
Noname manuscript No.
(will be inserted by the editor)

Investigating the Role of Hypoxia-Induced Migration
in Glioblastoma Growth Rates

Lee Curtin · Andrea Hawkins-Daarud ·
Kristoffer G. van der Zee · Kristin R.
Swanson · Markus R. Owen

Received: date / Accepted: date

Abstract We analyze the wave-speed of the Proliferation Invasion Hypoxia
Necrosis Angiogenesis (PIHNA) model that was previously created and applied
to simulate the growth and spread of glioblastoma (GBM), a particularly ag-
gressive primary brain tumor. We extend the PIHNA model by allowing for
different hypoxic and normoxic cell migration rates and study the impact of
these differences on the wave-speed dynamics. Through this analysis, we find
key variables that drive the outward growth of the simulated GBM. We find
a minimum tumor wave-speed for the model; this depends on the migration
and proliferation rates of the normoxic cells and is achieved under certain
conditions on the migration rates of the normoxic and hypoxic cells. If the
hypoxic cell migration rate is greater than the normoxic cell migration rate
above a threshold, the wave-speed increases above the predicted minimum.
This increase in wave-speed is explored through an eigenvalue and eigenvector
analysis of the linearized PIHNA model, which yields an expression for this
threshold. The PIHNA model suggests that an inherently faster-diffusing hy-
poxic cell population can drive the outward growth of a GBM as a whole, and
that this effect is more prominent for faster proliferating tumors that recover
relatively slowly from a hypoxic phenotype.
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1 Introduction

Glioblastoma multiforme (GBM) is the highest grade of glioma from the World
Health Organization and is the most aggressive type of primary brain tumor
[9]. It is uniformly fatal with an average survival time from diagnosis of only
15 months with standard of care treatment [14]. The standard therapy regime
for this disease is a combination of resection, radiation and chemotherapy [14,
15]. Magnetic Resonance Imaging (MRI) is the standard imaging modality
for GBMs and is used routinely to monitor tumor growth and development
throughout the progression of the disease. Different MRI sequences such as
gadolinium-enhanced T1-weighted (T1Gd) and T2-weighted (T2) are used to
identify the gross tumor volume. T1Gd shows gadolinium that has leaked into
brain tissue, and T2 shows water that has done the same, which is known
as edema. However, these MRI sequences together do not show a complete
picture. Infiltrating tumor cells also exist beyond the resolution of these MRI
sequences. In fact, malignant glioma cells have been cultured from histologi-
cally normal healthy tissue at a distance of 4cm from the gross tumor volume
identified by MRI scans [13].

Hypoxia has been shown to induce more migration in glioma cells [7,23].
There is also evidence that glioma cells follow a dichotomy of migration and
proliferation [3] and evidence of a lower proliferation marker for cells that
exist in hypoxic regions of GBMs [1]. Tumors in hypoxic conditions release
angiogenesis-promoting factors to encourage vessels to grow towards them and
provide nutrients [4,8,24]. This process also occurs in normoxic conditions at
a lower level [24]. Necrosis occurs in the vast majority of GBMs and presents
in the core of the tumor [9].

Over the past 20 years, there have been many partial differential equation
models that simulate GBM cell density and have provided various insights
into this disease [6,10,11,16–19,19–21]. One such model is the Proliferation
Invasion Hypoxia Necrosis Angiogenesis (PIHNA) model, which has been used
to analyze the mechanistic properties of GBMs that lead to observed imaging
features and has shown similar growth and progression patterns to those seen
in patient tumors [20]. We carry out a traveling wave analysis on the PIHNA
model to determine which parameters drive the outward growth of the tumor
as a whole, and compare these analytical predictions with computational sim-
ulations in the cases of varying relative rates of migration between hypoxic
and normoxic tumor cells. We find that the normoxic cell migration and pro-
liferation rates, Dc and ρ, respectively, drive the minimum wave-speed in the
PIHNA model, which is given by

smin = 2
√
Dcρ

(
1− v0

K

)
(1)

and also depends on the initial background vasculature in the model, v0, rela-
tive to the spatial carrying capacity, K. We find that smin holds for published
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Investigating the Role of Hypoxia-Induced Migration in Glioblastoma 3

