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ABSTRACT

Epilepsy is a global epidemic and 30% of the 60 million patients do not respond to medication
treatment. The only treatment options for patients with medically refractory epilepsy are surgical
removal or electrical stimulation of the epileptogenic zone (EZ) i.e. the source of their seizures.
Despite extensive evaluations with neuroimaging, visual EEG analysis and clinical testing, surgical
success rates vary between 30-70%. Currently, no computational methods have been translated into
the clinic to assist in localizing the EZ. Here, we applied a dynamical network model that quantifies
the fragility of nodes within a patient’s intracranial EEG (iEEG) brain network. Fragility is quantified
as the minimal amount of perturbation that must to be applied to a node’s influence on a "balanced"
network to cause imbalance. Here, a balanced network is one in which the connectivity between
excitatory and inhibitory nodes render a stable system, and an imbalanced network is unstable and
hence can generate seizures. Using iEEG data from 91 patients treated across 5 epilepsy centers
(44 successes, 47 failures), we demonstrated that nodal fragility is greater in electrodes within the
EZ. In addition, we compared fragility of iEEG nodes to 7 frequency-based and 14 graph theoretic
features of the EZ in both seizure (n=91) and non-seizure data (n=54). We calculated a confidence
statistic, defined as the ratio of the value of a given feature averaged across electrodes in the clinically
annotated seizure onset zone to its average across all other electrodes. Fragility has a significantly
greater effect size difference between surgical outcomes when compared to other features. This novel
feature, outperformed the most popular iEEG features when comparing across surgical outcomes,
possibly defining a superior network-based EEG fingerprint for the EZ.
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1 Introduction

Over 15 million epilepsy patients worldwide and 1 million in the US suffer from medically refractory epilepsy (MRE)
[1, 2, 3, 4, 5]. MRE is defined by the International League Against Epilepsy as continued seizures despite adequate trials
of two tolerated, appropriately chosen and administered anti-epileptic drugs . MRE patients have an increased risk of
sudden death and are frequently hospitalized, burdened by epilepsy-related disabilities, and are a substantial contributor
to the $16 billion dollars spent annually in the US treating epilepsy patients [6, 7]. Approximately 50% of MRE patients
have focal MRE, where a specific region or set of regions in the brain is the source of the abnormal electrical activity
resulting in seizures, termed the epileptogenic zone (EZ) [8, 9, 10, 11]. Although there exist neurostimulation treatments
for focal MRE [12, 13], the mainstay of treatment has been surgical resection of the EZ ever since randomized control
trials demonstrated superior outcomes compared to prolonged medical therapy [14]. When successful, these treatments
stop seizures or allow them to be controlled with medications. Outcomes for both treatments depend critically on the
clinician’s ability to accurately identify the EZ. However, no clear bio-markers have been identified for the EZ.

When non-invasive evaluations with electroencephalography and neuroimaging are inconclusive for localizing the
EZ, clinicians transition to an invasive monitoring phase, termed a phase 2 evaluation, as shown in Figure 1, during
which electrodes are either placed on the brain surface via strips, or grid (i.e. ECoG) or implanted into the brain via
stereo-EEG (SEEG) to record intracranial EEG (iEEG) data. Clinicians visually inspect iEEG recordings captured
over the course of multiple days to weeks, analyzing multiple seizure, (i.e. ictal) events looking for various epileptic
signatures, such as spikes and high frequency bursts [15, 16, 17, 10, 11]. They then form a hypothesis from such iEEG
features and from non-invasive imaging data that results in annotation of the seizure onset zone (SOZ) electrodes,
the region they visually see as participating in early onset of seizures; the SOZ is the best clinical estimate of the true
underlying EZ. This SOZ is generally included in the resected zone, except in the case of surgical limitations such as
proximity to critical functional regions. Despite the wealth of data collected, localization is performed through visual
inspection of data with limited use of computational tools [18, 19, 20, 21, 22]. Furthermore, adequate localization is
significantly affected by the pre-implantation hypothesis generated from non-invasive testing (which guides brain areas
to be explored invasively) and the results of visual inspection of the iEEG data.

There is a great need for computational approaches to identify robust iEEG iEEG fingerprints of the EZ. Since there
does not exist ground-truth for the EZ, approaches must aim to identify robust iEEG features of the SOZ from large
retrospective samples of patients with successful and failed surgeries. Recent studies have focused on the hypothesis
that iEEG nodes exhibiting high-frequency oscillations (HFOs) during the segments between seizure periods (i.e.
interictal are correlated to the EZ [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. However, HFO studies have
conflicting results due to varying algorithms, interpretations of HFOs and inter-rater reliability [34, 37]. Other promising
approaches include graph-based analysis of iEEG [38, 39, 40, 41, 42, 43, 44, 45, 46], power-spectrum analysis of iEEG
[47, 48, 49, 50, 51, 52] and predictions from computational modeling of the iEEG network [53, 54, 55, 56, 57, 58].
Although many features have been proposed in the literature, none have yet translated into the clinical workflow for a
number of reasons: 1) lack of sufficient clinical validation on large and diverse patient populations, 2) attempt to predict
the EZ with no ground truth labels, and 3) lack of sufficient validation against other proposed methods.

In this study, we explored a novel network-based iEEG feature, fragility, which is based on dynamical systems theory
[59, 60], for the purposes of SOZ localization. We systematically evaluated 21 iEEG features that have been introduced
in the research community and compared them to fragility on a diverse sample of patients from five centers including
both ictal (n=91) and interictal (n=54) data. Identifying strong features is challenging in this setting because we do not
have a ground truth. We claim that a robust iEEG feature must satisfy the following criterion: i) it should be take on
extreme values inside the clinically labeled SOZ nodes for successful outcome cases, and ii) it should be ambiguous or
take on extreme values in contacts outside the clinically labeled SOZ for failed outcomes. To quantify the robustness
of a candidate iEEG feature, a confidence statistic (CS), defined as the ratio of the feature values averaged across the
SOZ electrodes to its average across all electrodes, is computed. In this framework, lower confidence scores suggest
that patients will have failed outcomes, while higher confidence scores suggest successful outcomes. We found that
electrodes with higher fragility values were more likely to be in the SOZ in successful outcomes, but outside the SOZ
in failed outcomes.

2 Methods

2.1 Dataset collection

EEG data from 91 epilepsy patients who underwent intracranial EEG monitoring - either electrocorticography (ECoG),
or depth electrodes with stereotactic EEG (SEEG) - were selected from University of Maryland Medical Center
(UMMC), University of Miami Hospital (UMH), National Institute of Health (NIH), Johns Hopkins Hospital (JHH),
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Figure 1: (a) Case clinical complexity ordered by increasing localization difficulty: lesional (1), focal temporal (2),
focal non-temporal (3), and multi-focal (4) MRE. After neuroimaging, scalp and semiology analysis is inconclusive, (b)
shows a schematic of the complex and relatively lengthy iEEG workflow for localization. During invasive monitoring,
clinicians attempted to identify visual EEG signatures (e.g. HFOs, spikes, or burst activity) to isolate the SOZ; for
a review of this, see [17]. Consensus agreement of the spatial distribution of visual EEG signatures together with
pre-implantation data are used to construct the clinically annotated SOZ, which is an estimate of the true EZ. The
patients then undergo a large resection, or targeted laser ablation, resulting in a resected region, which is generally a
super set of the SOZ. Patients are categorized as either seizure free (success), or having seizure recurrence (failure) at
their 6-12 months post-op evaluations.

and the Cleveland Clinic (CClinic). Patients exhibiting the following criteria were excluded: patients with no seizures
recorded, pregnant patients, patients less than 5 years of age, patients with an EEG sampling rate less than 250 Hz,
patients with previous surgeries before the current implantation, and patients in which no surgery was performed. All
91 remaining patients had a surgical resection or laser ablation performed. Of these patients, 44 experienced successful
outcomes and 47 had failed outcomes (average age at surgery = 31.52 ± 12.32 years) with a total of 462 seizures
(average ictal length = 97.82 ± 91.32 seconds) and 14703 total number of recording electrodes (average number
implanted = 159.82 ± 45.42). [61, 62, 16]. For each patient, we aggregated data from multiple ictal snapshots and
interictal portions of data (if available). In the 54 patients with interictal data, we collected 1-2 snapshots per patient,
totaling 75 snapshots that were at least 3-24 hours from an ictal event (average age at surgery = 31.88 ± 12.24 years;
average snapshot length = 270.92 ± 194.19 seconds; 6932 total number recording electrodes. We were unable to collect
interictal data for all patients because the data was not stored long-term in many cases.

