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1 Abstract
2 Citizen science (CS) contributes to the combined knowledge about species distributions, which is 

3 a critical foundation in the studies of invasive species, biological conservation, and response to climatic 

4 change. In this study, we assessed the value of CS for termites worldwide. First, we compared the 

5 abundance and species diversity of geo-tagged termite records in iNaturalist to that of the University of 

6 Florida termite collection (UFTC) and the Global Biodiversity Information Facility (GBIF). Second, we 

7 quantified how the combination of these data sources affected the number of genera that satisfy data 

8 requirements for ecological niche modeling. Third, we assessed the taxonomic correctness of iNaturalist 

9 termite records in the Americas at the genus and family level through expert review based on photo 

10 identification. Results showed that iNaturalist records were less abundant than those in UFTC and in 

11 GBIF, although they complemented the latter two in selected world regions. A combination of GBIF and 

12 UFTC led to a significant increase in the number of termite genera satisfying the abundance criterion for 

13 niche modeling compared to either of those two sources alone, whereas adding iNaturalist observations as 

14 a third source only had a moderate effect on the number of termite genera satisfying that criterion. 

15 Although research grade observations in iNaturalist require a community-supported and agreed upon ID 

16 below the family taxonomic rank, our results indicated that iNaturalist data do not exhibit a higher 

17 taxonomic classification accuracy when they are designated research grade. This means that non-research 

18 grade observations can be used to more completely map the presence of termite locations in certain 

19 geographic locations without significantly jeopardizing data quality. We concluded that CS termite 

20 observation records can, to some extent, complement expert termite collections in terms of geographic 

21 coverage and species diversity. Based on recent data contribution patterns in CS data, the role of CS 

22 termite contributions is expected to grow significantly in the near future. 

23
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24 Introduction
25 Termites are destructive insect pests that annually cause billions of dollars in damage and losses. 

26 These costs, based on insecticide sales figures, were estimated to be $22 billion worldwide in 1999 [1]. 

27 Using 2010 sales data, the estimated global economic impact of termites has increased to $40 billion, with 

28 subterranean termites accounting for about 80 % of the costs [2]. Understanding spatio-temporal patterns 

29 of termite distributions is therefore necessary for the implementation of effective pest control strategies. 

30 Open-access databases provide unprecedented access to biodiversity data in the form of species 

31 occurrences worldwide. Biodiversity databases vary in composition of data sources, and include expert 

32 surveys, georeferenced museum collection data, published literature reviews, and contributions from 

33 recreational naturalists. Specifically, the continued advancement of information and communication 

34 technology, including the emergence of the Web 2.0 and the development of location-aware mobile 

35 technologies, sensors, and cameras have greatly increased the capacity of how citizens can contribute to 

36 Citizen Science (CS) projects [3]. Citizens have become an important source of geographic information, 

37 even in domains that had until recently been the exclusive realm of authoritative agencies [4]. However, 

38 because of their cryptic nature and small size, termite specimens retrieved from their substrata or during 

39 dispersal flights often require expert knowledge [5], which renders data collection and identification 

40 particularly challenging. Previous research has demonstrated that CS adds scientific value to conventional 

41 science in various aspects, including greater geographic scales and temporal range, improved field 

42 detection, and detection of unusual occurrences [3]. It also offers an additional way to monitor Essential 

43 Biodiversity Variables (EBVs) [6] that cannot be remotely sensed, such as taxonomic diversity or 

44 migratory behavior. Furthermore, CS adds other benefits to conservation efforts, natural resource 

45 management, and environmental protection through public engagement [3]. The development of spatial 

46 statistical methods has led to the frequent use of open-access biodiversity databases in species distribution 

47 modeling (SDM) [7], which may be used for a variety of purposes, such as identifying species diversity 

48 hotspots [8] and predicting potential ranges of invasive species [9], in addition to forecasting effects of 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2019. ; https://doi.org/10.1101/863688doi: bioRxiv preprint 

https://doi.org/10.1101/863688
http://creativecommons.org/licenses/by/4.0/


49 climate change on biodiversity [10]. Consistent survey coverage along time, space, and environment is 

50 required to answer different ecological and evolutionary questions and to develop accurate SDMs [11]. 