results using the PIHNA model as they have not allowed for different hypoxic
cell and normoxic cell migration rates. We allow these migration rates to be
different in the model and observe the effect of this variability on simulated tu-
mor growth rates. We find that a faster-than-minimum wave-speed is achieved
when hypoxic cells migrate sufficiently faster than normoxic cells and find a
threshold above which these dynamics can occur. This threshold depends on
the proliferation rate ρ, the switching rate back from hypoxic cells to normoxic
cells γ, and v0/K. We denote this threshold k, and it is given by

k = 2 +
γ

ρ(1− v0/K)
. (2)

These results are then confirmed and explored computationally through fur-
ther model simulations.

We introduce the PIHNA model in the next section before calculating
the expression for the minimum wave-speed in Section 3. Following this, in
Section 4 we find the threshold, k, on the relative migration between hypoxic
and normoxic cells under which the minimum wave-speed is achieved. We then
move onto PIHNA simulations in Section 5 to computationally validate our
findings.

2 The PIHNA Model

The PIHNA model [20] simulates five different species and their interactions:

c - the density of normoxic tumor cells,

h - the density of hypoxic tumor cells,

n - the density of necrotic cells,

v - the density of vascular endothelial cells,

a - the concentration of angiogenic factors.

The dimensions of c, h, v and n are cells/mm3 of tissue. The angiogenic factor,
a, is a diffusing concentration with dimensions µmol/mm3 tissue.

Normoxic cells proliferate with rate ρ and migrate with rate Dc, whereas
hypoxic cells do not proliferate but migrate with rate Dh. Cells convert be-
tween normoxic and hypoxic phenotypes depending on the ability of the local
vascular density to provide nutrients at their location; hypoxic cells in the
model become necrotic if they remain in such a region. When any other cell
type meets a necrotic cell, they become necrotic with rate αn. Previous pub-
lications on the PIHNA model have set the migration rate of hypoxic cells to
be equal to that of normoxic cells, such that Dh = Dc. However, hypoxia has
been shown to promote GBM cell migration, so we have allowed for this to be
varied in the PIHNA model [7,23].

Angiogenic factors are created by the presence of normoxic and hypoxic
cells, decay naturally and are consumed through the creation and presence of
vascular cells (v). Angiogenic factors are only consumed by vasculature and
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not tumor or necrotic cells. Necrotic cells are dead cells and their degradation
is not considered in the model.

The governing partial differential equations for the PIHNA model are

Rate of change
of normoxic
cell density︷︸︸︷

∂c

∂t
=

Net diffusion of
normoxic

glioma cells︷ ︸︸ ︷
∇ · (Dc(1− T )∇c) +

Proliferation
of normoxic
glioma cells︷ ︸︸ ︷
ρc(1− T ) +

Conversion
of hypoxic

to normoxic︷ ︸︸ ︷
γhV −

Conversion
of normoxic
to hypoxic︷ ︸︸ ︷
βc(1− V )−

Conversion
of normoxic
to necrotic︷ ︸︸ ︷
αn

nc

K

Rate of change
of hypoxic
cell density︷︸︸︷

∂h

∂t
=

Net diffusion of
hypoxic

glioma cells︷ ︸︸ ︷
∇ · (Dh(1− T )∇h)−

Conversion
of hypoxic

to normoxic︷ ︸︸ ︷
γhV +

Conversion
of normoxic
to hypoxic︷ ︸︸ ︷
βc(1− V )−

Conversion
of hypoxic
to necrotic︷ ︸︸ ︷(

αhh(1− V ) + αn
nh

K

)

Rate of change
of necrotic
cell density︷︸︸︷

∂n

∂t
=

Conversion
of hypoxic
to necrotic︷ ︸︸ ︷
αhh(1− V ) +

Contact necrosis
of all

living cells︷ ︸︸ ︷
αn

n(c+ h+ v)

K
(3)

