening 

or included proteins that localize to those domains1. In the PPM PfNCR1 has been found to be 

essential for the maintenance of lipid homeostasis12. However, its human homolog, Niemann-

Pick C1 (hNPC1) relies on a co-factor hNPC2, to transport lipids17; no such co-factor has been 

identified in Plasmodium spp., suggesting that PfNCR1 may work differently. Thus, localizing 

PfNCR1 with respect to the separation-distances of the membranes of the PV is indicative in 

order to determine if PfNCR1 can be expected to transport lipids by interacting with a soluble 

cofactor from the PV lumen, or whether it interacts directly with the PVM at sites of close 

membrane apposition. 

To determine the distribution of PfNCR1 relative to the domains defined by EXP2 and 

the PV lumen, an endogenous EXP2-mRuby3 fusion was engineered into a parasite expressing 

an endogenous PfNCR1-GFP fusion protein, allowing both proteins to be monitored by live 

fluorescence while preserving their native timing and expression levels. Two-color imaging 

showed that localization of the two labels is anti-correlated around the periphery of the parasite 

(Figure 4A). The mean Pearson-correlation coefficient of this sample is -0.20 CI [-0.10, -0.29], 

giving a mathematical measure for the anti-correlation of both signals (Figure 4B). Positive 

values of the coefficient are caused by small domains, approaching the resolution limit of light 
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microscopy with signals co-localizing at the border of domains (Figure 4A). Anti-correlation was 

also observed in parasites where the PV-mRuby3 lumenal reporter was expressed in the 

PfNCR1-GFP background (Figure SI 2). From this observed anti-localization of the lumenal vs. 

hydrophobic transporter labels, it is most likely that PfNCR1 is localized to regions of close 

membrane apposition. 

DISCUSSION 

In studying how the malaria parasite modifies its protective membrane barriers to import 

and export materials that it needs to survive and grow, we found that the host cell-parasite 

interface (HPI) is a unique intercellular junction with clearly definable regions of protein 

composition and variable separation, consisting of a parasite vacuolar membrane, the lumen of 

the vacuole (that is the parasite’s extracellular space), and the plasma membrane of the parasite. 

Different classes of molecules, hydrophobic and hydrophilic, are transported through this one 

continuous, spheroidal interface with distinct regions. This segregation of function is 

accomplished by the creation of membrane contact sites (MCS) like those between cellular 

organelles18,19. Electron microscopy resolved the PVM and the PPM, allowing quantification of 

their separation-distances, and confirming the visual impression that the PVM and the PPM form 

distinct domains, characterized by a bimodal distribution of space between the two membranes. 

Using two complimentary techniques, indirect immunofluorescence and live-cell microscopy of 

fluorescently tagged EXP2, this solute-transporter was detected in µm-sized domains that 

correlate spatially with domains where the PVM and the PPM are separated enough from each 

other for the vacuole to accumulate a visible amount of the lumenal marker PV-mRuby3. In 

contrast, we found that the parasite lipid transporter PfNCR1 was specifically excluded from 

these regions and instead accumulated in the intervening regions of close PVM-PPM apposition. 

We conclude that the PV has evolved to become laterally segregated into relatively wide regions 

for hydrophilic transport, and separate close-contact regions for hydrophobic transport.  

The distances between the PPM and PVM for both domains could be bridged by proteins, 

potentially qualifying both regions as MCS1. However, in neither domain of the HPI were 

bridging proteins observed in our “deep-etch” EMs, nor were they observed in our thin-section 

EMs. However, when the PV is induced to swell experimentally, e.g., when PVM protein export 

is conditionally impaired, leading to protein accumulation8,20,21, it expands inhomogenously into 

irregular protuberances, suggesting that some sort of adhesion normally exists between the PPM 

and the PVM that prevents it from swelling uniformly. Still to be determined is whether these 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/863993doi: bioRxiv preprint 

https://doi.org/10.1101/863993


adhesions concentrate in the tightly apposed regions or the more open regions. EXP2-mNG is 

included in the distended regions of the PVM when protein export is impaired (Figure SI 3), 

indicating that the EXP2-containing domains form the less strongly connected region.  