For each patient, we combined surgical notes and postoperative follow-up information regarding how the resection
or ablation affected the patient’s seizures. We categorized patients by surgical outcome (success = seizure free 6-12
months post-op and failure = seizure recurrence), and by Engel score as determined by clinicians [63]. In addition, we
categorized patients by their clinical complexity (CC) as follows: (1) lesional, (2) focal temporal, (3) focal non-temporal,
and (4) multi-focal (Figure 1) [16, 17]. Each of these were categorized based on previous outcome studies that support
this increasing level of localization difficulty. Lesional patients have success rates of 7̃0%, experiencing the highest rate
of surgical success because the lesions identified through MRI are likely to be part of the EZ [64, 65, 21, 66, 20, 67].
Localization and surgical success in seizure control are even more challenging in patients with non-lesional MRI.
Patients can then be further categorized into temporal, focal non-temporal, and multi-focal lobe epilepsy experience
average surgical success rates of 6̃0%, 4̃5%, 4̃0% respectively [68, 69, 70, 71]. Patients that fit into multiple categories
were placed into the more complex category. Next, electrodes that were clinically identified as part of the SOZ were
hypothesized to be part of the EZ. In general, this was a subset of the resected region for all patients, unless otherwise
noted. The epileptologists define the clinically annotated SOZ as the earliest electrodes that participated in seizures.
The corresponding SOZ complement, or SOZC are the electrodes that are not part of the SOZ. Every patient’s clinical
SOZ was labeled by 1-3 trained epileptologists. The electrodes within the resected region were also estimated from
surgical notes. Obtaining rigorous labels for resected regions would require postoperative T1 MRI and CT scans,
which were not readily available for all patients. After the proposed surgery based on SOZ annotation, patients were
categorized into either a successful (i.e. seizure free), or failed (i.e. seizure recurrence) outcome at 6-12 months post-op.
For more detailed information regarding the patient population, see Supplemental Figure S1 and Supplemental clinical
data summary Excel file.

At all centers, data were recorded using either a Nihon Kohden (Tokyo, Japan) or Natus (Pleasanton, USA) acquisition
system with a typical sampling rate of 1000 or 2000 Hz (for details regarding sampling rate per patient, see Supplemen-
tary file table). Signals were referenced to a common electrode placed subcutaneously on the scalp, on the mastoid
process, or on the subdural grid. At all centers, as part of routine clinical care, up to three board-certified epileptologists
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marked the EEG onset and the termination of each seizure by consensus. The time of seizure onset was indicated by
a variety of stereotypical electrographic features which included, but were not limited to, the onset of fast rhythmic
activity, an isolated spike or spike-and-wave complex followed by rhythmic activity, or an electrodecremental response.
The clinicians then clipped sets of data and passed it through a secure transfer for analysis in the form of the European
Data Format (EDF) files [72]. Each ictal snapshot available for a patient was clipped at 30 seconds before and after the
ictal event, and each interictal snapshot was a period of 30-90 seconds of data 3-24 hours away from a seizure event.
We discarded electrodes from further analysis if they were deemed excessively noisy by clinicians, part of white matter,
or were not EEG related (for example: reference, or EKG, or not attached to the brain) which resulted in 97.23 ± 34.87
electrodes used per patient in our analysis. We stored data in the BIDS-iEEG format and performed processing using
Python3.6 and MNE [73, 74, 75, 76].

Decisions regarding the need for invasive monitoring and the placement of electrode arrays were made independently
of this work and solely based on clinical necessity. All data were acquired with approval of local Institutional Review
Board (IRB) at each clinical institution. The acquisition of data for research purposes was completed with no impact
on the clinical objectives of the patient stay. Digitized data were stored in an IRB-approved database compliant with
Health Insurance Portability and Accountability Act (HIPAA) regulations.

2.2 Preprocessing of data

In our analysis of the iEEG data, we performed the same preprocessing on all datasets. Each dataset was notch filtered
at 60 Hz and bandpass filtered between 0.5 and the Nyquist frequency with a fourth order Butterworth filter. A common
average reference was applied to remove any correlated noise [77]. All filtering steps were applied to both ictal and
interictal snapshots the same way. EEG sequences were broken down into sequential windows and the features were
computed within each window (see Methods 2.3, 2.4 and 2.5). Each proposed feature produces a value for each
electrode for each separate window, and results in a full spatiotemporal feature heatmap when computed over sequential
windows. In total, we computed 22 different feature representations from the iEEG data: 6 frequency power in band
(PIB), 7 eigenvector centralities (one for each frequency band coherence connectivity matrix and one for a correlation
connectivity matrix), 7 in-degrees (one for each frequency band coherence connectivity matrix and one for a correlation
connectivity matrix), 1 HFO and our proposed fragility feature. Values at each window of time were normalized across
electrodes to values between 0 and 1, to allow for comparison of relative feature value differences across electrodes over
time; the higher a normalized feature, the more we hypothesized that electrode was part of the EZ [60]. For HFOs, the
rates were computed first, and then normalized, since it does not produce a spatiotemporal map like the other features.

2.3 Fragility of a network

The notion of fragility is derived from the concept that an epileptic network is inherently imbalanced with respect
to connectivity between inhibitory and excitatory populations (nodes). That is, if a specific node or set of nodes is
perturbed, over excitation may occur manifesting in a seizure. From a dynamical systems point of view, such imbalance
arises from a few fragile nodes causing instability in the network.

We introduced the fragility of a node in [59], and defined it as the minimum perturbation applied to the node’s
connectivity to its neighbors before rendering the network unstable. In system theory, stable systems return to a baseline
condition when a node is perturbed. In contrast, unstable systems can oscillate and grow when a node is perturbed. A
fragile node is one that requires a smaller perturbation to lead to ictal activity. We showed how to compute fragility
from a stable dynamical network model in [59]. We then described how to estimate such a model from iEEG recordings
for two patients in [60].

To demonstrate how fragility is computed from a model, we consider a 2-node network as shown in Fig. 2. In Fig. 2A,
a stable network is shown where excitation and inhibition are balanced. The network model is provided in the top
row and takes a linear form of x(t + 1) = Ax(t). When the inhibitory node is stimulated by an impulse, the EEG
responses from each node transiently respond and return to baseline (bottom row). In Fig. 2B, the inhibitory node’s
connections are slightly perturbed in a direction that makes the inhibitory node less inhibitory (see red changes to its
connectivity to the excitatory node). These changes are reflected in the model and diagram. Now, when the inhibitory
node is stimulated by an impulse, the EEG responses from each node have a larger transient response but still return
to baseline. Finally, in Fig. 2C, the inhibitory node’s connections are further perturbed in a direction that makes the
inhibitory node less inhibitory. Now, when the inhibitory node is stimulated by an impulse, the EEG responses oscillate
demonstrating that the network has gone unstable. The fragility of the inhibitory node is thus quantified as

√
8 which is

the norm of the perturbation vector applied to the first column in the network model.