51 iNaturalist is a prominent CS platform for documenting species observations across the world. 

52 Participants submit media (pictures, video, or audio) of biological sightings to the iNaturalist data portal 

53 that are then identified online by the iNaturalist community [12]. Despite their strong contributions to 

54 publicly available data sets, CS based geo-data collections oftentimes suffer from geographic and user 

55 selection bias caused by the opportunistic nature of the data collection process [13] compared to data from 

56 administrative agencies [14]. 

57 While there is no reference data collection available that captures the presence of termites in all 

58 parts of the world, it is nevertheless possible to compare various features (e.g. number of sightings, spatial 

59 coverage, species diversity) between different online data portals and expert collections. The first task of 

60 this study was thus to compare global record numbers, spatial coverage, and species diversity for termites 

61 between iNaturalist, the University of Florida termite collection (UFTC) and Global Biodiversity 

62 Information Facility (GBIF). The latter data source is currently the largest occurrence data portal, 

63 combining data from many sources of different countries, scientific institutions and CS platforms. Since 

64 iNaturalist is one the sources feeding into the GBIF platform, its contribution for termite data records in 

65 GBIF can be quantified. The second task was to assess how many genera recorded in individual or 

66 combined data sources, respectively, satisfy data requirements for ecological niche modeling. The third 

67 task was to analyze the taxonomic correctness at the genus and family level of termite records on 

68 iNaturalist through photo identification, and to examine if iNaturalist research grade records are more 

69 likely to have fewer taxonomic misclassifications than records of other data quality assessment levels. 

70

71
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72 Materials and methods

73 UF termite collection

74 The UFTC at the Fort Lauderdale Research and Education Center in Davie, Florida, was 

75 established in 1985. An online repository [15] hosts over 38,000 termite samples with official species 

76 names from collections that are preserved in 85 % ethanol. Samples were primarily collected by 

77 operatives in the pest control industry, property owners, and academics and submitted to the second 

78 author (RHS) for identification. The collection database records describe genus and species, geographic 

79 latitude and longitude, collection date, and type of structure infested. It contains records from all 

80 continents, although the geographic focus is on North and South America. Worldwide, the collection 

81 dates range between 1915 and 2019. As of mid 2019 the UFTC contains samples from over 800 unique 

82 bionomials.

83 iNaturalist

84 iNaturalist was created in 2008 by graduate students at the University of California Berkley, and 

85 is currently funded by the California Academy of Sciences (starting 2014) and the National Geographic 

86 Society (starting 2017). Observations from iNaturalist frequently include date, time, and a media record 

87 of the observation. Any media records are then identified by the online community. As of 2019, 

88 iNaturalist contained over 24 million biological observations from users around the world. Termite 

89 records were downloaded from iNaturalist on 4/16/2019 using the R [16] package “rinat” [17] and the 

90 query ‘taxon_name = “Termites” ’. This returns all observations of the epifamily Termidoidae (formerly 

91 known as Infraorder Isoptera). After removal of records with missing or invalid coordinates a total set of 

92 6078 termite observations remained worldwide. iNaturalist identifies the reliability of observations 

93 through a process called data quality assessment (DQA) [18]. The DQA addresses to some extent all 

94 elements of standardized principles for describing the data quality for geographic data [19], which include 

95 completeness, logical consistency, positional accuracy, temporal accuracy, and thematic accuracy. The 
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96 DQA categorizes contributed data into three categories, which are “Needs ID”, “Research Grade” and 

97 “Casual”. If an observation satisfies a set of specific technical criteria (i.e. having a date, geographic 

98 coordinates, photos or sounds, and not being a captive or cultivated organism), this observation is 

99 considered verifiable, and is labeled “Needs ID”, otherwise it is called “Casual”. An observation reaches 

100 research grade status (the highest level) if the community agrees at a level lower than family, which is 

101 when more than two thirds of two identifiers or more agree on a taxon. From the extracted sample of 6078 

102 termite observations, the vast majority are still “Needs ID” observations (5161 records, 84.9 %), and only 

103 785 (12.9 %) are research grade, with the highest proportion (33.9 %) in South Africa. That latter fact can 

104 be partially attributed to the more than 300 termite contributions in that region by user Tony Rebelo, a 

105 conservation biologist from the South African National Biodiversity Institute. The remaining records of 

106 the worldwide collection on iNaturalist are of “Casual” quality with 132 records (2.2 %). These numbers 

107 illustrate that using research grade only records for any type of spatial analysis seriously affects data 

108 abundance in difficult to ID taxa.