Rate of change
of vascular
cell density︷︸︸︷

∂v

∂t
=

Net diffusion of
vasculature︷ ︸︸ ︷

∇ · (Dv(1− T )∇v) +

Net proliferation
of vasculature︷ ︸︸ ︷

µ
a

Km + a
v(1− T )−

Conversion
of vasculature

to necrotic︷ ︸︸ ︷
αn

nv

K

Rate of change
of angiogenic

factor concentration︷︸︸︷
∂a

∂t
=

Net diffusion of
angiogenic factor︷ ︸︸ ︷
∇ · (Da∇a) +

Net production
of angiogenic factor︷ ︸︸ ︷

δcc+ δhh −

Net consumption of
angiogenic factor︷ ︸︸ ︷

qµ
a

Km + a
v(1− T )− ωav−

Decay︷︸︸︷
λa

where

V =
v

v + c+ h
, (4)

and

T = (c+ h+ n+ v)/K. (5)

The term V models the relationship between the vasculature and its effect
on the tumor. Note that V take values in [0, 1] such that it affects the switching
rates between the populations c, h and n. A value of V (c, h, v) ≈ 0 corresponds
to a very inefficient vasculature that cannot provide sufficient nutrients to the
local tumor population; this would increase the conversion of normoxic cells
to hypoxic cells and in turn necrotic cells. A high V (c, h, v) ≈ 1 promotes a
normoxic phenotype. It is worth noting that, once necrotic cells are present
in a simulation, they will always increase in population due to the contact
necrosis in the model.

The expression for T defined in Equation (5) is a spatiotemporal measure
of the relative density of the cells in a region. It is used to limit growth and
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Definition Value/Range Units Source

Dc Diffusion rate of normoxic cells 10− 100 mm2

year [5]

Dh Diffusion rate of hypoxic cells (0.1− 100)Dc
mm2

year [5,10]∗

ρ Proliferation rate of normoxic cells 10− 100 1/year [5]

β Switching rate from normoxia to hypoxia 0.1ρ 1/year [20]

γ Switching rate from hypoxia to normoxia 0.005− 0.5 1/day [20]∗

αh Switching rate from hypoxia to necrosis 0.5β 1/year [20]

αn Rate of contact necrosis log(2)/50 1/day [12]

Dv Diffusion rate of endothelial cells 0.18 mm2

year [20]

Da Diffusion rate of angiogenic factors 3.15 mm2

year [20]

δc
Normoxic cell production rate
of angiogenic factors

2.77× 10−13 µmol
cell×year

[20]

δh
Hypoxic cell production rate
of angiogenic factors

5.22× 10−10 µmol
cell×year

[20]

µ Angiogenesis vasculature production rate log(2)/15 1/day [20]

q Consumption of angiogenic factors per cell 1.66 µmol/cell [20]

λ Natural decay rate of angiogenic factors 15.6 1/day [20]

ω
Rate of removal of angiogenic
factors by vasculature

λ/v0
1

cell×year
[20]

K Maximal cell density 2.39× 108 cells/cm3 [20]

Table 1 Parameter definitions and values for the PIHNA model. A justification of parame-
ters can be found in the supplmentary material of [20]. ∗We have altered these rates in this
formulation of PIHNA, which have not been changed previously.

migration and used as a threshold to determine which densities would appear
on different MRI sequences. Substituting Equation (3) into Equation (5) gives

K
∂T

∂t
= ∇·((1−T )(Dc∇c+Dh∇h+Dn∇n+Dv∇v))+(1−T )

(
ρc+

µa

Km + a
v

)
,

from which it is clear that at T = 1 the reaction and diffusion terms vanish,
which implies T is restricted by the upper bound of 1 (as long as T (x, 0) ≤ 1).
As T is a sum of non-negative components and K > 0, we have that T ≥ 0.
Therefore, we have that T ∈ [0, 1] for sufficient initial conditions, for all x and
t ≥ 0.

Following the literature, we have assumed that a total relative cell density
of at least 80% is visible on a T1Gd MRI, and a total relative density of at
least 16% is visible on a T2 MRI [17,20]. In the PIHNA model, this translates
to T ≥ 0.8 being visible on T1Gd MRI and T ≥ 0.16 being visible on T2 MRI.
By construction the T1Gd radius is always less than or equal to the T2 radius,
which agrees with patient data [5].
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6 Lee Curtin et al.