In contrast, and in keeping with the detrimental effect of water on lipid transport, sites of 

close PVM-PPM apposition seem to be devoid of PV lumen altogether. This is an extremely 

close apposition, at the lower end of the membrane distances found at organelle-organelle MSC, 

i.e. 10-80 nm1. PfNCR1, a lipid transporter, localizes to these sites of unusually close membrane 

apposition. While it can be inferred that lipid transport is taking place at these sites, it is unclear 

how PfNCR1 goes about exchanging its substrate, presumably cholesterol, with the PVM. It has 

been demonstrated that the large extra-membranous domain of PfNCR1 is localized in between 

PPM and PVM. The closely apposed membranes are within the proteins hypothesized radius12, 

so it may well hand over lipids directly22, or exchange lipids with the help of a membrane-bound 

cofactor. PfNCR1 may also function as an anchor between these two membranes, given the 

relatively constant separation between them at the close contacts. Curiously, the domain structure 

of the PVM exemplified by the EXP2 distribution shown here, is quite dynamic and variable (cf., 

SI movie, demonstrating remarkable flexibility in the PV), suggesting there may exist an active 

mechanism of protein localization driven by processes in the parasite cytoplasm. Additionally, 

proteins may target to their respective regions by various other mechanisms, such as interacting 

with structural proteins, sensing of membrane distance, as found with other contact sites1, or 

protein exclusion, as found at gap junctions2. 

The structure-function relationship described here (Figure 4C) can potentially guide the 

study of other functions at the HPI, such as the inhomogeneously distributed PVM proteins noted 

previously23,24. A mechanism for the transport of resident membrane proteins from the PPM to 

the PVM is still lacking as PTEX is not involved in this process25,26. The regions of close 

apposition are a promising place to look for machinery that would allow transfer of such 

proteins. 

The size of these domains are similar to those created in lipid phase demixing seen in 

model membranes27. However, cellular membranes are complex mixtures that for the most part 

fail to demix at physiological temperatures and remain almost entirely liquid-disordered28. 

Moreover, cholesterol-rich domains are not detected by surface imaging using mass 

spectroscopy29. However, molecular dynamic simulations have revealed nanoscopic 

microdomains of hexagonally packed saturated lipids30 that may correspond to the nonideal 
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demixing revealed by FRET31. Recently a fungal vacuole was reported to exhibit temperature-

dependent lipid phase demixing32 but no function has yet been ascribed to these domains. The 

specific role of lipid asymmetry and composition, and its role in domain formation and 

maintenance, in the face of lipid transport, remain to be investigated for any MCS or membrane 

domain. The HPI offers a larger platform for these studies that may benefit both cell biological 

and medical investigations. 
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METHODS 

Cell culture 

Plasmodium falciparum was cultured in T25 Nunclon Delta closed cap culture flasks (Thermo 

Fisher, Waltham, MA) in RPMI 1640 supplemented with 25 mM HEPES, 0.1 mM hypoxanthine, 

25 μg/ml gentamicin (all Thermo Fisher), 0.5% Albumax II (Gibco, Gaithersberg, MD), and 4.5 

mg/ml glucose (MilliporeSigma, St. Louis, MO) at 37 °C in a 5% CO2, 5% O2 atmosphere at 

5% hematocrit below 5% parasitemia. Red blood cells were obtained from anonymized healthy 

donors in a protocol approved by the National Institutes of Health Institutional Review Board. 

NF54 obtained through BEI Resources, NIAID, NIH as part of the Human Microbiome Project. 

The parasite lines Exp2-mNeonGreen14, Exp2-mNeonGreen—PV-mRuby315, NF54attb33 were 

described previously. 

Molecular Biology 

For generation of an endogenous EXP2-mRuby3 fusion, the blasticidin-S deaminase (BSD) 

cassette between SalI and BglII in the plasmid pGDB34 was isolated by digestion and gel 

purification and inserted between the same restriction sites in the plasmid pyPM2GT-EXP2-

mNeonGreen14 with a T4 Quick Ligation kit (NEB), replacing the yDHODH cassette. A 

synonymous mutation in the EagI site within the BSD coding sequence was then introduced to 

inactivate this site using a QuikChange Lightning Multi Site Directed Mutagenesis kit (Agilent, 

