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Abstract

Biological systems are acknowledged to be robust to perturbations but a rigorous
understanding of this has been elusive. In a mathematical model, perturbations often
exert their effect through parameters, so sizes and shapes of parametric regions offer an
integrated global estimate of robustness. Here, we explore this “parameter geography”
for bistability in post-translational modification (PTM) systems. We use the previously
developed “linear framework” for timescale separation to describe the steady-states of a
two-site PTM system as the solutions of two polynomial equations in two variables,
with eight non-dimensional parameters. Importantly, this approach allows us to
accommodate enzyme mechanisms of arbitrary complexity beyond the conventional
Michaelis-Menten scheme, which unrealistically forbids product rebinding. We further
use the numerical algebraic geometry tools Bertini, Paramotopy, and alphaCertified to
statistically assess the solutions to these equations at ∼109 parameter points in total.
Subject to sampling limitations, we find no bistability when substrate amount is below
a threshold relative to enzyme amounts. As substrate increases, the bistable region
acquires 8-dimensional volume which increases in an apparently monotonic and
sigmoidal manner towards saturation. The region remains connected but not convex,
albeit with a high visibility ratio. Surprisingly, the saturating bistable region occupies a
much smaller proportion of the sampling domain under mechanistic assumptions more
realistic than the Michaelis-Menten scheme. We find that bistability is compromised by
product rebinding and that unrealistic assumptions on enzyme mechanisms have
obscured its parametric rarity. The apparent monotonic increase in volume of the
bistable region remains perplexing because the region itself does not grow
monotonically: parameter points can move back and forth between monostability and
bistability. We suggest mathematical conjectures and questions arising from these
findings. Advances in theory and software now permit insights into parameter
geography to be uncovered by high-dimensional, data-centric analysis.

Author Summary

Biological organisms are often said to have robust properties but it is difficult to
understand how such robustness arises from molecular interactions. Here, we use a
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mathematical model to study how the molecular mechanism of protein modification
exhibits the property of multiple internal states, which has been suggested to underlie
memory and decision making. The robustness of this property is revealed by the size
and shape, or “geography,” of the parametric region in which the property holds. We
use advances in reducing model complexity and in rapidly solving the underlying
equations, to extensively sample parameter points in an 8-dimensional space. We find
that under realistic molecular assumptions the size of the region is surprisingly small,
suggesting that generating multiple internal states with such a mechanism is much
harder than expected. While the shape of the region appears straightforward, we find
surprising complexity in how the region grows with increasing amounts of the modified
substrate. Our approach uses statistical analysis of data generated from a model, rather
than from experiments, but leads to precise mathematical conjectures about parameter
geography and biological robustness.

Introduction 1

Biological systems are widely acknowledged to be robust, which informally means that 2

some property of a system is insensitive to perturbations. Particular forms of 3

robustness, such as homeostasis in physiology [1], canalisation in development [2], and 4

resilience in ecology [3], have been extensively studied. Robust design has been 5

suggested as a general biological criterion [4] with parallels to engineering [5, 6] and as 6

an important requirement for synthetic biological systems [7]. Furthermore, organismal 7

robustness is often invoked as a form of buffering, to account for the extensive genotypic 8

variation seen in populations, on which natural selection may subsequently act [8, 9]. A 9

better understanding of robustness is therefore relevant to many aspects of biology. 10

We approach this problem here through mathematical analysis. The perturbations 11

to which a biological system is robust typically arise in the system’s environment. When 12

the system is represented by a mathematical model, it is the model’s parameters which 13

capture the interactions between the system and its environment, so that perturbations 14

are represented by changes in parameter values. This kind of parametric robustness is 15

not the only way in which robustness can be interpreted mathematically—the effect of 16

noise on the dynamics or of changes to conserved quantities may also be 17

important [10]—but parametric robustness has been widely studied. 18

To clarify this kind of parametric robustness further, it is helpful to keep in mind the 19

relationship between parameters and state variables, as shown in Fig. 1A. We have 20

assumed that the underlying mathematical model is that of a system of ordinary 21

differential equations, because we will use this kind of model here, but a similar picture 22

could be drawn for a system of difference equations, or for stochastic or partial 23

differential equations. It is only when the parameters are given numerical values that a 24

dynamics is specified in the state space. If the state variables are in some initial 25

condition, the system follows a trajectory over time and eventually reaches a 26

steady-state or a limit cycle or some more complicated attractor [11]. Crucially, this 27

dynamics in the state space depends on the choice of numerical values in the parameter 28

space. We typically expect the parameter space to break up into regions so that the 29

dynamical portrait varies only quantitatively within a region, but changes qualitatively 30

between regions. Bifurcations arise on the boundaries between regions and give rise to 31

the abrupt change in qualitative dynamics from one parameter region to the next. 32