Fig. 1 (A) Three example time points (300 days, 400 days and 500 days) of a simulation
with Dc = 101.5mm2/year, ρ = 101.5/year, γ = 0.05/day and Dh/Dc = 10. All cell types
are shown and move outwards over time. Necrosis develops in the core of the tumor. (B)
Total cells over time for the three time points shown in Subfigure A. The dots correspond
to the T2 radius at each time point. (C) The T2 radius shown over time for the same
simulation. This radial growth is non-linear for small tumor sizes, but settles to a linear
rate, which is the wave-speed of the simulation.

For the purposes of the wave-speed calculations, we consider the PIHNA
model in a one-dimensional spherically symmetric case with zero-flux bound-
ary conditions at the end points, r = 0 and r = rend. This does not take into
account the full anatomy of the brain, but it is useful to gain insight into the
behavior of the PIHNA model. The initial condition is given by

c(r, 0) = 1000e−100r2 , (6)

to simulate a small initiating population of normoxic tumor cells decreasing
away from the core of the tumor. We also have h(r, 0) = 0, n(r, 0) = 0,
v(r, 0) = 0.03K and a(r, 0) = 0. We run the PIHNA simulations with the
parameters found in Table 1.

In all simulations, the tumor and necrotic cell densities spread outwards.
A peak in normoxic cell density leads and is followed by a peak in hypoxic cell
density and then a zone of necrosis, as can be seen in Figure 1; this figure also
shows how we calculate the wave-speed values from simulations.

3 Minimum Wave-speed for the PIHNA Model

In a similar fashion to the well-established minimum wave-speed of Fisher’s
Equation [2] that has been used for the Proliferation Invasion tumor growth
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Investigating the Role of Hypoxia-Induced Migration in Glioblastoma 7

model [17], we carried out a wave-speed analysis to find an analytical expres-
sion for the tumor wave-speed in the PIHNA model. Note that in spherically
symmetric coordinates, the wave-speed asymptotically approaches that of a
planar wave-speed. We start by linearizing the model ahead of the leading
edge of the wave, that has the initial condition of (c, h, n, v, a) = (0, 0, 0, v0, 0);
this gives an expression of

(c, h, n, v, a) = (0, 0, 0, v0, 0) + (ĉ, ĥ, n̂, v̂, â). (7)

Substituting Equation (7) into the PIHNA model (Equation (3)) and discard-
ing non-linear terms leads to the following set of equations:

∂ĉ

∂t
= ∇ ·

(
Dc

(
1− v0

K

)
∇ĉ
)

+ ρĉ
(

1− v0
K

)
+ γĥV (0, 0, v0) (8)

− βĉ(1− V (0, 0, v0))

∂ĥ

∂t
= ∇ ·

(
Dh

(
1− v0

K

)
∇ĥ
)

+ (βĉ− αhĥ)(1− V (0, 0, v0)) (9)

− γĥV (v0, 0, 0)

∂n̂

∂t
= αhĥ(1− V (0, 0, v0)) + αnn̂

v0
K

(10)

∂v̂

∂t
= ∇ ·

(
Dv

(
1− v0

K

)
∇v̂
)

+ µ
v0
Km

(
1− v0

K

)
â− αn

v0
K
n̂ (11)

∂â

∂t
= ∇ · (Da∇â) + δcĉ+ δhĥ− qµ

v0
Km

(
1− v0

K

)
â− ωv0â− λâ, (12)

The equations for ĉ and ĥ decouple from the system. We will analyze these
two equations to look for traveling wave solutions of the form

(ĉ, ĥ) = (c̄, h̄) exp(λ(r − st)), (13)

where s is the wave-speed. Substituting Equation (13) into Equations (8) -
(9), gives rise to the following equations

−sλc̄ = Dc

(
1− v0

K

)
λ2c̄+ ρ

(
1− v0

K

)
c̄− β(1− V (0, 0, v0))c̄ (14)

+ γV (0, 0, v0)h̄

−sλh̄ = Dh

(
1− v0

K

)
λ2h̄+ β(1− V (0, 0, v0))c̄− γV (0, 0, v0)h̄ (15)