Santa Clara, CA) and the primer 

GCCAGCGCAGCTCTCTCTAGCGACGGGCGCATCTTCACTGGTGTCAATG. The 

mRuby3 coding sequence was then PCR amplified from plasmid pLN-HSP101-SP-mRuby315 

with primers GATGAAAATAAAGAACCTAGGGGAAGTGGAGGAGTG and 

TAACTCGACGCGGCCGTCACTTGTACAGCTCGTCCATGCC and inserted between AvrII 

and EagI using an In-Fusion cloning kit (clontech), replacing the mNeonGreen coding sequence 

and resulting in the plasmid pbPM2GT-EXP2-mRuby3. This plasmid was linearized at AflII and 

co-transfected with the pAIO-EXP2-CT-gRNA14 into a parasite line bearing a C-terminal GFP 

fusion to the endogenous pfncr1 gene12 and selection with 2.5 µg/ml blasticidin-S was applied 24 

hours after transfection. For expression of PV-targeted mRuby3, the plasmid pLN-HSP101-SP-

mRuby3 was co-transfected with pINT35 into the PfNCR1-GFP background and selection with 

2.5 µg/ml blasticidin-S was applied 24 hours after transfection. 

To generate an endogenous EXP2-mNeonGreen fusion in the HSP101DDD background, the 

plasmid pyPM2GT-EXP2-mNeonGreen was co-transfected with pAIO-EXP2-CT-gRNA into 
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NF54attB: HSP101DDD 8. Selection was applied with 2µM DSM1 24 hours post transfection and 

parasites were cloned by limiting dilution when they returned from selection.  

Immunofluorescence assay (IFA) 

IFAs were performed as described previously8. Briefly, cells taken directly from the culture and 

left to settle for 10 min on Concanavalin A (Vector Laboratories, Burlingame, CA) coated cover 

slides in culture medium at 37°C. Excess cells were taken off with 3 gentle washes using 37°C 

cell culture medium. Cells were fixed for 15 min at 37°C in freshly prepared 4% 

paraformaldehyde, 0.0075% glutaraldehyde (both from electron microscopy sciences), in 

phosphate buffered saline (PBS) (Gibco). After 3 washes in PBS cells were permeabilized in 

freshly prepared PBS containing 0.2% Triton X-100 (MilliporeSigma). The sample was then 

blocked in PBS + 3% Bovine Serum Albumin (BSA) (MilliporeSigma). Cells were incubated in 

primary Monoclonal antibody 7.7 (anti-EXP-2), obtained from The European Malaria Reagent 

Repository (http://www.malariaresearch.eu, 1:500) for 1 hr at room temperature. The sample was 

washed 5 times in PBS. The secondary antibody (Donkey-anti-mouse conjugated with Alexa 

Fluor 488, from Invitrogen, lot 1113537, 1:150) was applied for 20 min, then washed off 5 times 

with PBS. The sample was mounted in ProLong AntiFade Gold with DAPI (Invitrogen). 

Light microscopy 

Images were obtained on a Zeiss 880 with Airyscan module using a 63x 1.4NA Zeiss Plan-

Apochromat, 37 °C immersion oil (Zeiss, Oberkochen, DE). Images were collected using Zen 

black (Zeiss) in the Airyscan mode, following the programs recommendation for the optimal 

pixel size and slice thickness, pixel dwell times were kept at 1-2 µs. Live parasites were 

transferred into a hybridization chamber (HybriWell HBW20, Grace Bio‐Labs, Bend, OR) for 

observation on the microscope15. The stage was heated to physiological temperature using a 

stage incubator (Tokai Hit INU, Fujinomiya-shi, Japan) (set temperatures: top 37 °C, stage 36 

°C, objective 39 °C) to reach 35-36 °C at the coverslip. Trophozoites, i.e. non-segmented cells 

with hemozoin, were chosen from a bright field image. For colocalization imaging following 

parameters were chosen: Imaging on EXP2-mNeonGreen—PV-mRuby lines was done using a 

“band pass 495-550 nm+ long pass 570 nm” emission filter, switching excitation at each line 

between 488 nm at 0.1% and 561 nm at 1% power. For experiments with GFP as fluorescent tag 

the line switch strategy, while minimizing movement artefacts, lead to blead through from the 

mRuby3 to the GFP channel as the mRuby3 signal was very abundant and mRuby3 can be 

minimally excited with 488 nm making it visible alongside the relatively weak GFP signal in the 
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GFP channel. This required switching filters after completing z-stacks in each individual 

channel. Parameters chosen to image PfNCR1-GFP—EXP2-mRuby3 are for the GFP channel 

excitation: 488 nm at 2% power, emission: “band pass 420-488 nm + band pass 495-550 nm”, 

and the mRuby3 channel excitation: 561 nm 0.2%, emission: bandpass “495-550 nm+ long pass 

570 nm”. The images were processed in Zen black using Airyscan processing in automatic 

settings. 