To compute fragility heatmaps from iEEG recordings, we constructed simple linear models as described above but one
for each 500 ms iEEG window. We used a sparse least-squares with a 1e − 5 l2-norm regularization to ensure that
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the model identified was stable as in [78, 60]. Then, we slid the window to capture the next 500 msec of iEEG data
and repeated the process, generating a sequence of linear network models in time as in Figure 3b). We systematically
computed the minimum perturbation required for each electrode’s connections (see Figure 3b) to produce instability for
the entire network as described in [60]. The electrodes that were the most fragile were hypothesized to be related to the
EZ in these epilepsy networks (seen as the bright yellow color in Figure 4).
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Figure 2: A 2-node EEG network example with an excitatory (E) and inhibitory (I) population of neurons. ’A’ is a
linear network model quantifying how each population affects the rest over time. ∆ (i.e. the fragility), is the amount of
change added to a node’s connections. The fragility of the node is quantified as the minimal amount of change necessary
to cause seizure-like phenomena. (a) shows a stable network without a perturbation added, (b) shows a perturbation
added, but the network is still stable and then (c) shows a perturbation added, such that the network becomes unstable.
The magnitude of the ∆ added here is the fragility of node I.

2.4 Baseline features - HFOs and spectral features

In order to compare fragility with HFO analysis, we applied an open-source algorithm for detecting HFOs [30, 79] on
our interictal data set. We note that our data sets were not sampled with under optimal conditions for HFO detection:
that the EEG sampling rate be greater than 2000 Hz and that the data be from periods of non-REM sleep [30, 34, 80].
However, some studies also analyzed HFOs in other time periods, such as wakefulness [81, 82]. Since our interictal
data are sampled at 1000 Hz, Nyquist’s theorem suggests we should be able to detect frequencies up to 500 Hz. Fast
ripples (FR) and ripples (R) were extracted and we considered HFOs to be the union between the FR and R detected by
the algorithm. For details on the algorithm, see [30]. In addition to HFOs, we also constructed spectral-based features.
We applied a multi-taper Fourier transform over sliding windows of data with a window/step size of 2.5/0.5 seconds
[83, 42]. Each EEG time series was first transformed into a 3-dimensional array (electrodes× frequency × time),
and then averaged within each frequency band to form six different spectral feature representations of the data. We
break down frequency bands as follows:

1. Delta Frequency Band [0.5 - 4 Hz]
2. Theta Frequency Band [4 - 8 Hz]
3. Alpha Frequency Band [8 - 13 Hz]
4. Beta Frequency Band [13 - 30 Hz]
5. Gamma Frequency Band [30 - 90 Hz]
6. High-Gamma Frequency Band [90 - 300 Hz]
7. HFO = R & FR [80-250 Hz & 250-500 Hz]

This resulted in a spatiotemporal heat map for each frequency band of each electrode’s spectral power over time. For
HFOs, the output was a binary raster plot, representing whether HFOs are present over time or not, which was then into
a HFO rate per electrode.
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2.5 Baseline features - graph analysis of networks

There are many ways to measure connectivity in iEEG data through the use of graph analysis. Specifically, we computed
a time domain model using Pearson correlation (equation 1) and a frequency domain model using coherence (equation
2). In the equations, (i, j) are the electrode indices, Cov is the covariance, σ is the standard deviation, f is the frequency
band, and G is cross-spectral density. Note that these A’s are not the same as one would compute in a dynamical system
model. For each network-based feature, a sliding window/step size of 2.5/0.5 seconds were used, resulting in a sequence
of network matrices over time resulting in 3-dimensional arrays (electrodes× electrodes× time).

Aij =
Cov(xi, xj)

σxi
σxj

(1)

Aij(f) =
|Gij(f)|2

Gii(f)Gjj(f)
(2)

From each network matrix, we computed the eigenvector centrality [42, 41], and the in-degree [40] features of the
network for each electrode across time. Centrality describes how influential a node is within a graph network. In-degree
is the weighted sum of the connections that connect to a specific node. Both features are potential measures that attempt
to capture the importance of a specific electrode within an iEEG network. We produced a spatiotemporal heat map of
electrodes over time of the eigenvector centrality and the in-degree for all datasets.

2.6 Experimental design

Specifically, we tested if fragility localized the clinically annotated SOZ better in successful surgeries, and worse in
failed surgeries compared to other proposed features. For fragility and all baseline features, electrodes with extreme
activity deviating from the average were hypothesized as part of the EZ. After looking at the spatiotemporal fragility
heatmaps of many patients, we determined if fragility could be quantified in a way that could highlight the differences
between clinical outcomes, such as surgery success, CC, and Engel score. For every patient, the feature signals of
the SOZ and SOZC (SOZ complement) were computed for every iEEG snapshot, averaged over electrodes. To
compare spatiotemporal heatmaps across features, we computed a confidence statistic (CS) that should be high for
success outcomes and low for failures for "good" features. We computed a CS for each patient, which we then stratified
and compared population CS distributions across surgical outcomes (S vs F), CC (1-4), Engel score (1-4), gender (M
vs F), handedness (R vs L), epilepsy onset age (years), and age during surgery (years). We expected that fragility
could capture a trend of decreasing confidence as CC and Engel score goes from 1-4. For each clinical covariate
group, we measured the effect size difference via bootstrapped sampling, and the statistical p-value between the CS
distributions. We hypothesized that: i) fragility would have an effect size difference significantly different from zero
when comparing success vs failed outcomes, ii) in addition, this effect size would correlate with meaningful clinical
covariates, such as CC and Engel score and iii) both the effect size and p-value would be better than the proposed
baseline features.

2.7 Feature evaluation using a confidence statistic

The fragility and all baseline features proposed generated a spatiotemporal heatmap using EEG snapshots of either ictal
or interictal data (outlined in Figure 3). In order to evaluate each feature, each spatiotemporal feature heatmap was
converted into a CS, which is a metric determining the degree of confidence in the proposed surgical plan. The higher
the CS (closer to 1), the more likely the feature indicated a successful surgery, and the lower it was (closer to 0), the
more likely the feature indicated a failed surgery. We tested these hypotheses stated above by computing a CS from
each feature heatmap for each patient, and estimated the distribution differences of the CS between various clinical
covariates. The CS of each feature heatmap was computed by first normalizing the ictal period to 100 samples for all
ictal snapshots of data because the length of the ictal can vary across different events. Non-ictal data are kept the same
length across patients. If there were multiple ictal, or interictal snapshots, then they were combined by the median of
the normalized heatmaps. Next, we partitioned the heatmap into a SOZ and SOZC as seen in Figure 3. This formed
the two sets of signals that represent the spatiotemporal feature values of the SOZ set vs the SOZC set of electrodes.
Finally, the ratio of the average feature values in the SOZ to the SOZ + SOZC was computed to form the CS (as
shown in Figure 3). Because HFOs are viewed as rates, we first determined the overall rate of HFOs in each electrode
over the interictal data. We then normalized the rate across all electrodes and computed the average rate in the SOZ
and divided by the average rate in the SOZ plus SOZC . Because not all electrodes would have HFOs detected, it was
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possible to get an undefined CS. In this case, we either assigned those patients a confidence of 0, or removed them from
analysis. We used the analysis that gave HFOs the better result in terms of CS effect size difference between success
and failure in our framework. As a result, we assigned those undefined patients a confidence of 0.
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Figure 3: In (a), any candidate feature that can produce a spatiotemporal heatmap was computed from EEG data and
then partitioned by the clinically annotated SOZ set and the complement, SOZC (i.e. non-SOZ electrodes) to compute
a confidence statistic measuring the feature’s belief of the clinician’s hypothesis. Here F̄SOZ and F̄SOZC were the
average feature values within their respective sets. An ideal feature would have high and low confidence for success and
failed outcomes respectively. Each point on the final CS distribution comparisons represent one patient. In (b), is a
schematic of how our proposed fragility and baseline features were computed from EEG data for a single snapshot of
EEG data. See fragility methods section for description of x, A and ∆. For a similar schematic of how the baseline
features were computed, see supplemental figure

S2.