− αh(1− V (0, 0, v0))h̄

We rearrange the equations into a matrix form given by

A

[
c̄
h̄

]
= 0 (16)
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8 Lee Curtin et al.

and note the determinant of A, det(A), needs to be zero in order to give
non-trivial solutions. Setting det(A) = 0 leads to(

sλ+Dc

(
1− v0

K

)
λ2 + ρ

(
1− v0

K

)
− β(1− V (0, 0, v0))

)
×
(
sλ+Dh

(
1− v0

K

)
λ2 − γV (0, 0, v0)− αh(1− V (0, 0, v0))

)
(17)

= β(1− V (0, 0, v0))γV (0, 0, v0).

We note that the vasculature ahead of the wave is as efficient as possible in
the absence of tumor cells, giving V (0, 0, v0) = 1; this leads to cancellation in
Equation (17), which becomes(

sλ+Dc

(
1− v0

K

)
λ2 + ρ

(
1− v0

K

))(
sλ+Dh

(
1− v0

K

)
λ2 − γ

)
= 0. (18)

We can then find the eigenvalues for Equation (18) as functions of the wave-
speed, s. We have four eigenvalues, given by

λ1,2 =
−s±

√
s2 − 4Dcρ

(
1− v0

K

)2
2Dc

(
1− v0

K

) and λ3,4 =
−s±

√
s2 + 4Dhγ

(
1− v0

K

)
2Dh

(
1− v0

K

) .

We have also found the corresponding eigenvectors for all of our eigenvalues,
which we shall denote Vi for each λi. These are given by the following expres-
sions, up to a proportional constant:

V1,2 =

1
0
0

 and V3,4 =

 −γ
sλ3,4 + (Dcλ

2
3,4 + ρ)

(
1− v0

K

)
0

 . (19)

The terms λ1,2 are both negative as s > 0 by assumption. Due to positive
restrictions on the state space (negative populations do not make any bio-
logical sense), a spiral approach around the point (0, 0, 0, v0, 0) cannot occur.
Therefore, we need the discriminant of the set of quadratic λ1,2 solutions to
be greater than or equal to zero. In other words,

s2 − 4Dcρ
(

1− v0
K

)2
≥ 0. (20)

Therefore, we have a minimum wave-speed of

smin = 2
√
Dcρ

(
1− v0

K

)
. (21)

There is no minimum wave-speed associated with the eigenvalues λ3,4. How-
ever, λ4 can play a role in the wave-speed of the model; we explore this in the
next section.
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4 Conditions for Faster Wavespeeds

In the previous section, we found an expression for the minimum wave-speed in
the PIHNA model. The PIHNA model will follow this minimum wave-speed
if the eigenvalue λ1 evaluated at this minimum gives the smallest possible
negative eigenvalue of λ1,2,3,4. If there exists some s > smin such that 0 >
λi(s) > λ1(smin) for some i = 1, 2, 3, 4, we will see the emergence of a solution
with a larger wave-speed. In this section we will compute a threshold below
which the minimum wave-speed is achieved but above which there can be other
dynamics emerging.

We will call each eigenvalue evaluated at smin, λmin
i , for i = 1, . . . , 4.

We start by noting that λ2 ≤ λ1 and λ3 > 0, so neither of those can be
negative with a smaller magnitude than λmin

1 to change the PIHNA wave-
speed dynamics. As λ4 becomes less negative for increasing values of Dh, there
is a threshold value of Dh/Dc that leads to λmin

1 = λ1 = λmin
4 for which the

minimum wave-speed is still achieved. For values of Dh/Dc that are smaller
than this threshold, the minimum wave-speed will still be achieved. However,
larger values of Dh/Dc may lead to a faster wave-speed, as the eigenvalues
become smaller than λmin

1 . We have

λmin
1 =

−smin +

√
s2min − 4Dcρ

(
1− v0

K

)2
2Dc

(
1− v0

K

) , and (22)

λmin
4 =

−smin −
√
s2min + 4Dhγ

(
1− v0

K

)
2Dh

(
1− v0

K

) . (23)