System properties whose robustness is being assessed are typically defined for 33

particular dynamical portraits and are therefore properties of one or more parametric 34

regions. We will focus here on the property of bistability: the existence in the 35

dynamical portrait of two stable steady-states, accompanied by one unstable 36

steady-state, as in parameter point 1 in Fig. 1A. Technically speaking, we will work in 37
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terms of stationarity—the existence of steady-states—rather than stability, which 38

requires an assessment of local dynamics. However, as a convenience of language, we 39

will continue to use “monostability” and “bistability” in favour of the less euphonious 40

“monostationarity” and “tristationarity,” respectively, and we explain further below the 41

issues involved in distinguishing between these properties. 42

Bistability has been widely interpreted as the mathematical counterpart of biological 43

decision making, switching, or memory. It has been used, for example, to interpret state 44

switching in single cells, both in unicellular organisms [12,13] and in individual cells 45

within multi-cellular organisms [14–18]; state switching in whole organs [19]; cell lineage 46

choice during organismal development [20–25], where the implications of bistability have 47

been widely reviewed [26–28]; and memory formation during signal 48

transduction [14,29,30] and neuronal learning [31–33]. 49

Here, we will consider bistability arising from protein post-translational modification 50

(PTM). PTM is the mechanism by which amino acid residues in a protein are covalently 51

modified in response to physiological conditions, through the catalytic action of 52

forward-modifying and reverse-demodifying enzymes [34]. Phosphorylation is the most 53

widely studied modification, but many others are now known and PTM is a central 54

mechanism in cellular information processing [35]. Models show that bistability, and 55

even multistability with more than two stable steady-states, can emerge in PTM 56

systems, provided a substrate protein is modified on two or more sites by one forward 57

and one reverse enzyme [29, 30]. Such multisite modification is common, and bistability 58

in PTM has been suggested as the basis for cellular memory [36]. 59

The choice of PTM as a bistability mechanism has the advantage that steady-states 60

can be realised as solutions to polynomial equations. This permits analysis by numerical 61

solution of polynomial equations rather than by numerical integration of differential 62

equations. The former is much faster computationally. This allows the robustness 63

problem to be addressed by randomly generating points in parameter space and 64

identifying those which give rise to bistability. In this way, the bistable region can be 65

effectively characterised. Such a statistical approach has interesting parallels with 66

high-dimensional data analysis, although, here, the data arise not from experiments but 67

from a model. 68

Many kinds of approaches have been taken to quantitatively assess robustness in this 69

way, such as by parametric sensitivity [37–40], or by estimating volume and 70

shape [41–47]. Algebraic methods can sometimes provide an analytical description of 71

parametric regions [46,48–51], but these methods tend to scale poorly with the 72

complexity of the system. For systems arising from networks of biochemical reactions, 73

methods also exist which give parametric conditions under which bistability 74

occurs [52–60] and some of these apply to PTM systems [55,59–64]. Bistable parametric 75

regions have thereby been demarcated in various contexts [54,58,60,62,64]. However, 76

the relevant conditions for bistability are typically sufficient, but not always necessary, 77

making it difficult to exactly determine bistable regions. Furthermore, these kinds of 78

results also typically require a complete description of the underlying network, which 79

makes it difficult to rise above the biochemical complexity. 80

Here, we build upon the approach of exploring the size and shape of parametric 81

regions. Such “parameter geography” seeks to make a global assessment of the bistable 82

region. The first property to consider is the dimension of the region. If the parameter 83

space has dimension m, the bistable region may also be of dimension m (Fig. 1B, 84

example 1), of lower dimension, or some combination of the two (Fig. 1B, example 2). 85