2.8 Statistical analysis

A single CS point was computed for each patient and proposed feature. We compared this CS stratified by different
clinical factors: surgical outcome, Engel score, CC, handedness, gender, onset age, and surgery age. Rather than using
box plots, which can have different distributions for the same summary statistics, we showed swarm plots with standard
deviation bars to visualize distributions [84]. We then estimated the effect size differences between distributions in the
form of Cohen’s d statistic [85]. Cohen’s d was estimated using a non-parametric permutation test on the observed data
with 5000 resamples used to construct a 95% confidence interval (as seen in Figure 5) [84]. The null hypothesis of our
experimental setup was that the CS derived from the spatiotemporal feature heatmaps came from the same population.
The alternative hypothesis was that the populations were different (i.e. a feature could distinguish success from failed
outcomes). Mann-Whitney U tests were used to determine the p-value of the effect sizes differences [86]. All p-values
and effect sizes were compared across candidate features.

2.9 Code and data availability

All code related to generate the figures are at https://github.com/adam2392/fragility_in_ieeg (will be made
public once published). We included jupyter notebooks written in Python. We also released the raw iEEG data, and the
computed feature for each patient open-sourced and available at the INDI Retrospective Data Sharing repository in the
form of BIDS-iEEG.

3 Results

We analyzed every patient’s EEG using fragility and the other baseline features, resulting in spatiotemporal heatmaps
per patient for every feature. The baseline features attempted to capture activity from specific frequency bands (e.g.
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delta band and HFOs) and specific graph measures (e.g. eigenvector centrality and degree), which have been previously
reported in the literature to correlate to the EZ [41, 40, 42, 43, 44, 39]. We considered all of these as potential EEG
features of the underlying EZ in comparison to fragility.

3.1 Fragility heatmap highlights the SOZ in a successful patients

Fragility attempted to capture the susceptibility for specific electrodes (i.e. nodes within the EEG network) to cause
network instability. To qualitatively assess the usefulness of fragility in localizing electrodes of interest, we first present
specific examples of patients analyzed with fragility, and demonstrate how it may provide additional information in EZ
localization. In Figure 4, we show three different patients with differing surgical treatments, outcomes, Engel score
and CC along with their fragility heatmaps and corresponding raw iEEG data (for their full clinical description; see
supplementary Excel table):

1. Patient_01 from NIH (primarily ECoG, successful resection, Engel score 1, clinical complexity 1),

2. Patient_26 from JHH (primarily ECoG, failure resection, Engel score 4, clinical complexity 3),

3. Patient_40 from CClinic (SEEG, failure laser ablation, Engel score 3, clinical complexity 4).

In Figure 4a, the red electrode labels on the y-axis corresponded to the clinically hypothesized SOZ electrodes; note
that the red regions were part of the resected set unless otherwise noted. This figure showed the period 10 seconds
before and after seizure onset. We visualized an entire ictal event for each of these patients and show their corresponding
fragility heatmaps in Supplementary Figure S8. In Patient_01, the red electrodes (i.e. SOZ) showed a high degree of
fragility, even before seizure onset, which is not visibly clear in the raw EEG. This patient was a successful surgery and
was seizure free, and so we assume the epileptogenic tissue laid within the resected region, and that it was likely the
clinicians correctly localized the EZ. When looking at the raw EEG data, Patient_01 has visual features that are readily
visible around seizure EEG onset (10 seconds, halfway through the snapshot). We see onset activity that occurred
in electrodes that clinicians annotated as SOZ, which corresponded to the most fragile electrodes at ictal onset. In
addition, the fragility heatmap captured the onset in the ATT and AD electrodes and early spread of the seizure into the
PD electrodes. ATT1 (anterior temporal lobe area) showed high fragility in the entire period before seizure onset (see
Figure 4), and even in interictal periods many hours away from seizure events (see Supplementary Figure S9). This
area was not identified with scalp EEG, or non-invasive neuroimaging. In this patient, both visual EEG analysis and
the fragility heatmap identified a sufficient SOZ, which was included in the surgery and led to the patient becoming
seizure free.

3.2 Fragility heatmap highlights the SOZC in failed patients

Patient_26 and Patient_40 both showed distinct regions with high fragility that were not in the clinically annotated SOZ
(or the resected region), and were both failed surgeries. Specifically in Patient_26, the ABT (anterior basal temporal
lobe), PBT (posterior basal temporal lobe) and RTG29-39 (mesial temporal lobe) electrodes were highly fragile, but not
annotated as SOZ.

Patient_40 had laser ablation performed on the electrode region associated with Q2, which was shown by fragility
analysis to be relatively not fragile. From seizure onset, many electrodes exhibit the EEG signatures that are clinically
relevant (e.g. spiking, fast-wave activity, etc.) [16]. In this patient, the X’ (posterior-cingulate), U’ (posterior-insula)
and N’/M’/F’ (superior frontal gyrus) were all fragile compared to the Q2 (lesion in the right periventricular nodule)
electrode. Patient_26 had a resection performed in the right anterior temporal lobe region. Clinicians identified the RAD,
RHD and RTG40/48 electrodes as the SOZ. In the raw EEG data, one can see synchronized spikes and spike-waves in
these electrodes, but the patient had seizure continue despite resection. In the corresponding fragility heatmap, ABT
and the RTG29-32 electrodes were highly fragile compared to the clinically annotated SOZ region. In the raw EEG
data is it not visibly clear that these electrodes would be part of the SOZ.

Although visual analysis of the EEG was able to identify SOZ in Patient_01 and Patient_34, it was insufficient for
Patient_26 and Patient_40, which led to a failed surgical outcome. In the context of fragility theory of a network,
seizure recurrence could be due to the presence of unstable (i.e. high fragility) regions across the epileptic network.
Fragility of an electrode within a certain window does not correlate directly with gamma or high-gamma power, which
are traditional frequency bands of interest in localizing the SOZ [42, 21, 51, 87, 88, 89, 31, 41] (see Supplementary
Figure S10). Based on this heatmap, these fragile regions would be hypothesized to be part of the SOZ, and possibly
candidates for resection. The fragility maps of the interictal periods in Figure S9 also shows different electrodes being
fragile compared to the SOZ.
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Figure 4: Fragility heatmaps (a) and corresponding raw EEG data (b) with electrodes on y-axis and time on x-axis with
the dashed white-lines denoting seizure onset. Each shows 10 seconds before seizure onset marked by epileptologists,
and 10 seconds after. Figure column (a) shows clinically annotated maps of the implanted ECoG/SEEG electrodes with
red denoting SOZ contacts. From top to bottom, Patient_01 (success, CC1, Engel score 1), Patient_26 (failure, CC3,
Engel score 4), and Patient_40 (failure, CC4, Engel score 3) are shown respectively. The color scale represents the
amplitude of the normalized fragility metric, with closer to 1 denoting fragile regions and closer to 0 denoting relatively
stable regions. Note that the red contacts are also part of the RZ. Best seen if viewed in color. Figure column (b) shows
the corresponding raw EEG data for each patient. Each EEG snapshot is shown at a fixed scale for that specific snapshot
that was best for visualization, ranging from 200 uV to 2000 uV. Data is shown in the turbo colormap.
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3.3 Fragility derived confidence statistic separates surgical outcomes

From the spatiotemporal heat maps for each feature, we temporally averaged the values over electrodes in the SOZ
and the SOZC . These signals represented the average nodal fragility value over time of the SOZ electrodes and the
SOZC electrodes. A good representation of the underlying SOZ would be one that separated well and consistently
over time in successful outcomes, but inconsistently in failed outcomes. The corresponding SOZ vs SOZC signals
for patients 01, 26 and 40 are shown in Supplementary Figure S3. The SOZ vs SOZC signals for each patient were
different depending on the surgical outcome of the patient. Patient_01 had a higher CS with 0.572 than Patient_26 and
Patient_40 with 0.492 and 0.467 respectively. Visually, the red SOZ signal compared to the black SOZC signal is
higher in the period right after seizure onset for the successful patient. On the other hand, the SOZC signal is either
higher or mixed with the SOZ signal, indicating that there are highly fragile electrodes not included in the clinically
annotated SOZ.