Setting λmin
1 = λmin

4 and using our expression for smin (Equation (21)) leads
to

λmin
1 =

√
ρ

Dc
=

√
Dcρ+

√
Dcρ+Dhγ/(1− v0/K)

Dh
= λmin

4 . (24)

Solving for Dh/Dc gives the non-trivial solution

Dh

Dc
= 2 +

γ

ρ(1− v0/K)
. (25)

We will define this threshold of Dh/Dc as k, so we have

k = 2 +
γ

ρ(1− v0/K)
. (26)

Note that as v0 ≤ K, k ≥ 2. So for the faster wave-speeds to occur, we need
the hypoxic cell migration rate to be at least twice as fast as the normoxic cell
migration rate. For Dh/Dc = 1, as is the case in previous PIHNA publications,
we do not expect faster wave-speeds to occur, regardless of other simulation
parameters.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 5, 2019. ; https://doi.org/10.1101/862920doi: bioRxiv preprint 

https://doi.org/10.1101/862920
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 Lee Curtin et al.

Fig. 2 As Dh/Dc is increased with Dc = 101.5mm2/year, ρ = 101.5/year and γ = 0.05/day,
we see an increase in the converged numerical wave-speed past the threshold on Dh/Dc of
k = 2.60. Wave-speeds taken as the average speed between 8 and 8.5cm of growth on
simulated T2 MRI (16% total cell density threshold).

5 Simulation Results

To calculate the simulated wave-speed in numerical simulations, we thresh-
olded the total cell density at T = 0.16, which is a commonly assumed cell
density threshold for visible tumor on T2 MRI [17]. Following the establish-
ment of a wave front, the simulated wave-speed levels out to a fixed value,
see Figure 1. We analyze the wave-speed of large tumors to ensure we are
analyzing established wavefronts while minimizing numerical error. We are
particularly interested in the effect on the wave-speed of varying hypoxic cell
migration rates, more specifically the change in their migration rate compared
with normoxic cells (Dh/Dc), which has been allowed to vary in the PIHNA
model for the first time. Numerical simulations are run on a spherically sym-
metric domain, with a step size of 0.01mm. All simulations were run in Matlab
2018a using the inbuilt solver pdepe.m.

5.1 Relatively Fast Hypoxic Cell Diffusion Rates Increase Wave-speed

The wave-speed for PIHNA simulations with Dh/Dc ≤ k converges towards
smin. However, if we compute the wave-speed for simulations where Dh > kDc,
we see that the wave-speed can be faster, and continues to increase for larger
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Fig. 3 (A) We show the normoxic and hypoxic cell densities across space for a fixed snap-
shot in time. For Dh/Dc = 10−1, we see the dynamics follow V1 near (c, h) = (0, 0), which
corresponds to the predicted minimum wave-speed, smin. For Dh/Dc = 101, the dynamics
have shifted towards V4, corresponding with the faster numerical wave-speed we have ob-
served. Here Dc = 101.5mm2/year, ρ = 101.5/year. Eigenvectors and simulations are shown
for large simulated T2 sizes, to ensure convergence of numerical eigenvectors (29.5 - 30cm
T2 radius, with corresponding time points of 1421 and 1910 days for V4). (B) The snap-
shot of the simulation with Dh/Dc = 0.1 used for subfigure A. The cross corresponds with
the cross on subfigure A. (C) Corresponding snapshot with Dh/Dc = 10, with the triangle
corresponding with the triangle on subfigure A.

Dh/Dc values; an example of this can be seen in Figure 2. Computing the cor-
responding eigenvalues shows a change in behavior for values of Dh/Dc > k.
We also plot k on Figure 2, in which case k = 2.60 (three significant figures).
These values of Dc and ρ are biologically realistic and based on the mean of
previous migration and proliferation rate estimates from a similar mathemat-
ical model of GBM growth and patient-specific MRI data [22].

From these observations and our analysis in Section 4, we can deduce that if
the hypoxic cell migration is sufficiently faster than the normoxic cell migration
(such that Dh/Dc > k), the hypoxic cell population drives the outward growth
of the tumor in the PIHNA model. This behavior intuitively agrees with the
biological cell movement patterns that the model is trying to capture; cells
moving faster dominate the growth outwards as they search for nutrients.