Map projection and correlation analysis 

PVM, PV lumen and PPM are not resolvable from each other with a light microscope but appear 

as a single surface. To avoid thresholding for the correlation analysis of the light microscopy 

data, the 3-dimensional dataset was reduced to 2 dimensions projecting the maximum 

fluorescence intensity from the calculated center of the parasite onto an “infinite” sphere in 1° 

intervals in all directions. This information can then be used to draw an angular map of the 

signal. A Mollweide projection was chosen as it represents an equal-area projection when 

assuming a spherical parasite. Maps obtained this way are similar to how the night sky can be 

represented in a map36. The Pearson correlation coefficient was then calculated on the maps. The 

maps also provide an informative visual impression of the 3D dataset in print. 

Analysis was done using custom scripts in MATLAB 8.5 (MathWorks, Natick MA). Briefly, the 

center of the cell was determined from the center of mass of a mask created from pixels in 

between the 1st and the 2nd level of a 2-level threshold using the “multithresh” function. Each 

voxel was then assigned an altitude and azimuth with respect to this center using the “acos” and 

“atan2” functions respectively. The altitude and azimuth were then used to create a mask with a 

1° resolution (equivalent to 17.5 nm at a distance of 1 µm from the center). The maximum of 

masked intensity was then recorded as angular intensity value for the altitude and azimuth. 

Finally, the angular intensity values were mapped using a Mollweide projection onto a 

1024x2048 pixel sized image. For each pixel with coordinates xi and yi corresponding angles 

were calculated: 

ps = 1024; 

R = ps/(2*sqrt(2)); 
 

y = ((yi-(ps/2))/(ps/2))*(R*sqrt(2)); 
th = asin(y/(R*sqrt(2))); 
Latitude(yi,:)  = real(asin((2* altitude +sin(2* altitude))/pi)*180/pi);  

and  
x = ((xi-ps)/ps)*(2*R*sqrt(2)); 
L = real((pi*x)/(2*R*sqrt(2)*cos(th))*180/pi); 
Longitude(yi,xi) = real((pi*x)/(2*R*sqrt(2)*cos(th))*180/pi); 
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Area coverage of the signal was determined by segmenting the individual maps with the 

“multithresh” function for 2 levels, counting everything above the first threshold as signal.  

Correlation coefficients (r) were correlated using the Pearson correlation coefficient from the 

intensities of channel 1 (XL) and channel 2 (YL): 

N = length(XL); 
mX = mean(XL); 
mY = mean(YL); 
r = (sum(XL.*YL)-N*mX*mY)/(sqrt(sum(XL.*XL)-N*mX*mX)*sqrt(sum(YL.*YL)-

N*mY*mY)); 

 

Regions showing the tubulovesicular network, identified as PVM extending out from the parasite 

into the RBC cytosol, have enriched EXP2 signal compared to the peripheral PV and were 

manually masked out when calculating the correlation coefficient. 

The 95% confidence interval of the correlation coefficient was calculated in Prism (Graphpad, 

San Diego, CA) after a Fisher transform of the data, the result was then back transformed.  

The source code of the scripts used will be made available through the authors and online 

repository. 

Electron Microscopy on thin sections 

Erythrocyte cultures infected with NF54attb parasites were enriched for late stages using a LD 

column in a QuadroMACs magnetic separator (Miltenyi Biotech, Cologne, DE), then fixed with 

2% glutaraldehyde in 100mM NaCl, 30 mM Hepes buffer pH 7.2, and 2 mM CaCl2. During a 1-

2 day long aldehyde fixation, the cultures settled into soft pellets, after which they were post-

fixed for 30 minutes as pellets in 0.25% OsO4 plus 0.25% potassium ferrocyanide dissolved in 

0.1 M cacodylate buffer containing 2 mM CaCl2. Thereafter, they were washed in 0.1 M 

cacodylate buffer+2mM CaCl2, and poststained by sequential 30 min treatments with 0.5% 

tannic acid in 0.1 M cacodylate buffer+2 mM CaCl2 followed by 0.5% uranyl acetate in 50 mM 

acetate buffer pH 5.2. Immediately thereafter, they were dehydrated with increasing 

concentrations of ethanol, and embedded in epoxy resin by standard techniques: exchange 

through propylene oxide, then increasing concentrations of the epoxy, and final vacuum-

embedding and polymerization at 70 °C. Thereafter, semi-thin sections were made vertically 

through the pellets at 0.5 µm and stained with toluidine blue, to determine optimal areas for 

further examination. These were then sectioned at 80 nm, stained for 5 min with 50 mM lead 

citrate dissolved in 0.1 M citrate buffer pH 5.2, and examined at 80 KV in a JEOL 1400 electron 

microscope equipped with a 4Kx6K digital camera (Advanced Microscopy Techniques Corp, 