Lower dimensionality has nearly always been neglected in the biological literature 86

because it would never be found by random sampling. However, we are not aware of 87

theorems that would rule it out for a general dynamical system, and it could 88

conceivably arise from some mathematical constraint or degeneracy among the 89
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parameters. Therefore, to be careful, results obtained by parametric sampling should be 90

qualified by the statement “with probability one,” to allow for any subsets of lower local 91

dimension that are invisible to the sampling process. We will take this caveat for 92

granted in what follows. 93

Assuming the bistable region has full dimension relative to the ambient parameter 94

space, so that points within it can be found by sampling, a concise, global measure of 95

robustness is the m-dimensional volume of the region, as contained within some 96

m-dimensional box of finite extent (Fig. 1A). This may be statistically estimated by 97

counting the proportion of points in the region. The larger the volume, the more 98

bistable parameter points and the more robust the property of bistability. However, 99

volume gives no information about the region’s shape [46], which may conceivably 100

exhibit local features, such as interior holes and cavities (Fig. 1B, example 3) or waists 101

(Fig. 1B, example 4). Relatively small changes to parameter values in such local regions 102

may destroy bistability and compromise robustness. Convexity offers a test for this. A 103

region is convex if, given any two points within the region, the straight line segment 104

connecting the two points also lies within the region (Fig. 1B, example 1). Convexity is 105

a strong property of a region but a more nuanced “visibility ratio” can be estimated by 106

randomly choosing pairs of points from the region and estimating the frequency with 107

which the line segment between each pair lies entirely in the region. The higher the 108

visibility ratio, the closer the region is to convexity and the more robust the property of 109

bistability. Another measure of shape is topological connectedness. A region is 110

disconnected if it consists of two or more separated pieces (Fig. 1B, example 5). Lack of 111

connectivity may indicate that bistability arises for different reasons, which may have 112

different degrees of robustness. Connectedness may be estimated using a connectivity 113

graph, originally developed for robotic motion planning. These measures of volume, 114

convexity, and connectedness will be the focus of the results presented here, but we note 115

that they are only a first step towards understanding the complexities of shape in high 116

dimensions [65]. 117

Two recent developments, one mathematical and one computational, make the 118

random sampling of high-dimensional parameter space feasible for determining 119

parameter geography under realistic biochemical assumptions. We briefly describe the 120

two developments here, with further details in the main text. 121

First, we use the graph-based linear framework for timescale separation to describe 122

PTM systems [66,67]. The framework offers several advantages. To begin with, it allows 123

the enzyme mechanism underlying each modification to be treated in a general and 124

realistic manner, instead of having to assume only the Michaelis-Menten reaction scheme. 125

Specifically, an enzyme E that converts substrate S into product P can follow any 126

mechanism that is built up from the elementary reactions in the following “grammar,” 127

S + E → Yi , Yj → Yk , Y` → P + E , (1)

where the Y ’s are intermediate enzyme-substrate complexes [68,69]. This allows a 128

mechanism to take multiple routes with multiple intermediates and to be irreversible 129

(product cannot be converted back into substrate) without being strongly irreversible 130

(product does not rebind to enzyme). Fig. 2 shows an example of a weakly irreversible 131

mechanism, i.e., a mechanism in which product is not converted to substrate but can 132

rebind to enzyme. 133

The significance of weak irreversibility is frequently overlooked. Forward 134

modification and reverse demodification of a protein may well be effectively irreversible 135

under physiological conditions but this does not imply absence of product rebinding. If 136

the concentration of product is appreciable, as will often be the case in a PTM system, 137

then the product must be expected to rebind to the enzyme that produced it. Indeed, it 138

is a requirement of thermodynamics that binding and unbinding events, which draw 139

PLOS 4/52

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/862003doi: bioRxiv preprint 

https://doi.org/10.1101/862003


their energy from the surrounding thermal bath, must be reversible [67]. Any strongly 140

irreversible mechanism, such as the Michaelis-Menten scheme, fails to satisfy this 141

requirement. (We note, however, that it was a perfectly appropriate assumption for 142

Michaelis and Menten [70].) Despite such difficulties being repeatedly pointed 143

out [67,71,72], the Michaelis-Menten scheme remains almost universally used for 144

describing enzyme kinetics. We were particularly interested, therefore, in understanding 145

how the different irreversibility assumptions would influence parameter geography and 146

the assessment of robustness. 147

Regardless of the complexity of the reaction mechanism built from the grammar in 148