109 By default, all photos uploaded to iNaturalist are released under a Creative Commons (CC) 

110 Attribution-Non-Commercial (CC-BY-NC) license, which allows free use of the data for non-commercial 

111 purposes, as long as the owner is cited. However, users can revoke this license entirely or chose from 

112 different versions of the CC license, such as CC0 (essentially public domain, under which data are made 

113 available for any use without restriction), or CC BY (under which data are made available for any use, 

114 including commercial purposes, provided that attribution is given appropriately for the sources of data 

115 used, in the manner specified by the owner). 

116 GBIF

117 The GBIF platform is an inter-governmental, global research infrastructure that facilitates the 

118 sharing, discovery and access to primary biodiversity data [20]. It provides free access to digitized 

119 biological data from different sources (e.g. museum collections, survey programs) as a result of 

120 collaborations between data providers and taxonomists across many institutions. As of fall 2019, GBIF 
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121 facilitated access to over 1.35 billion records per the GBIF website. It gathers data records from more 

122 than 800 institutions worldwide, where CS programs represent about 27% of total GBIF records for 

123 insects [12]. Data publishers can use a variety of tools, protocols and standards to publish primary 

124 occurrence records to GBIF. 

125 Access to records on GBIF can be achieved through bulk download from the GBIF website, 

126 through web services, or through third-party libraries, such as the R “rgbif” package [21]. For this study, a 

127 GBIF bulk download for geo-tagged records including human observation, material sample or specimen 

128 of the Blattodea order was conducted on 4/18/19, followed by application of the filter for the nine termite 

129 families of the epifamiliy Termitoidae. This process resulted in 37,061 records worldwide. This dataset 

130 contained 443 contributions from three CS programs (iNaturalist: n = 436, naturgucker: n = 4, natusfera: 

131 n = 3). Besides this, 35,520 records stem from non-CS sources and 1,098 records lack a data source 

132 description. Overall, the share of CS based contributions of termite data to GBIF is small (~1.2 %). A 

133 large bulk of GBIF termite data comes from a single contributor, namely the Commonwealth Scientific 

134 and Industrial Research Organisation (CSIRO) with 14,134 records, almost all of which were acquired in 

135 Australia.

136 All occurrence records indexed on GBIF need to satisfy certain data quality criteria before being 

137 included in the platform [22]. One of these criteria is that records need to be associated with one of the 

138 three CC licenses mentioned before (CC0, CC BY, CC BY-NC), and be of research grade quality. For 

139 example, from among the set of 785 worldwide iNaturalist research grade termite records, only 437 

140 observations have one of these three CC licenses. This explains that the number iNaturalist termite 

141 records extracted through GBIF (n = 436) matches (closely) that for records downloaded directly from 

142 iNaturalist when the CC and research grade filters are applied (n = 437). The difference of one record 

143 stems from the fact that GBIF misses the most recent iNaturalist termite record (dated 4/13/2019) that 

144 may not have been discovered in the latest crawling process.
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145 Mapping termite record distribution

146 To analyze the distribution of termite records we imported the cleaned data sets into R 3.6.1. We 

147 created 2.5° hexagon grid cells for mapping distribution using the st_make_grid function and summarized 

148 the number of termite observations in each data set using the sf_intersect function in the SF package [23]. 