We also computed the the same SOZ vs SOZC fragility values across patients within a clinical center (i.e. UMH,
UMMC, NIH, JHH, and CClinic) split by success and failed outcomes. The average and standard error is computed
over all the patients within each outcome group. In Figure S4, we found that on average, patients with successful
outcomes had higher fragility values 30 seconds before ictal onset to the early periods of ictal. In contrast, failed
outcomes on average either have lower overall fragility values compared to their successful counterparts, or very high
variability, suggesting the SOZ captured both stable and fragile regions. In all centers, we saw qualitatively that the
SOZ electrodes’ fragility was higher over a window surrounding seizures, than their respective SOZC electrodes in
successful outcomes. In the failed outcomes, there is not as distinct of a separation between the fragility of the SOZ
vs SOZC . Since these are pooled patients for each center, it is simply a visualization of the average spatiotemporal
fragility signals separated by clinically-hypothesized SOZ over an entire center. The more separated the SOZ and
the SOZC feature signals, then the more confident fragility was in the annotated SOZ. This motivated us to define a
simple and interpretable confidence statistic that would determine how well fragility agrees with clinicians’ SOZ in
different patient situations.

In order to evaluate each feature representation, we next computed a CS, which was the ratio of the SOZ and SOZC

feature signals. After each patient’s CS was computed, we visualized the entire distribution in Figure 5 stratified
by surgical outcome. We computed effect sizes using a non-parametric permutation test, and p-values under the
statistical paradigm described in Methods 2.8. In Figure 5a, we visualized the Cohen’s d effect size difference in
the CS distributions between successful and failed surgical outcome patients. A high CS would mean a high degree
of confidence in the clinician’s proposed localization, while a lower CS would suggest the opposite. There was a
statistically significant difference (p-value=0.02) between the successful and failed CS distributions, and an average
effect size difference between the two groups of 0.627. On average, fragility had a 0.627 higher standardized confidence
in the clinically annotated SOZ in success outcomes, then in failed outcomes.

3.4 Fragility confidence statistic correlates with clinical complexity and Engel score

We next analyzed CS with respect to the CC of the patient which is a more objective measure of the patient’s seizure
origin. CC is determined by what type of seizures the patient exhibit rather than the severity of the seizures, which can
be subjective [90, 91]. CC was a factor determined outside of surgical outcome and one we expected would correlate
with failure rate; higher CC means more difficult localizations and hence more seizure recurrences after surgery. In
Figure 5b, we show the fragility CS distributions effect size differences between different CC, with CC1 as the reference
distribution. CC 1 and 2, corresponding to lesional and focal temporal lobe patients respectively, were not significantly
different in terms of p-value (0.798), nor did they show an effect size difference (average effect size of 0.042). This
similarity between CC1 and CC2 has been seen in other studies, where lesional and temporal lobe epilepsy patients
experience the greatest success rates from surgery [64, 92, 17]. However, as the CC increased, there was a greater
chance that the surgery would result in failure in general with existing studies demonstrating 30-70% ictal freedom
rates after surgery depending on the presence of a lesion (i.e. CC 1) [10, 21]. We saw this trend in the fragility CS
distribution differences with an average effect size of 0.434 for CC3 and 0.454 for CC4. The respective p-values for
CC3 and CC4 compared to CC1 were 0.239 and 0.367. We also stratified within each CC group and conducted a similar
analysis. In supplemental Figure S6, we compared surgical outcomes within each CC group. Although sample sizes
were considerably lower due to stratification, we still saw the effect size difference between success and failed outcomes
for 3 out of 4 of the CC groups. The effect size difference between success and failure within CC1, CC2, CC3 and CC4
were: 1.07, 0.487, -0.270, and 0.676 respectively. The corresponding p-values comparing outcomes within each group
were: 0.0488, 0.487, 0.707, and 0.106.

Next, we compared the CS with respect to Engel score, which acted as a further stratification of the surgical outcomes.
In Figure 5, we compared CS distributions across Engel scores, and found that on average as Engel score increases,
fragility confidence decreases. The effect size differences when comparing against Engel score 1 were 0.439 for Engel
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score 2, 0.088 for Engel score 3, and 1.189 for Engel score 4. Their corresponding p-values were 0.195, 0.849 and 8e-4.
In the supplemental Figure S5, we also examined the CS across gender, handedness, onset age and surgery age to show
that there were no relevant differences, as determined by effect size and statistical analysis.
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Figure 5: Ictal and interictal estimation plots that show the confidence statistics and effect size differences in terms of
Cohen’s d between successful (S) and failure (F) outcomes (a), clinical complexities versus the lesional epilepsy (e.g.
clinical complexity 1) (b), and Engel scores versus Engel score 1 (c). The top row is from ictal data, and the bottom
row is from interictal data. In each figure, a legend is showing, which clinical grouping each CS data point belongs to
(CC1-4 = clinical complexity, ENG1-4 = Engel score). Cohens d effect sizes are estimated using a permutation method
and statistical p-values were computed using a non-parametric Mann-Whitney test (see Methods 2.8).

3.5 Fragile electrodes during ictal onset are seen in interictal data

Next, we repeated all of our analyses for patients with interictal data (n=54). We show the corresponding interictal
period fragility heatmaps in Figure S9 (the same patients are shown in Figure 4 for ictal data). We not only saw similar
electrodes show up as fragile in both time periods of data, but also that the fragility spatiotemporal heatmap could
highlight the most likely SOZ electrodes from interictal data that is 3-24 hours away from an ictal event. Specifically
electrodes ATT1 of Patient_01 were most fragile compared to other electrodes. If we thresholded the map to 0.8, then
they would be the ones with highest fragility as well. Clinicians agreed that out of the SOZ electrodes, this was the one
that was the earliest onset relative to a seizure event, and most likely epileptogenic in their analysis. In addition, these
electrodes were recording from a lesional region, which has a high likelihood of being epileptogenic [10, 21, 93, 17].

We also computed the CS for the interictal data. In Figure 5, we saw that the CS distribution effect size is still maintained
with a value of 0.644, and a p-value of 0.03. In Figure 5b, we also saw the same correlated increase in effect size
differences as CC increases. We further analyzed the outcome differences stratified by CC in supplementary Figure S7.
Effect size differences between outcomes were 1.14 and 1.21 for the CC1 and CC4 group respectively. The difference
between surgical outcomes were smaller in CC2 and CC3 with 0.47 and 0.38 respectively. Although the sample
sizes were significantly smaller as a result of stratification, lesional and multi-focal patient outcomes had the largest
differences with respect to the CS. When comparing across Engel scores, Engel score 1 had an effect size difference
compared to Engel scores 2, 3 and 4 of 0.84, 1.15, 0.66 respectively.
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3.6 Fragility is the best candidate feature in terms of effect size and statistical difference

Next, we summarized the results across all 21 baseline features proposed in the Methods section. In interictal data,
we included an additional analysis using HFOs, which have been considered a potential biomarker for the EZ. We
compared features based on their effect size differences between surgical outcomes, and the corresponding p-value
statistic determined by non-parametric permutation and Mann-Whitney U testing respectively. In Figure 6 we showed
a) the effect size differences and b) the pvalues for each feature using either ictal, or interictal data. A negative effect
size difference meant that a feature value was lower in the SOZ compared to the SOZC . An effect size of 0, implies
that the value of the feature was uniformly distributed across both the SOZ and SOZC electrodes, and there was no
differences between the two.