Eq. 1, the steady-state behaviour of the mechanism can be summarised with just four 149

generalised parameters, two for the forward direction and two for the reverse 150

direction [68,69]. These parameters can be thought of as versions of the catalytic 151

efficiency and Michaelis-Menten constant for the simple Michaelis-Menten scheme. By 152

using these generalised parameters, in place of the many individual rate constants for 153

each mechanism, it becomes possible to make general statements about steady-state 154

behaviour for systems in which each enzyme follows its own reaction mechanism 155

subscribing to the grammar in Eq. 1 [69]. Due attention can thereby be paid to the 156

behaviour of individual enzymes, which are known to exhibit many different kinds of 157

reaction mechanisms [73]. Note, in particular, that our results, although obtained 158

numerically, are valid for an infinite class of models, corresponding to different choices 159

of mechanisms from the grammar in Eq. 1. 160

For a PTM system, the linear framework further allows the exponential 161

combinatorial complexity arising from multiple modification sites to be eliminated at 162

steady-state [17, 30]. The steady-state behaviour of any PTM system can be reduced in 163

this way to the solution of k polynomial equations in k variables, where k is the number 164

of enzymes in the system. The number of modification sites influences the degrees of 165

these equations but not the number of variables. For the case of a two-site PTM system 166

with one forward and one reverse enzyme, this elimination procedure yields two 167

polynomial equations, each of total degree 4 in two variables (Eq. 10). These equations 168

have eight non-dimensional parameters, which are defined in terms of the generalised 169

parameters for the two enzymes, and three conserved quantities, which correspond to 170

the total amounts of substrate and enzymes. 171

The variables in the polynomial equations are the normalised steady-state 172

concentrations of the (free) enzymes, from which the steady-state concentrations of all 173

other components in the PTM system can be determined. Solutions of the polynomial 174

equations correspond exactly to the steady-states of the PTM system. Numerical 175

integration of the underlying differential equations is thereby avoided. The linear 176

framework allows us to rise above the details of enzyme mechanisms and the 177

combinatorial complexity of PTM, at least for describing the steady-state behaviour [67]. 178

The second development on which we rely are advances in numerical algebraic 179

geometry for solving polynomial equations, implemented in the software tools, Bertini, 180

Paramotopy, and alphaCertified [74,75]. Algebraic geometry deals with the 181

mathematical structures that arise as solutions to polynomial equations and has already 182

been applied to systems biology [48,49]. Bertini numerically solves polynomial 183

equations by “homotopy continuation:” it starts from a system of polynomial equations 184

whose solutions are known, then continuously deforms these solutions through a 185

homotopy until they coincide, up to arbitrary numerical precision, with the solutions of 186

the system of interest. The solutions along the homotopy are tracked using 187

predictor-corrector methods. Paramotopy extends this procedure to efficiently track 188

homotopies in parameter space, thereby facilitating the parallel solution of a system of 189

parameterised polynomial equations at many different parameter values. Finally, 190

alphaCertified can be used to rigorously determine whether each approximate numerical 191
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solution found by Bertini lies near a true solution to the equations, and thus confirm 192

the accuracy of our calculations [75]. 193

In summary, the linear framework enables model reduction of a realistic PTM 194

system to two polynomial equations, while Bertini, Paramotopy and alphaCertified 195

enable efficient and accurate solution of these equations. Their combination allows us to 196

determine the steady-state behaviour of the two-site PTM system at a total of ∼109
197

parameter points in five different hypercubes in both an 8-dimensional parameter space 198

for weak irreversibility and a 6-dimensional parameter space for strong irreversibility. 199