149 Data suitability for niche modeling

150 Ecological niche modeling techniques, such as Maxent, require a sufficient volume of geo-

151 referenced occurrence records with temporal attributes [20]. The recommended minimum number of 

152 distinct data-points for niche modeling analysis falls between 10 and 20 [24]. We determined the number 

153 termite genera that feature enough observations for ecological niche modeling in any of the analyzed data 

154 sources and their combinations, respectively. For this purpose, the surface of the Earth is subdivided into 

155 0.1 degree grid cells [20]. Next, the number of those termite genera is determined which are present in at 

156 least 10, 20, and 50 distinct 0.1 grid cells around the globe, respectively. Only records with a time stamp 

157 containing at least month and year are considered for this purpose. 

158 Taxon correctness of iNaturalist termite records

159 To determine taxon correctness, we performed a manual review of 2201 iNaturalist records in the 

160 Americas that have been named at the family rank or lower. The correctness of order, family, subfamily 

161 and genus entries for these records is evaluated based on manual inspection of community provided 

162 photographs conducted by RHS. The analysis shows how frequently designations at these different 

163 taxonomic ranks were misclassified. The choice to conduct the evaluation at the genus rank or higher is 

164 because species are often hard to recognize from photographs. Such effort would require samples to be 

165 viewed under a microscope. Furthermore, on a subset of 1792 iNaturalist records that were identified at 

166 the genus or species taxonomic rank, we determined if taxon correctness of genus and family level 

167 depended on research grade status of the observations using a randomization test for contingency tables. 

168 This limitation to genus and species taxonomic rank was chosen since, in order to reach research grade 
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169 status, an observation in iNaturalist must be below family rank. The geographic focus of the termite 

170 taxonomic accuracy assessment was restricted to the Americas because of taxonomic expertise of RHS 

171 for termites in that part of the world. 

172 Results

173 Data abundance

174 Contributions to GBIF, iNaturalist, and the UFTC between 1920 and 2018 showed contrasted 

175 results (Fig 1). Annual contributions to the UFTC grew steadily starting from the mid 1980’s when RHS 

176 established the database, began annual field excursions in central and South America for data collection, 

177 and promoted the collection in the pest control industry. After peaking in 2013, the number of annual 

178 contributions was surpassed by iNaturalist in 2016. Unlike other submission sources, GBIF expert 

179 contributions were sporadic throughout our time period with punctuated uploads between 1995-1999 and 

180 2010-2014. The spike in observations from 1995-1999 was primarily associated with 6489 preserved 

181 specimens locations from the Yucatan peninsula in Mexico in 1997. These contributions were 

182 administered by the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (MBM-

183 UACAM). They were collected over the entire year and taken at multiple locations in natural areas. This 

184 suggests that the source of this data was actual field data from concerted collection efforts rather than 

185 bulk upload from archived data. Another notable peak in expert GBIF contributions fell within the 2010-

186 2014 time range. It was caused by 7249 contributions of the Laboratory of Applied Entomology of the 

187 University of Lome which were collected in rural areas of northern Ghana and Togo within 

188 approximately three weeks in August 2013. For the GBIF annual charts, it must be noted that over 4500 

189 records (specimen collections) lacked a contribution year, and that these were therefore missing for the 

190 GBIF charts but present in contribution maps. The GBIF charts make clear that CS based contributions to 

191 GBIF only started in recent years and make up only a small fraction of all GBIF data as of now. The 

192 increase in contributions from iNaturalist follows the website’s inception in 2008 and shows that the bulk 
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193 of data contributions is of non-research grade. This highlights the importance of assessing the taxonomic 

194 classification accuracy for those kind of records.

195

196 Fig 1. 5-year counts of termite records contributed to GBIF, iNaturalist, and the UFTC 

197 across the globe between 1920 and 2018.

198 Australia (including Oceania) was the continent with most expert (non-CS) contributions to 

199 GBIF, which stem primarily from CSIRO records mentioned above (Table 1). The iNaturalist community 

200 contributed termite observations most actively in North America. Since GBIF CS data stem primarily 

201 from iNaturalist, this also resulted in GBIF CS data abundance being highest in North America. Most data 

202 records in the UFTC can be found in North America, followed by South America due to frequent field 

203 expeditions by RHS.