Focusing on the eigenvectors corresponding to the least negative eigenval-
ues, V1 and V4, we see that they influence the dynamics of the model. By
plotting the normoxic cell density across space against the hypoxic cell den-
sity across space for a fixed time point where each simulation has converged
to a stable wave-speed, together with V1 and V4, we can see how the travel-
ing wave trajectory approaches the state ahead of the wave front. We present
two simulations with their corresponding V1 and V4 eigenvectors in Figure 3,
one for Dh/Dc = 10−1 and another for Dh/Dc = 101. For Dh/Dc = 10−1,
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where the wave-speed follows the predicted minimum value, we see that the
model approaches along (c, h) = (0, 0) along the eigenvector V1, whereas for
Dh/Dc = 101, the approach is along V4. In the linearized regime, we expect
that ĉ = c̄ exp(λ(r − st)), such that

∂(log(c))

∂r
∼ λ. (27)

To provide further evidence concerning the traveling wave trajectory, we com-
pared the gradient of the log of normoxic cells (c) with the eigenvalues λ1 and
λ4. We see that for low values of Dh/Dc, the gradient more closely follows
λ1 and for large values of Dh/Dc, the gradient closely follows λ4. We present
examples of these results in the Appendix (Figure 6).

Fig. 4 As Dh/Dc is increased for varying γ values, we see an increase in the converged
numerical wave-speed that is more pronounced for smaller values of γ; the corresponding
thresholds k for wave-speeds faster than smin are indicated. Wave-speeds taken as the
average speed between 8 and 8.5cm of growth on simulated T2 MRI (16% total cell density
threshold) and presented relative to smin.

5.2 Low switching rate from hypoxia to normoxia, γ, amplifies wave-speed
increase for large values of Dh/Dc

The switching rate from a normoxic cell to a hypoxic cell (β) is not present
in the eigenvalues that dominate the behavior of the wave-speed, nor in the
expression for k. We do however note that the switching rate from a hypoxic
cell phenotype back to a normoxic cell phenotype, γ, is present in the expres-
sion for λ4 (Equation (22)) and subsequently in the expression for the Dh/Dc

threshold, k (Equation (26)). We ran a similar set of simulations as in Section
5.1 with a higher value of γ = 0.5 and a lower value of γ = 0.005 to verify that
the wave-speed increase, relative to smin, would be affected for varying γ. As
expected, higher values of γ increase k and correspond to a lower wave-speed

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 5, 2019. ; https://doi.org/10.1101/862920doi: bioRxiv preprint 

https://doi.org/10.1101/862920
http://creativecommons.org/licenses/by-nc-nd/4.0/


Investigating the Role of Hypoxia-Induced Migration in Glioblastoma 13

for equivalent Dh/Dc values. We present these wave-speed results in Figure 4
where we also mark the corresponding values of k. For γ = 0.005, 0.05, and
0.5/day, we find k = 2.06, 2.60 and 7.95, respectively.

5.3 Wave-speed increase is more pronounced for faster-proliferating tumors

We also varied ρ to explore its effects on the increase in wave-speed for
large values of Dh/Dc. We chose two more values of ρ = 101.25/year (lower
ρ), and ρ = 102/year (higher ρ) and refer to the previous simulations with
ρ = 101.5/year as a mid-range ρ. Throughout all simulations, we set Dc =
101.5mm2/year and γ = 0.05/day, leading Equation (26) to give threshold val-
ues of k = 2.19, 2.60 and 3.06 for higher, medium and lower ρ simulations,
respectively.

We present the wave-speeds normalized against their predicted values of
smin (Equation (21)) in order to compare the simulation results across differ-
ent values of ρ. We see for values of Dh/Dc below their respective thresholds
that the wave-speeds all follow their predicted minimum values. For simula-
tions where Dh/Dc is above the respective threshold k, we see an increased
wave-speed, as expected (see Figure 5). This relative increase in wave-speed is
more pronounced for larger values of ρ. Simulated tumors with larger ρ val-
ues are also faster-growing tumors as they have a faster minimum wave-speed
(Equation (21)).