We thereby map the parameter geography of bistability, from which several interesting 200

and unexpected conclusions emerge. 201

We find that the bistable volume increases, in an apparently monotonic and 202

sigmoidal manner, as the substrate grows more abundant relative to the enzymes, and 203

there is a threshold substrate level below which bistability is undetectable by random 204

sampling. Strikingly, we find that the bistable region occupies a much smaller 205

proportion of the sampling domain under weak irreversibility than under strong 206

irreversibility, and we demonstrate a tradeoff between bistability and product rebinding 207

that underlies this discrepancy. We also find that, despite the apparently monotonic 208

growth in the bistable volume, the region itself does not grow monotonically: parameter 209

points can move back and forth between monostability and bistability. We formulate 210

these observations as mathematical conjectures and questions that invite further 211

analysis. 212

Results 213

Steady-state polynomial equations 214

We give an overview here of how the steady-state polynomial equations are derived, 215

focusing on the generalised parameters and the process of model reduction, as described 216

in the Introduction. Full details of the calculation are provided in the Materials and 217

Methods. 218

We consider a protein, S, that is post-translationally modified at two sites by a 219

forward-modifying enzyme, E, and a reverse-demodifying enzyme, F (Fig. 2). We 220

assume that modification takes place in a specific site order and that demodification 221

takes place in the reverse order, so that there are only three modification states, or 222

“modforms” [34]. The modforms will be denoted by Si, where i is the number of 223

modified sites. These assumptions reduce the algebraic complexity of the equations, 224

thereby permitting more extensive parametric exploration, but the methods presented 225

here may be applied more generally. 226

We assume that E and F follow any reasonable distributive reaction mechanism 227

built up from the grammar in Eq. 1. Here, “reasonable” means only that the 228

mechanism should be able to convert substrate to product and not yield only a 229

dead-end complex; see [69] for details. A distributive (“hit-and-run”) reaction is one 230

that yields only a single product with a given substrate. Processive (“bind-and-slide”) 231

reactions, in which the enzyme catalyses multiple modifications while remaining bound 232

to the substrate, can also be accommodated within the grammar, but can yield more 233

complex behaviours [76, 77]. Each enzyme has two substrates—S0 and S1 for E, and S1 234

and S2 for F—and may use a different mechanism from the grammar on each substrate. 235

The linear framework shows that the steady-state behaviour of each reaction 236

mechanism can be summarised with just four generalised parameters. For the case of E 237

converting S0 to S1, which we will denote by the shorthand S0
E→ S1, there are two 238

reciprocal total generalised Michaelis-Menten constants (rtgMMCs), κE0,1 and κE1,0, and 239

two total generalised catalytic efficiencies (tgCEs), cE0,1 and cE1,0. One parameter of each 240
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pair follows the forward direction in which S0 is converted to S1, indicated by the 241

subscript “0, 1”, while the other parameter follows the reverse direction in which S1 is 242

converted to S0, indicated by the subscript “1, 0”. 243

The rtgMMCs, κE0,1 and κE1,0, respectively determine the extent to which S0 and S1 244

bind to E to form the intermediate complexes in the reaction mechanism: 245

κE0,1[E][S0] + κE1,0[E][S1] =
∑

S0
E→S1

[Y∗] . (2)

Here, and in what follows in the rest of the paper, [X] denotes the steady-state 246

concentration of X, and Y∗ is a shorthand for those intermediate complexes appearing 247

in the reaction mechanism given in the subscript of the summation. This avoids having 248

to introduce notation for the individual intermediates when these details are not 249

necessary. The rtgMMCs have units of (concentration)
−1

. The parameter κE1,0 measures 250

the extent to which the product of the reaction, S1, can bind to E, thereby sequestering 251

the enzyme from its substrate, S0, and giving rise to product inhibition [78]. 252

The tgCEs, cE0,1 and cE1,0, determine the rate at which E converts S0 to S1 and the 253

rate at which E converts S1 to S0, respectively. The reaction S0
E→ S1 incurs the 254

following rate contributions: 255

d

dt
[S0] = · · ·+ cE1,0[E][S1]− cE0,1[E][S0] + · · ·

d

dt
[S1] = · · ·+ cE0,1[E][S0]− cE1,0[E][S1] + · · · ,

(3)

where the dots indicate similar rate contributions from the other three reactions 256

(Eq. 22). The tgCEs have units of (concentration · time)−1. 257

The generalised parameters are given by rational expressions in the rate constants of 258

the corresponding reaction mechanisms. These expressions can be explicitly described 259

once these mechanisms are specified in the grammar of Eq. 1 [69]. Different mechanisms 260

yield different expressions for the generalised parameters, but the steady-state 261

behaviour of the mechanism is independent of the details of these expressions. 262