204

205 Table 1. Number of termite records in GBIF, iNaturalist, and the UFTC, split by continent. 

206 Highlighted cells show the continent with the highest collection count per data category.

GBIF (n = 37061) iNaturalist (n = 6078) UFTC (n = 38558)
Continent Expert CS Unknown Research Non-research
Africa 7329 111 27 263 677 2607
Asia 320 53 457 81 417 267
Australia 16047 15 283 18 337 294
Europe 489 15 138 24 73 24
North America 10250 247 48 394 3441 27272
South America 1085 2 145 5 348 8094
Total 35520 443 1098 785 5293 38558

207

208 Visual inspection of worldwide distribution maps suggests that GBIF termite records were most 

209 abundant in Australia (Fig 2a), whereas iNaturalist and UFTC records were mostly found in North 

210 America (Fig2b and c). 

211
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212 Fig 2: Geographic distribution of termite records in GBIF (a), iNaturalist (b), and the 

213 UFTC (c).

214 The world map in Fig 3a reveals that CS (all sources, including both research and non-research 

215 grade iNaturalist records) collected data cover significant observation gaps of expert data in most 

216 continents, including regions, such as Southern and Eastern Africa, Southern Europe, India, South-East 

217 Asia and New Zealand. This means that CS data are important for the improvement of worldwide termite 

218 distribution models. 

219 The geographic distribution of termite collection localities for iNaturalist in Fig 3b clearly 

220 demonstrates that presence of these data in most world regions through this CS source relies on non-

221 research grade observations (Casual or Needs ID). Comparison to Fig a also shows that several world 

222 regions that are not covered by expert users are covered by casual observations in iNaturalist, e.g. in 

223 Southern Europe, coastal Brazil, India, or South-East Asia. Given that no difference in termite 

224 classification accuracy between iNaturalist research grade and non-research grade observations could be 

225 found, it is suggested that considering non-research grade CS observations, especially in combination 

226 with expert databases, helps to paint a more comprehensive and clearer picture of global biodiversity than 

227 expert or research-grade observations only.

228

229 Fig 3: Coverage of termite observations from the three analyzed sources separated into CS 

230 based and expert based (a), and coverage of iNaturalist records alone, separated by observation 

231 quality (b).

232 Species diversity

233 Cumulative species diversity over the years contrasted expert observations (UFTC, GBIF without 

234 CS sources), from CS sources (i.e., GBIF CS contributions and iNaturalist records regardless of quality 

235 grade) (Fig 4a). In any of the sources only a small fraction of termite species was collected each year 
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236 compared to the total of 655 species estimated to be established in the Americas alone [25]. This means 

237 that annual termite collection activities miss a large portion of termite species and their spatial coverage. 

238 However, since termites spread slowly, i.e. typically less than 100 m/year except for anthropogenic 

239 dispersal [26], this problem can be somewhat mitigated by aggregating infestation records over a multi-

240 year time period. Although the total number of records was comparable between GBIF and UFTC 

241 globally (compare Table 1), global species diversity was more pronounced in UFTC. Since UFTC 

242 contains more than three times the number of records for North and South America than GBIF, this 

243 difference in species diversity between these two databases becomes even more pronounced for the 

244 Americas (Fig 4b).

245

246 Fig 4: Cumulative number of termite species mapped in the UFTC, in GBIF based on 

247 expert (non-CS) observations and CS observations across the world (a) and in the Americas (b).

248 Data suitability for niche modeling

249 The number of genera satisfying data requirements for niche modelling (may it be 10, 20, or 50 

250 distinct cells) was largest for the UFTC, somewhat closely followed by GBIF, which in this analysis 

251 included both expert and CS data (Fig 5). Research-grade CS data played only a minor role in GBIF 

252 termite data abundance (Fig 1). As opposed to UFTC and GBIF, the iNaturalist platform (including both 

253 research grade and non-research grade) satisfied niche modeling data requirements for only few genera. 