P-values are random variables that tell us how likely our data came from the null distribution: that all feature CS came
from the same population (i.e. that the feature CS cannot distinguish between clinical covariates). In Figure 6, we saw
that fragility had the most statistically significant results based on p-value analysis. In terms of statistical hypothesis
testing, only fragility’s CS had a p-value of 0.01 below our α level of 0.05. This told us that if fragility maps were
computed from a uniform clinical population, we would have observed CS distributions this different only 1% of the
time. With an α level of 0.05, we rejected the null hypothesis and determined that the fragility CS of surgical outcomes
came from different populations. This implied that the fragility of the iEEG electrodes agreed with clinicians’ SOZ
annotations when surgery was a success, but highlighted different electrodes when surgery was a failure. However, it
was not sufficient to only look at p-values as they could be misinterpreted to imply causal effects [84, 94]. So our next
step compared effect size differences between features. Figure 6 showed that the effect size difference between the
success and failed CS distributions from fragility had a relatively large effect size value of 0.649 compared to the rest of
the baseline features ranging from 0.007 to 0.502. Note that HFOs were not computed on ictal period data. For ictal
data, the gamma and high-gamma frequency band power had the second most discriminating CS in terms of absolute
effect size difference, albeit with a p-value of 0.90. This effect size observation coincided with other studies that have
observed increased gamma power during seizures [29, 49, 88, 87].

We then analyzed differences across features on only the interictal data. When we included a comparison of HFOs,
fragility still had the largest effect size and was the only one with a p-value below an α level of 0.05. When using
HFOs, 39 of the 54 patients had an undefined CS due to the fact that no HFOs were detected. Proceeding, we could
have either assumed that all 39 patients had either 0 CS (i.e. 0 confidence in the clinical localizations), or removed
them from further analysis. When we included all patients with 0 CS, HFOs actually performed better with an even
larger effect size. We proceeded by analyzing HFOs for patients without defined CS by defining for them a CS of 0.
This implies that for 39 of those patients, HFO’s CS would recommend no surgery because it had zero confidence in
the clinician’s SOZ localization. In addition to having a lower effect size compared to fragility, HFOs had a larger
standard error of mean in Figure 6a. This was a result of having combined multiple snapshots of interictal data from the
same patient, and the variability of the CS across different patients. HFO variability across different snapshots of data
has been seen in other analyses of HFOs [34]. In supplementary Figure 5, we also saw that HFOs not only had lower
effect size compared to fragility, but also did not detect any occurrences within many of clinical complexity 1 patients
(i.e. CD1). These are lesional epilepsy patients, where many have successful outcomes, so we would expect a robust
feature of the EZ to align highly with what clinicians annotated. When we analyzed the pvalues across all the features
proposed on interictal data, we found that fragility had a pvalue of 0.03. The effect size of fragility for interictal data is
0.644, compared to the other candidate features, ranging from 0.0029 to 0.526.

When we analyzed the difference in results between ictal and interictal data in Figure 6, we saw that only fragility had a
consistent effect size and p-value. In many baseline features (e.g. EVC-COH-beta, gamma, high-gamma, beta, alpha,
etc), their effect size directions switched between interictal and ictal data. This implies that the spatiotemporal value of
the feature does not directly correlate with a SOZ; in seizures the value may go up, but in interictal data the value may
go down. In others (e.g. ID-CORR, theta, etc.), the effect sizes of interictal were significantly smaller when compared
to ictal data. Although HFOs have the second largest effect size difference using interictal data, they were not able to be
compared to fragility in ictal data.

4 Discussion

In summary, we presented a networked-dynamical systems based model to compute the nodal fragility of each iEEG
electrode for both ictal and interictal data to attempt to localize the SOZ. We performed analyses on ictal (n=91) and
interictal (n=54) data for patients gathered from five centers and concluded that fragility is the best candidate feature of
the SOZ.

Visualization of fragility heatmaps demonstrated how they could be used qualitatively to assess which electrodes are
most fragile within an iEEG network. A notion of network fragility is commonly seen in analysis of structural [95],
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Figure 6: Effect size (a) and p-value comparisons across all candidate EZ fingerprints proposed. Effect sizes were
computed via non-parametric permutation testing with 5000 samples, and p-values were computed from a Mann-
Whitney U test (see Methods section). HFOs only contain a summary from interictal data. The black dashed line
indicates an α level of 0.05.

economic [96] and even social networks [97]. Although we were not directly analyzing the structural nature of neuronal
network, there are studies that have characterized epilepsy in terms of structural fragility. Specifically, in cellular
studies [98, 99], epilepsy was caused by changes, or "perturbations" in the structural network (i.e. chandelier cell loss,
or abnormal axonal sprouting from layer V pyramidal cells), which caused loss of inhibition or excessive excitation
respectively; these biological changes caused downstream aberrant electrical firing. These changes in the structure
can be modeled using networked-dynamical systems models [59]. Instead of analyzing a structural network’s fragility,
here we analyzed a functional network, characterized by a dynamical system. Each electrode’s effect on the rest of the
network was captured by a time-varying linear model that we proposed in [78]. Each node is an electrode, which is
recording aggregate neuronal activity within a region surrounding the recording electrode. By quantifying the fragility
of each node, we then determined how much of a change in that region’s functional connections was necessary to cause
ictal-like phenomena (e.g. instability). As a result, high fragility should coincide with a region that is sensitive to minute
perturbations, causing unstable phenomena in the entire network (i.e. a seizure).

The EZ in general cannot be explicitly labeled, but is presumed to lie within the resected region if the patient becomes
seizure free [10, 11, 9, 8]. The current method for identifying candidate EZ regions requires capturing multiple brain
images (MRI, SPECT, PET scan) and recording EEG signals from the scalp during ictal events. In some cases, the
presence of a lesion in a patient’s MRI suggests a focal EZ that can be corroborated with scalp EEG and iEEG recordings
and then surgically removed. Such lesional patients experience approximately 70% ictal freedom rates [17]. Even in
these cases with a high likelihood of localizing the EZ, localization is not perfect. Even if localization is perfect, chronic
effects of epilepsy such as kindling can cause neighboring tissue to become abnormal and epileptogenic. Current
limitations for evaluating computational approaches can be largely attributed to the lack of ground-truth labels for the
EZ. Different studies have attempted to predict the SOZ, or the resected zone (both approximations of the true EZ)
directly [41, 40, 42, 35, 36]. However, due to the sparse recordings obtained from iEEG and the complicated nature of
epilepsy, electrodes within the clinically labeled SOZ may not be part of the true EZ, especially in failed surgeries. In
addition, electrodes within the resected zone may not be a part of the true EZ. At best, we can assume that in successful
surgical outcomes, the EZ is an unknown subset of the SOZ and resected zone. In our study, we had no notion of
ground truth for the EZ. Despite this lack of a rigorously defined EZ, we knew that successful EZ localization relied
on a good representation of the iEEG data that separated EZ regions from non-EZ regions. If an ideal spatiotemporal
biomarker was known for the EZ, then clinicians would have 100% success rates with surgery, and be able to resect the
minimal amount of tissue necessary to cure the patient assuming the region was surgically resectable without causing
significant deficit. We would be able to compute a CS that can completely separate success and failed outcomes. In
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order to compute an explicit CS, we substituted the clinically annotated SOZ for the EZ. We chose SOZ over the
resected zone as our label of interest because i) the resected zone is difficult to precisely label without postoperative T1
MRI, and ii) the resected zone generally includes many other non-SOZ electrodes and even regions without recordings
due to the sparsity of electrodes on strips, grids and depth (e.g. there can be as much as 5-10mm between electrodes).
Developing algorithms to predict resected zone, or SOZ labels will at best replicate what clinicians currently do, and
achieve a rate of 30-70% surgical success rate. Because of this, we opted to compare features that can be computed
from the raw EEG data itself, and then use our confidence statistic framework to compare features in terms of effect
sizes and statistical pvalues.