Woburn). In digital versions of the final electron micrographs, PPM and PVM were segmented 
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by hand, using ImageJ37, drawing a line where each membrane was clearly visible. Sections 

where the membranes were cut obliquely were not considered. The minimal distance of the two 

membrane traces was determined using a MATLAB script. 

Correlative Light Electron Microscopy 

EXP2-mNeonGreen—PV-mRuby3 parasites were isolated on a 65% percoll (MilliporeSigma) 

interface. Cells were fixed using 4 % formaldehyde + 0.4 % glutaraldehyde in 1x PHEM (pH 

6.9) (Electron microscopy sciences)38. Gelatin-embedded samples were infiltrated with 2.3 M 

sucrose (in 0.1 M phosphate buffer) and put at 4 °C for three days on a rotating wheel, mounted 

onto sample pins and frozen in liquid nitrogen. Subsequently, the samples were ultrathin cryo-

sectioned (50–60 nm) with a FC7/UC7-ultramicrotome (Leica, Vienna, AT) and with a 35° 

diamond knife (Diatome, Hatfield PA), picked-up with a 1:1 mixture of 2% methylcellulose (25 

centipoises, MilliporeSigma) and 2.3 M sucrose (USB Corporation, Cleveland, OH)39. Sections 

were 5-10 min washed in PBS prior to light microscopy imaging using the Zeiss LSM 880 

Airyscan module (see the section on light microscopy). Samples were then embedded in 4% 

uranyl acetate/2% methylcellulose mixture (ratio 1:9)40 for electron microscopy. Thin sections 

were examined on a JEM-1200EX (JEOL USA) transmission electron microscope (accelerating 

voltage 80 KeV) equipped with an A.M.T. 6-megapixel digital camera (Advanced Microscopy 

Techniques, Woburn, MA). EC-CLEM41 was used to align light and electron microscopy image 

in a non-rigid grid to accommodate sample warping. Electron micrographs with up to 2500x 

direct magnification (7.4 nm pixel size) were used for the alignment to the light microscopy 

image (pixel size following the “optimal” pixel size settings of the Airyscan module is 42.6 nm). 

Freeze Fracture Replica 

Late stage NF54attb infected red blood cells were isolated using a magnetic separator as for the 

thin sections. Cell were gently pelleted at 1000 RPM in a clinical centrifuge, then layered as a 

thick slurry on a tiny 3x3mm class coverslip mounted on a lung cushion, in preparation for 

quick-freezing with the liquid helium cooled copper-block "slammer"42. Thereafter, they were 

transferred to a Balzers 400 freeze-fracture apparatus, where they were fractured through their 

well-frozen surfaces, "deep-etched" for 2 min at -104 °C, and then rotary-replicated with 4 nm of 

platinum deposited from a 20° angle. Thereafter they were "backed" with 10 nm of carbon 

deposited from 90°, removed from the Balzers, thawed, and the platinum replica was floated on 

25% SDS to partially remove organic material from underneath it43. After washing, the replica 
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was picked up on an EM grid. Thereafter, these replicas were examined in the electron 

microscope in the same manner as the thin sections, above. 
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FIGURE LEGENDS 

Figure 1. The PVM is wrapped tightly around the parasite. 

(A) (left) Thin section electron micrograph of a Plasmodium falciparum (NF54attb)-infected red 

blood cell. The inset highlights the PVM and PPM. (right) Histogram of the PVM-PPM distance 

collected from single sections of 7 parasites in 6 images in regions where both membranes are 

cut at a right angle. 

(B) Freeze fracture of NF54attb. A region of PV lumen is visible in the left of the image and a 

region of close membrane apposition is visible in the right side. 

(A and B) Scale bars: 100 nm. White arrowheads to the PVM, black arrowheads to the PPM. 

 

Figure 2. EXP2 is distributed in domains on the PVM. 

(A) Single confocal slices of an indirect immunofluorescence assay of NF54 showing EXP2 

(green), DAPI (blue) and bright field (gray). 