254 Adding non-research grade observations from iNaturalist to GBIF (which itself already includes research-

255 grade iNaturalist data) only moderately increased the number of genera meeting modeling criteria, namely 

256 by up to 14.3% for ≥ 50 distinct grid cells. As opposed to this, GBIF and UFTC appeared very 

257 complementary. A combination of these two most comprehensive sources, mostly consisting of expert 

258 and/or museum collections, led to a substantial increase in the number of termite genera suitable for niche 

259 modelling compared to either of those two sources alone (Fig 5). More specifically, complementing GBIF 
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260 with UFTC data led to a stronger relative increase in genera numbers (between 78.6% and 95.0%) than 

261 complementing UFTC with GBIF data (increase between 39.3% and 78.6%). This illustrates the current 

262 dominant role of UFTC as a global termite inventory. Adding iNaturalist data as a third source to the 

263 UFTC +GBIF combination increases the number of termite genera suitable for niche modelling only 

264 slightly, namely by 1.8% (for ≥ 10 cells), 0.0% (for ≥20 cells), and 8.0% (for ≥50 cells), respectively. 

265

266 Fig 5: Number of termite genera covering ≥10, ≥20, and ≥50 distinct 0.1 degree cells for 

267 individual data sources and one combination.

268 Taxon correctness of iNaturalist termite records

269 For the expert review of termite classification in iNaturalist, a subset of 2201 records that had a 

270 taxonomic description at the family level or lower was extracted (200 observations were identified at the 

271 family level, 151 at the subfamily level, 781 at the genus level, and 1069 at the species level). 

272 The five genera of termites reported in iNaturalist which accounted for more than 72% of the 

273 observations (1597/2201) are those that are out in the open (not hidden in structures) and can thus be 

274 visually detected. These include species of genera that are very common (Reticulitermes, n = 939), very 

275 large (Zootermopsis, n = 351), build conspicuous nests (Nasutitermes, n = 187), or forage on the surface 

276 of the soil (Gnathamitermes, n = 77, and Tenuirostritermes, n = 43) (Table 2). All other genera had fewer 

277 than 40 observations, and many had 1 to 5 only. 351 records lack genus information but contain family or 

278 subfamily rank information only. Many photographs of the analyzed sample include the winged images 

279 which emerge from their cryptic nests during dispersal flights. 

280
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281 Table 2. Termite genera of analyzed iNaturalist records for the Americas.

Genus Count Genus Count
Amitermes 10 Neotermes 3
Anoplotermes 12 Paraneotermes 1
Bulbitermes 5 Porotermes 3
Coptotermes 37 Procornitermes 1
Cornitermes 1 Pterotermes 1
Cortaritermes 1 Reticulitermes 939
Cryptotermes 3 Rhinotermes 1
Gnathamitermes 77 Rhynchotermes 4
Heterotermes 6 Silvestritermes 1
Incisitermes 131 Syntermes 24
Kalotermes 3 Tenuirostritermes 43
Microcerotermes 2 Termes 1
Nasutitermes 187 Velocitermes 1
Neocapritermes 1 Zootermopsis 351

282

283 The 2201 iNaturalist records fall into five families, which are Archotermopsidae (n = 351), 

284 Kalotermitidae (n = 198), Rhinotermitidae (n = 1045), Stolotermitidae (n = 4), and Termitidae (n = 603). 

285 Most records were still in need of identification (Needs_ID quality, 79.9 %), while only 18.1 % 

286 were research grade, the remaining 2.0 % being casual observations.

287 68 records which did not allow for accurate identification (38 records with poor image quality, 

288 and 30 records without a picture), were removed. 

289 Taxonomic accuracy was generally high (Table 3). That is, out of 1026 observations that were 

290 identified at the species rank in iNaturalist, 39 had an incorrect genus, 25 an incorrect family, and six an 

291 incorrect order, accounting for a total of 6.8 % observations that needed correction. Out of a sample of 

292 1792 records for the Americas that were named at the species or genus taxonomic rank, only 78 records 

293 (4.4 %) had an incorrect genus. Conversely, irrespective of the level at which observations were 

294 identified, only 54 records out of 2133 (2.5 %) showed an incorrect family designation, and only eight 

295 records (0.4 %) showed an incorrect order, where ants or flies were mistaken as termites. 

296
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297 Table 3: Number of observations at different taxonomic levels and the number of 

298 corrections.