In order to analyze fragility in a retrospective study that accounted for all these factors, we setup a simple statistical
framework to test its utility as a feature of the SOZ. In addition, we provided an analysis for both ictal and interictal
data to determine if a feature might only be a good candidate for certain data. We hypothesized that good feature
representations of the epileptic network should be able to separate surgical outcomes (i.e. have a high CS in clinically
annotated SOZ for success outcomes and low CS for failed outcomes). In successful patients, we expected that the EZ
is a subset of the SOZ electrodes (and hence the resected zone) because surgery was performed and the patient was
seizure free. In failure patients, the EZ was either incompletely removed, or it was altogether not removed due to a
variety of difficult scenarios (e.g. see Figure 1). We therefore expected that the EZ would at best be partially present
within the SOZ electrodes, with the worst case being that none of the EZ is within the SOZ set. A candidate feature
that modulates with respect to the true SOZ should perform well in separating surgical outcome in this framework. The
ability of the CS to be able to separate surgical outcome depends on two factors: i) the value of the feature in localizing
the true EZ and ii) the accuracy of the clinically annotated SOZ. The accuracy of the clinical labeling were determined
by the surgical outcomes of patients. Using these criteria, the value of the tested features was compared to the only
known ground-truth label: patient ictal freedom outcomes. We found that fragility had relatively high CS in success
patients, and low CS in failed patients. This coincided with our hypothesis. The CS was then stratified by a variety of
clinical factors, such as success/failure, clinical complexity, Engel score, gender, handedness, onset age, and age during
surgery. As expected, we did not see any variability in the fragility CS due to the handedness, gender, onset age, or
age at surgery of the patients. However, we saw decreasing CS as CC increased. This would be expected, since the
accuracy of the clinically annotated SOZ is expected to decrease as CC of the patient increased. CC1 and CC2 were
comparable, which agrees with current data suggesting that lesional and temporal lobe epilepsy having the highest rates
of surgical success [68, 69, 70, 71]. CC3 and CC4 though were increasingly more different compared to CC1, which is
also expected because non-temporal and multi-focal epilepsy are traditionally harder cases to treat. Furthermore, in
CC4, there was only one successful outcome because these candidates were generally very difficult to localize; SOZ
electrodes labeled could have been either mislocalized, or insufficient.

We also saw a decreasing CS as Engel score increased. This also aligned with what we would expect of a robust feature
of the SOZ; the severity of the patient’s epilepsy recurrence after surgery should correlate with the feature’s confidence
in the clinician’s annotations. Engel score 2 and 3 were not as different from each other as Engel score 4 was. The
Engel score is known to have issues because the rating scale can be subjective and differently interpreted from clinician
to clinician [100, 101, 102]. Scores 2 and 3 are the most subjectively mixed, while 1 and 4 are clearly successful, or
failed surgical outcomes. The ILAE score is another option that has been shown to be slightly less subjective, but not
all centers have adopted this scoring method. The fragility CS distributions agree with these existing problems of the
Engel score. Besides CS and Engel score, we verified that the distributions did not vary with respect to unrelated patient
covariates, such as gender, handedness and age. By showing that fragility varies expectantly with respect to CC and
Engel score, we demonstrated that fragility is a potential feature that can capture the underlying pathology that vary
with epilepsy severity.

When we looked at the fragility heatmaps of the three example patients presented in Figure 4, the maps qualitatively
agree with our quantitative results. In the successful outcome, Patient_01 (CC1 and Engel score 1), the SOZ electrodes
were most fragile, compared to the rest of the network. The electrodes identified as highly fragile, specifically ATT1,
was also seen in the interictal fragility heatmap, suggesting that fragility captured the most likely SOZ region regardless
of whether interictal, or ictal data was used. However, in Patient_26 (CC3 and Engel score 4) and Patient_40 (CC4 and
Engel score 3), there were electrodes that were highly fragile relative to the rest of the network that were not included
in the SOZ set (and hence not resected). The more electrodes that were not included in this set, then potentially the
more likely seizures are to reoccur. When looking at the fragility heatmaps computed from interictal data, we also see
similar electrodes that were not in the SOZ appear fragile ((see supplementary Figure S9), suggesting that fragility is
an invariant metric interictal and ictal data.

Lastly, we compared 21 different features that have been investigated in the context of SOZ localization to fragility
in the same framework. In the analysis of neural data ranging from decision making [103], to motor control [104]
to epilepsy [41, 42, 29, 87, 16, 105], spectral decomposition has been used to represent the neural data in terms of
its frequencies. Graph metrics like eigenvector centrality and in-degree computed from Pearson Correlation and
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Coherence connectivity models have been proposed before in the context of fMRI and EEG analysis of epilepsy
[41, 40, 42, 43, 44, 39, 106, 107, 39, 108]. We note that some studies suggest only computing HFOs on datasets from
1AM-3AM (for non-REM sleep) and greater than 2000 Hz sampling rate [109, 34, 80]. However, we wanted to process
our data anyways because of the fact that there is a large clinical trial underway to test the utility of HFOs in localizing
the EZ [110]. In addition, we use an open-sourced algorithm to promote reproducibility of our results [30]. We knew
that the community would want to see a comparison, and so we proceeded in a manner that would be as fair as possible,
outlining the distinct differences in processing steps we took for spatiotemporal feature heatmaps versus HFO rates (see
Figure 3 and S2). When compared to these other proposed baseline candidate features, fragility CS had the largest
effect size difference between surgical outcomes as well as a p-value less then our set α level for both ictal and interictal
data. As a result, we found that nodal fragility outperformed all 21 other candidate EZ features.

When we analyzed the spatiotemporal variability of each candidate feature over different snapshots of the same patient,
we saw that nodal fragility was also relatively invariant even when comparing ictal and interictal data (i.e. the electrodes
that are fragile during ictal, are also fragile during interictal). Fragility attempts to compute the susceptibility of the
underlying dynamical system to become unstable; this notion does not require an ictal period to compute. This is an
advantage over HFOs, since HFOs are generally restricted to only interictal data. Ictal windows are currently the gold
standard in clinical practice for localizing the EZ by observing ictal onsets and semiology [17, 16]. However, having
patients with electrodes implanted for long periods of time, and requiring the monitoring of multiple seizure events over
many weeks carries the risk of infection, sudden death, trauma and cognitive deficits from having repeated seizures.
This contributes to the large cost of epilepsy monitoring [1, 2, 3, 4, 5, 14]. It is a necessary first step to ensure that
fragility has utility when analyzing ictal data, but it is also promising that its utility does not change significantly when
only analyzing interictal data. If a candidate biomarker could be found that is able to provide strong localizing evidence
using only interictal data, then it would significantly lower risk in the invasive monitoring procedure for epilepsy
patients. In many studies, HFOs have been explored as the potential biomarker for localizing the EZ, with a prospective
clinical trial underway [110]. However, results are still not yet published. In our dataset, even in interictal data, HFOs
did not perform significantly better than fragility. In addition, fragility does not require the data to be collected with a
high sampling rate, from specific periods (e.g. non-REM sleep), or require hyperparameter tuning. Although HFOs
are a promising candidate for SOZ localization, it is not clear how specific algorithms affect the detection of these
high-frequency phenomena [34]. In addition, it is not clear what is a good definition of physiological HFOs versus
pathological HFOs [27, 81, 79, 111, 23], which can confound algorithms that do not make a distinction. Sampling rate,
time-period of interictal data, and algorithm choice are all variable factors in performing HFO analysis, and therefore the
exact algorithm and approach used herein is specified. Due to these confounding factors, more research will be needed
that compares HFOs with a range of other candidate features for the purpose of EZ localization. Currently, clinical trials
to examine the efficacy of HFOs in localizing the EZ are underway [112]. In future research it will be necessary to i)
collect ictal and interictal data on a large population of epilepsy patients, ii) include explicit choices of hyperparameters
within feature computation and iii) analyze features in a cross-validation framework. Lastly, candidate features will
need to be tested in a prospective fashion that demonstrate correlation with improvement in surgical outcomes.