Fig. 5 As Dh/Dc is increased for varying Dc and ρ values, we see an increase in the relative
wave-speed s/smin that is more pronounced for larger values of ρ. The observed trend agrees
with the expectation given by the corresponding values of k, which are also indicated. Wave-
speeds taken as the average speed between 8 and 8.5cm of growth on simulated T2 MRI
(16% total cell density threshold) and normalized against smin.
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6 Discussion

We have found an expression for the minimum wave-speed for the PIHNA
model given by

smin = 2
√
Dcρ

(
1− v0

K

)
(28)

and shown that this predicted wave-speed is attained when normoxic cell dif-
fusion is greater than or equal to the diffusion of hypoxic cells. We therefore
have shown that the predicted minimum wave-speed is valid for previous pub-
lications of the PIHNA model [20]. However, due to the in vitro evidence
indicating that hypoxia can increase migration [7,23], we are interested in in-
creasing the migration rate of hypoxic cells compared with normoxic cells in
our extension of the PIHNA model. In the case that the hypoxic cells diffuse
sufficiently faster than the normoxic cells, we see that the outward growth of
the tumor is faster than the predicted minimum wave-speed value. In fact,
we have quantified the value at which these faster rates of growth can occur
through the threshold

k = 2 +
γ

ρ(1− v0/K)
(29)

and note that the hypoxic cell diffusion has to be at least twice as fast as the
normoxic cell diffusion. The threshold of hypoxic to normoxic cell migration
rates is increased if the hypoxic cells can easily convert back to normoxia,
and decreased for faster proliferating normoxic cell populations. This result
suggests that faster-proliferating tumors that can only slowly recover from
hypoxia are pushed to grow even faster by a highly migratory hypoxic sub-
population, more so than slower-proliferating tumors that can easily recover
from hypoxia.

The analysis presented here shows that the wave-speed dynamics do not
depend on the vascular efficiency term, V , as long as V = 1 ahead of the wave.
We also do not see a dependence on the switching rate from the normoxic cell
density to the hypoxic cell density, β.

Mathematically, the increase in simulated wave-speed corresponds to a
change in the asymptotic traveling wave trajectory as Dh/Dc is increased,
which causes an eigenvector associated with the hypoxic cell density char-
acteristics to dominate the behavior of the PIHNA model. Biologically, this
suggests that the faster migration of hypoxic cells can drive the growth of the
whole tumor, as they migrate towards nutrient-rich environments and convert
back to normoxic cells. If this conversion rate is high, the model suggests that
the outward growth rate of the whole tumor is lower. The model does not
predict that the wave-speed is affected by the proportions of hypoxic and nor-
moxic cells. However, a reduction in vasculature ahead of the wave (v0) does
increase the invasion speed of the tumor due to the appearance of v0 in the
minimum predicted wave-speed. It would be interesting in future work to see
how including a normal cell density affects these dynamics.
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A Appendix

As discussed in the main body of this work, we wanted to show that our PIHNA simulations
were following different eigenvalues depending on the value of Dh/Dc. In the linearized
regime ahead of the wave, we expect that ĉ = c̄ exp(λ(x− st)), such that

∂(log(c))

∂r
∼ λ. (30)

In Figure 6 we present simulations at a T2 radius of 30cm. We see for the simulation with
Dh/Dc = 0.1, ∂(log(c))/∂r follows λ1 ahead of the traveling wave, whereas for Dh/Dc = 10,
∂(log(c))/∂r follows λ4.

Fig. 6 The gradient of the log of the normoxic cells is plotted for a T2 radius of 30cm. As
described in the main text, the leading edge of this simulated gradient (ignoring boundary
effects present close to the edge of the domain) should follow the eigenvalue that controls the
dynamics of the PIHNA model. Simulations presented here correspond with those presented
in Figure 3. The simulation with Dh/Dc = 0.1 agrees more closely with λ1, whereas the
simulation with Dh/Dc = 10 follows λ4. The results of these support the eigenvalue and
eigenvector analysis in the main body of this work.
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