Corrections: Count (%)
Taxon # Observations Genus Subfamily Family Order
Species 1026 39 (3.8) - (-) 25 (2.4) 6 (0.6)
Genus 766 39 (5.1) - (-) 7 (0.9) 0 (0)
Subfamily 145 - (-) 1 (0.7) 2 (1.4) 1 (0.7)
Family 196 - (-) - (-) 20 (10.2) 1 (0.5)
Total 2133 78 4 54 8

299

300 The misclassification rates were similar between termite families (Fig 6). 13 out of 192 records 

301 (3.6 %) classified as Kalotermitidae were actually coming from other families. Corresponding numbers 

302 were 16 out of 1010 (1.6 %) for Rhinotermitidae, 12 out of 584 (2.1 %) for Termitidae, and 13 out of 343 

303 (3.8 %) for Archotermopsidae records.

304

305 Fig 6: Corrections (right side) of incorrect family classifications (left side) for 54 termite 

306 records. Band-width is proportional to number of corrected observations. All four Stolotermitidae records 

307 had correct family names, which is why this family is not shown on the left side.

308 The same analysis at the genus level showed a more contrasted situation (Fig 7). Sixteen out of 

309 the 35 records (45.7 %) identified as genus Coptotermes had an incorrect genus, followed by 13/343 

310 (3.8 %) for Zootermopsis, 11/906 (1.2 %) for Reticulitermes, and 10/906 (1.1 %) for Incisitermes. The 

311 high misclassification rate of the prior can likely be attributed to the fact that exotic species like 

312 Coptotermes are new to observers who are more familiar with native taxa like Reticulitermes. 

313 Superficially, both look similar.

314

315 Fig 7: Corrections (right side) of 78 iNaturalist termite records with incorrect genus 

316 designations (left side).
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317 Based on observation and correction counts from Table 4, a permutation independence test with 

318 2000 randomizations showed that there was no significant association between DQA and the likelihood 

319 for a genus correction, X2 = 1.92, p = 0.21, and no significant association between DQA and the 

320 likelihood for a family correction, X2 = 2.94, p = 0.13. An explanation is that non-research grade 

321 (especially Needs-ID level data) only indicates that the necessary number of experts have not yet 

322 attempted to identify the species or genus level of an observation, but does not say anything about the 

323 accuracy of the record itself. 

324 Table 4. Number of genus and family corrections for research grade and non-research 

325 grade observations based on a sample of 1792 species and genus records in the Americas.

Observations Genus corrections Family corrections
Count % Count % Count %

Research 394 22.0 12 15.4 3 9.4
Non-research 1398 78.0 66 84.6 29 90.6
Total 1792 100.0 78 100.0 32 100.0

326

327 Discussion
328 The first part of the study showed that CS based termite observation data are still a niche product 

329 compared to expert databases and professional collections, such as museum records. Similarly, CS data 

330 did not capture much of termite species diversity. This could be because of the cryptic nature of termites 

331 and their small size, which renders field collection and species detection difficult for non-experts. Results 

332 showed that UFTC clearly outnumbered GBIF and iNaturalist in cumulative species numbers, although in 

333 the most recent years iNaturalist (and in consequence also GBIF) submissions have increased drastically, 

334 pointing towards a more important role of CS for termite observation data collection and mapping. While 

335 GBIF being a data warehouse that draws its data from numerous other data collections, it was shown that 

336 CS based collections play only a marginal role for termites (~1.2 %) in that platform. 

337 As of now, CS projects, global data portals that combine many data sources, as well as expert 

338 data collections, inherently come with a spatial and temporal bias, due to the opportunistic nature of CS 
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339 data, the limited spatial and temporal scope of projects, and socio-economic factors limiting access to the 

340 latest technology in various parts of the world. One study, for example, compared the completeness and 

341 coverage among three open-access databases along ten taxonomic groups, finding that the coverage of 

342 systematic surveys (American Breeding Bird Survey, BBS, and federally administered fish surveys, FFS) 

343 was less biased across spatial and environmental dimensions but more biased in temporal coverage 

344 compared to GBIF data [27]. 