(B) Single confocal slices of a live cell image of EXP2-mNeonGreen. EXP2-mNeonGreen 

(green), bright field (gray). (A&B) Scale bar: 1 µm. 

(C) Principle of the spherical intensity projection and mapping for the 2-dimensional analysis of 

the 3-dimensional dataset (see methods for details). 

(D&E) Mollweide projection of the images in A&B respectively. 

(F) Fraction of EXP2 domain coverage (mean+/-SD) in the projections determined by 

thresholding. The plot compares the domain coverage as measured by either NF54 antibody 

labeled against EXP2 (N=33 cells) and Exp2-mNeonGreen--PV-mRuby3 parasite line (N=38 

cells). 

 

Figure 3. Colocalization of vacuolar space with EXP2. 

(A) Detail of correlative light electron microscopy of EXP2-mNeonGreen—PV-mRuby3 

parasites showing the presence of PV-mRuby3 in the PV lumen and absence in the apposed 

membrane region (arrowhead) (see Figure SI 1 for the full image). (magenta, left) mRuby3 

signal in the Tokuyasu cryo-section. (middle) Overlay of confocal and electron microscopy 

image. (right) Higher resolution electron microscopy image of the region. Scale bar: 100 nm. 

(B) Mollweide projections of Exp2-mNeonGreen—PV-mRuby3 parasites. Exp2-mNeonGreen 

(green, top), PV-mRuby3 (magenta, middle), merge (bottom). Samples chosen represent 

examples of relatively low (0.55), average (0.72) and high (0.85) Pearson correlation coefficients 
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of the maps. White arrowheads show tubulovesicular network44 that has a relatively higher 

density of EXP2. 

(C) Histogram of Pearson correlation coefficients of trophozoite stage EXP2-mNeonGreen—PV-

mRuby3 parasites (N = 38 cells). Regions that extend from the parasite to form the 

tubulovesicular network were excluded for the correlation analysis. 

 

Figure 4. Anti-colocalization of EXP2 and PfNCR1. 

(A) Mollweide projections of PfNCR1-GFP—EXP2-mRuby3 parasites. EXP2-mRuby3 (top, 

magenta), PfNCR1-GFP (middle, green), merge (bottom). Samples chosen represent examples of 

relatively low (0.46), average (-0.22) and high (-0.71) anti-correlation according to the Pearson 

correlation coefficients of the maps. 

(B) Pearson correlation coefficients of Exp2-mNeonGreen—PV-mRuby3 parasites (N = 38 cells, 

see figure 3) in comparison to PfNCR1-GFP—EXP2-mRuby3 (N=39 cells). Regions that extend 

from the parasite to form the tubulovesicular network were excluded for the correlation analysis. 

Bars: mean +/- 95% CI.  

(C) Localization of EXP2 correlates with the existence of a relatively large PV lumen. The PV 

lumen can store proteins for export and accessory proteins to facilitate protein export. The lipid 

transporter PfNCR1 localizes to regions of close PPM-PVM apposition. Functionally, PfNCR1 

may be able to directly contact the PVM to exchange lipids and sites of membrane apposition 

may be sites for the general exchange of lipophilic material, a functional hallmark of membrane 

contact sites.  
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Figure 1. The PVM is wrapped tightly around the parasite. 

(A) (left) Thin section electron micrograph of a Plasmodium falciparum (NF54attb) infected red 

blood cell. The inset highlights the PVM and PPM. (right) Histogram of the PVM-PPM distance 

collected from single sections of 7 parasites in 6 images in regions where both membranes are 

cut at a right angle. 

(B) Freeze fracture of NF54attb. A region of PV lumen is visible in the left of the image and a 

region of close membrane apposition is visible in the right side. 

(A and B) Scale bars: 100 nm. White arrows heads to the PVM, black arrow heads to the PPM. 
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Figure 2. EXP2 is distributed in domains on the PVM. 

(A) Single confocal slices of an indirect immunofluorescence assay of NF54 showing EXP2 

(green), DAPI (blue) and bright field (gray). 

(B) Single confocal slices of a live cell image of EXP2-mNeonGreen. EXP2-mNeonGreen 

(green), bright field (gray). (A&B) Scale bar: 1 µm. 

(C) Principle of the spherical intensity projection and mapping for the 2-dimensional analysis of 

the 3-dimensional dataset (see methods for details). 