4.1 Limitations and Future Work

In this section, we address a few limitations of our study to motivate future experimental design. Collecting detailed
epilepsy patient data across multiple clinical centers was a challenging task. Although we presented a multi-center
dataset with a relatively large number of patients, we had a different number of patients from each center. In future
retrospective studies, it will be necessary to obtain large datasets (n ideally > 50) that span different surgical outcomes,
Engel score, and CC from each center to capture variability within sub-populations of epilepsy. We were unable to
retrospectively share the raw data for some centers because our initial study design did not ask for patient consent. In
future work, it is necessary for studies to proactively de-identify and share their data, so that the community can build
up increasing large and heterogenous datasets for evaluation of computational EZ localization approaches. To be as
transparent as possible, we presented summary information regarding statistics of the clinical population included in
this study (shown in Figure S1). When performing analysis across clinical covariates, sample sizes were much smaller
as a result of stratification. We tried to alleviate this issue as much as possibly by using non-parametric bootstrapping
and hypothesis testing to estimate effect sizes and p-values of the CS distribution differences [84].

In this study, we performed analysis retrospectively in a single-blind fashion. Double-blind, randomized, prospective
clinical studies are important to pursue as more and more features are validated as potential avenues for assisting in EZ
localization. Another option would be using propensity score matching techniques on large databases of epilepsy data
[113]. This would be attractive due to the large cost of engaging in prospective randomized clinical trials. However,
these retrospective propensity matching efforts would require the community to actively report their data to a centralized
database, and rigorously include as much clinical metadata as possible, including but not limited to: clinically annotated
SOZ region, estimated resected region, handedness, gender, onset age, age at surgery, Engel score, ILAE score (if
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available), clinical complexity category. In our study, we released as much data as possible given HIPAA and IRB
constraints. Our current study also did not track the ethnicity of patients, nor the medication history. These are all
potentially important clinical covariates that can bias analyses [114, 115]. Dataset shift is an important phenomena that
could occcur due to the fact that clinical centers have inherently different practices [116]. Further clinical studies on the
variation of epilepsy in patients and clinical centers is necessary to arrive at rigorous definitions of the EZ.

In our evaluation framework, we did not consider feature activity over time. Future work could propose time-dependent
features. We include in the supplementary a "lessons-learned" summary of how to proceed with preprocessing iEEG
data and reasons why. Although we computed a CS for easy interpretation and visualization purposes, we would not
suggest using this metric as a measure of localization in a real clinical setting. Rather, we provided the spatiotemporal
heatmap that clinicians could interpret for themselves. High fragility would be hypothesized as likely epileptic regions,
while low fragility would correspond to stable and normal regions. Compared to HFOs, clinicians would be able to
use fragility to not only glean information from interictal periods, but also from ictal events; they could determine the
time-scale and regions of ictal propagation, both of which are important factors in clinical localization.

4.2 Summary

In summary, we proposed a novel approach for defining the EZ based on network fragility theory. We quantified the
usefulness of this feature in a simple framework that computed a confidence statistic that separated surgical outcomes.
Using a five-center, 91 patient population of epilepsy patients, we compared fragility against 21 other baseline candidate
features. We also included an analysis of 54 patients with matching interictal data and showed that fragility outperforms
the other features (including HFOs) using only interictal data. It performed better both in statistical significance, as well
as overall effect size in both the ictal and interictal data. This brings us one step closer to a rigorous network fingerprint
of the EZ in epilepsy patients.
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6 Supplementary Material

We include in the supplementary section, also a "lessons-learned" summary of how to proceed with preprocessing iEEG
data and reasons why. See supplemental doc.
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Figure S1: Distributions of the dataset based on a variety of clinical factors, such as gender (a), handedness (b), clinical
complexity (c), and Engel score (d). The plots show distributions over the 91 patients used in analysis.
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Figure S2: An accompanying schematic for Figure 3, describing how we processed baseline features, such as spectral
power, graph metrics and HFOs.
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Figure S3: Red SOZ vs black SOZC signals for patients presented in Figure 4. The signals come from examples of
successful outcome Patient_01 (a), failed outcome Patient_26 (b) and Patient_40 (c).
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(a) Successful outcomes pooled.

(b) Failed outcomes pooled.

Figure S4: Red SOZ vs black SOZC fragility signals for pooled patients within each of the five centers with successful
(a) and failed outcomes (b) for NIH (n=14), JHH (n=4), CC (n=61), UMH (n=5), and UMMC (n=7) (top to bottom
respectively). Note UMMC only had successful outcomes, so there was no curve for the failures. In JHH and UMH,
there were only one and two patients in successful outcomes respectively.
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Figure S5: Fragility CS split by clinical factors, such as handedness (a), gender (b), onset age (c) and age at surgery
(d). Effect sizes were estimated using the permutation test and Mann Whitney U test described in section 2. The
corresponding effect sizes and p-values were (0.1/0.99) for handedness, and (0.12/0.7) for gender. The slopes were
all negligibly close to 0 for onset age and surgery age linear fit. Note that not all patients had data for each of these
categories, so the subset of available data was used.
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Figure S6: Fragility CS on ictal data, based on surgical outcome, grouped by clinical complexity scenarios 1-4 (CD1-
CD4). All effect sizes with respect to success were statistically significant (P < 0.05) using a Mann-Whitney U test.
clinical complexity1, clinical complexity2, clinical complexity3 and clinical complexity4 were statistically significant
with a p-value of 6.9e-4, 0.01 and 1.2e-3 respectively using a Mann-Whitney test.
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Figure S7: Fragility CS of interictal data, based on surgical outcome, grouped by clinical complexity scenarios 1-4
(CD1-CD4). All effect sizes with respect to success were statistically significant (P < 0.05) using a Mann-Whitney
U test. clinical complexity 1, clinical complexity 2, clinical complexity 3 and clinical complexity 4 were statistically
significant with a p-value of 6.9e-4, 0.01 and 1.2e-3 respectively using a Mann-Whitney test.
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Figure S8: Fragility heatmaps with electrodes on y-axis and time on x-axis with the dashed white-lines denoting
seizure onset and offset. Shows a period of 30 seconds before seizure onset and 30 seconds after seiuzre offset. Figure
column (a) shows clinically annotated maps of the implanted ECoG/SEEG electrodes with red denoting SOZ contacts,
orange denoting early propagation and yellow denoting later propagation of seizure if seen. Figure column (b) shows
spatiotemporal fragility heatmaps for examples of successful outcome (Patient_01 and Patient_34), and failed outcome
(Patient_04 and Patient_40). The color scale represents the amplitude of the normalized fragility metric, with closer to 1
denoting fragile regions and closer to 0 denoting relatively stable regions. The contacts in red and orange are part of the
SOZ and RZ, respectively as defined in Methods section. Note that the red contacts are also part of the RZ. Visualized
with Turbo continuous colormap. Best seen if viewed in color.
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Figure S9: Interictal Fragility heatmaps with channels on y-axis and time on x-axis with the dashed black-lines
denoting seizure onset and solid black-lines denoting seizure offset. Figure column (a) shows clinically annotated maps
of the implanted ECoG/SEEG electrodes with red denoting SOZ electrodes, and orange denoting electrodes within the
RZ. Figure column (b) shows an example of ECoG and SEEG successful outcome (Patient_01 and Patient_34), and
failed outcome (Patient_26 and Patient_40). The color scale represents the amplitude of the normalized fragility metric,
with closer to 1 denoting fragile regions and closer to 0 denoting relatively stable regions. Each heatmap shows a few
regions near marked seizure onset with a zoomed-view of the channels fragility over time. All patients here except for
Patient_40 has SOZ electrodes all within the RZ; Patient_40 only ablated Q’8. Colormap is visualized in Turbo. Best
seen if viewed in color.
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Figure S10: Fragility versus frequency power in the gamma (a) and high-gamma (b) band. The red circled region is
where there would be high fragility, but not high gamma power (i.e. range in which HFOs are present).
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