345 Lack of frequent updates on termite sightings can be considered a lesser problem for modeling 

346 termite species distribution, since the natural dispersal of termite colonies proceeds slowly. Alates 

347 (winged reproductives) are unable to fly more than a few hundred meters from the parent colony [28, 29]. 

348 However, occasional anthropogenic means of transportation on water, e.g. by maritime vessels [30, 31] or 

349 on land via infested ornamental timber of wood structures, allows occasional faster dispersion and 

350 establishment of new colonies. 

351 Comparison of the world-wide contribution maps (Fig 2) showed distinct geographic biases 

352 between the three analyzed data sources. The focus of the UFTC is on the Americas since this is the 

353 primary study area of the data base creator and manager (RHS). As opposed to this, GBIF shows a strong 

354 contribution bias towards Australia through a large data collection shared by a governmental research 

355 institution (SCIRO). iNaturalist, as the only exclusively CS based platform has its geographic focus on 

356 the U.S., where the program has been founded in 2008. This shows that various factors, such as the 

357 location of individuals or that of individual organizations, as well as the country of where a project has 

358 been founded, will add to geographic contribution bias. 

359 Analyzing the presence of genus point data across geographically distinct cells showed that the 

360 UFTC provides the highest number of termite genera that satisfy general data requirements for niche 

361 modelling, following by GBIF and iNaturalist. The combination of UFTC and GBIF increases the number 

362 of genera suitable for niche modeling by up to 95 % compared to single source data, whereas adding 

363 iNaturalist data has only a minor effect.
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364 The third part of the study evaluated for a subset of termite records in the Americas the accuracy 

365 of record classifications in iNaturalist. Overall, it can be concluded that the classification quality of 

366 iNaturalist termite data is excellent with error rates up to only 5.1 % for genus designations and 10.2% for 

367 family designations. We found no statistically significant effect of DQA on classification accuracy.

368 Whether research grade records can be considered more trustworthy than non-research grade 

369 observations is important when it comes to species distribution models. This is because non-research 

370 grade termite observations in iNaturalist cover some geographic regions that are missed by research grade 

371 records (Fig 3a). Dropping non-research grade observation would therefore add to the bias of geographic 

372 coverage. 

373 Temporal rates of submissions varied between data sources. In particular GBIF records for 

374 termites varied sporadically through the years based on punctuated submissions from professional 

375 expeditions in Mexico and Ghana. This contrasts with larger represented taxa in GBIF like Aves where 

376 professional data sets are rarely submitted and the vast majority of submissions occurs from the CS 

377 platforms [32]. While the GBIF data quality may be higher the sporadic pattern of submissions may add 

378 more noise to analysis than the steadily increasing submission rate that is frequently seen in CS. Such 

379 temporal biases can affect biodiversity models and cloud patterns when interpreting analysis [33].

380 Conclusions
381 Using termites as an example that can be challenging to collect, we show that expert datasets, 

382 such as the UFTC and GBIF are valuable for biodiversity research because of their number of records, 

383 spatial distributions, and diversity. Especially GBIF, which taps into data from a variety of data sources, 

384 can mitigate knowledge gaps and restraints from individual projects. For termites, the contribution from 

385 CS data is much lower than expert and museum collections due to sampling biases and identification 

386 challenges. However, these CS contributions (particularly using iNaturalist’s non-research grade data set) 

387 with some extra quality controls can still be useful in biodiversity studies since they cover otherwise 

388 underexplored areas, such as central Africa or South-East Asia. Combining GBIF, UFTC, and iNaturalist 
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389 data sets globally creates a more comprehensive picture of termite biodiversity than either of these data 

390 sources on their own.

391 Although crowd-sourced data currently play a small role in termite record numbers relative to 

392 expert or global research databases, they should not be ignored when searching for data to build termite 

393 diversity or distribution maps. More specifically, CS based data collections have the advantage of being 

394 quickly updated, and the many eyes of volunteer contributors may even be able to discover species in 

395 locations where they were not previously observed (Skejo et al. 2016). For example, in the current study, 

396 Kalotermes approximatus was identified as a new Texas state record from an iNaturalist photograph that 

397 was identified as an Incisitermes sp. 
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