(D&E) Mollweide projection of the images in A&B respectively. 

(F) Fraction of EXP2 domain coverage (mean+/-SD) in the projections determined by 

thresholding. The plot compares the domain coverage as measured by either NF54 antibody 

labeled against EXP2 (N=33 cells) and Exp2-mNeonGreen--PV-mRuby3 parasite line (N=38 

cells). 
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Figure 3. Colocalization of vacuolar space with EXP2. 

(A) Detail of correlative light electron microscopy of EXP2-mNeonGreen—PV-mRuby3 

parasites showing the presence of PV-mRuby3 in the PV lumen and absence in the apposed 

membrane region (arrow head) (see Figure SI 1 for the full image). (magenta, left) mRuby3 

signal in the Tokuyasu cryo-section. (middle) Overlay of confocal and electron microscopy 

image. (right) Higher resolution electron microscopy image of the region. Scale bar: 100 nm. 

(B) Mollweide projections of Exp2-mNeonGreen—PV-mRuby3 parasites. Exp2-mNeonGreen 

(green, top), PV-mRuby3 (magenta, middle), merge (bottom). Samples chosen represent 

examples of relatively low (0.55), average (0.72) and high (0.85) Pearson correlation coefficients 

of the maps. White arrowheads show tubulovesicular network 44 that has a relatively higher 

density of EXP2. 

(C) Histogram of Pearson correlation coefficients of trophozoite stage EXP2-mNeonGreen—PV-

mRuby3 parasites (N = 38 cells). Regions that extend from the parasite to form the 

tubulovesicular network were excluded for the correlation analysis. 
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Figure 4. Anti-colocalization of EXP2 and PfNCR1. 

(A) Mollweide projections of PfNCR1-GFP—EXP2-mRuby3 parasites. EXP2-mRuby3 (top, 

magenta), PfNCR1-GFP (middle, green), merge (bottom). Samples chosen represent examples of 

relatively low (0.46), average (-0.22) and high (-0.71) anti-correlation according to the Pearson 

correlation coefficients of the maps. 

(B) Pearson correlation coefficients of Exp2-mNeonGreen—PV-mRuby3 parasites (N = 38 cells, 

see figure 3) in comparison to PfNCR1-GFP—EXP2-mRuby3 (N=39 cells). Regions that extend 

from the parasite to form the tubulovesicular network were excluded for the correlation analysis. 

Bars: mean +/- 95% CI.  

(C) Localization of EXP2 correlates with the existence of a relatively large PV lumen. The PV 

lumen can store proteins for export and accessory proteins to facilitate protein export. The lipid 

transporter PfNCR1 localizes to regions of close PPM-PVM apposition. Functionally, PfNCR1 

may be able to directly contact the PVM to exchange lipids and sites of membrane apposition 

may be sites for the general exchange of lipophilic material, a functional hallmark of membrane 

contact sites.  
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Figure SI 1. Correlative light electron microscopy 

Zoomed out view of the correlation shown in figure 3. Red: PV-mRuby3, Green: EXP2-

mNeonGreen, 

Gray: electron micrograph. The magenta box indicates the region shown in figure 3. Scale bar: 1 

µm. 
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Figure SI 2. Correlation of PV-mRuby3 and PfNCR1-GFP 

Mollweide projections of a parasite expressing PV-mRuby3 (magenta) and PfNCR1-GFP 

(green). The Pearson correlation coefficient for this cell is -0.20. 
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Figure SI 3. EXP2 is targeted to distensions when protein export is impaired 

Compared to the broken but smooth outline of EXP2-mNeonGreen in unmodified parasites (see 

figure 2) the outline after impairing protein export by inactivating HSP101 using a (DHFR)-

based destabilization domain (DDD) leads to the appearance of a distended signal. This suggests 

that EXP2 is present in the distended membrane reported in 8. 

Green: Exp2-mNeonGreen, gray: brightfield, scale bar: 5 µm. 

Trimethoprim was withdrawn 24 hours before imaging. Image was acquired on an Axio Imager 

M1 equipped with a Plan-Apochomat 100x/1.4NA objective and ORCA-ER CCD camera, using 

the GFP filterset for the mNeonGreen imaging. 

 

Figure SI movie. Dynamics of relatively small EXP2 domains. 

Time course of Z-projection of a stack of the PVM face closest to the cover slide. Green: EXP-

mNG. Scale bar: 1 µm. 
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