Modification and demodification in PTM systems are energy-dissipating and 263

regarded as irreversible under physiological conditions [35]. We therefore assume that 264

the enzymes operate irreversibly, so that, using S0
E→ S1 as an example, 265

κE0,1 > 0 , cE0,1 > 0 , κE1,0 ≥ 0 , cE1,0 = 0 . (4)

This ensures positive flux of substrate S0 into product S1 (cE0,1 > 0), which also requires 266

binding of substrate to enzyme (κE0,1 > 0), but no flux of product into substrate 267

(cE1,0 = 0), so that the reaction is irreversible overall. Product rebinding is permitted 268

(κE1,0 ≥ 0) and strong irreversibility arises when κE1,0 = 0. Weak irreversibility 269

corresponds to κE1,0 > 0. 270

The PTM system has four separate reactions, each of which has three nonzero 271

generalised parameters, giving 12 parameters in all. In reducing the system to two 272

polynomial equations in two variables, the number of parameters is further reduced 273

from 12 to 8. We briefly summarise here the three key steps in the model reduction, 274

leaving full details to the Materials and Methods. 275

The first step arises from the steady-state assumption. Because modification and 276

demodification are assumed to be ordered (Fig. 2), the net flux through each 277

modification loop must be zero [79]. Hence, using Eqs. 3 and 4 (see also Eq. 22), 278

cE0,1[E][S0] = cF1,0[F ][S1] and cE1,2[E][S1] = cF2,1[F ][S2] .
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Hence, [S1] and [S2] can be determined in terms of [S0], [E], and [F ], as 279

[S1] = α

(
[E]

[F ]

)
[S0] and [S2] = β

(
[E]

[F ]

)
[S1] , (5)

where 280

α =
cE0,1
cF1,0

and β =
cE1,2
cF2,1

(6)

are new non-dimensional parameters. This reduces the number of parameters from 12 281

to 10. 282

The second step arises from conservation of the substrate, which leads to the 283

equation, 284

Stot = [S0] + [S1] + [S2] +
∑

S0
E→S1

[Y∗] +
∑

S1
F→S0

[Y∗] +
∑

S1
E→S2

[Y∗] +
∑

S2
F→S1

[Y∗] , (7)

for some positive constant Stot. Using Eqs. 2 and 5, this allows [S0], and therefore [S1] 285

and [S2], to be determined in terms of [E] and [F ]. All the state variables have now 286

been eliminated in favour of [E] and [F ]. (See Eqs. 23–25.) 287

The third and final step arises from the conservation of the enzymes, which leads to 288

the two equations, 289

Etot = [E] +
∑

S0
E→S1

[Y∗] +
∑

S1
E→S2

[Y∗]

Ftot = [F ] +
∑

S1
F→S0

[Y∗] +
∑

S2
F→S1

[Y∗] ,
(8)

for positive constants Etot and Ftot. Using Eq. 2 and the expressions for [S0], [S1], and 290

[S2] described above, this yields two equations for [E] and [F ], which fully determine 291

the steady-state. The remaining state variables can be expressed as rational functions of 292

the steady-state values of [E] and [F ]. (See Eqs. 26 and 27.) 293

This result is a particular instance of the general theorem that, if a PTM system has 294

k enzymes operating on a single substrate, then, irrespective of the number of sites and 295

the mechanisms of the enzymes, the steady-state of each state variable is a rational 296

function of the k steady-state enzyme concentrations, and these concentrations can be 297

obtained as the solutions to a system of k equations in k unknowns [17]. Here, k = 2. 298

The three conserved totals, Stot, Etot, and Ftot, are different in character from the 299

parameters of the system because they are determined by the initial conditions. In the 300

biological interpretation, these conserved totals can be modulated by changes in 301

physiological conditions. We therefore seek to understand the parameter geography of 302

the system as these totals are varied. 303

The elimination process above requires only the composite parameters 304

κE1 = κE1,0 + κE1,2 and κF1 = κF1,0 + κF1,2 (Materials and Methods), which summarise the 305

binding of the intermediate modform, S1, to E and F , respectively. This further 306

reduces the number of parameters from 10 to 8. 307

It is always more convenient to work with non-dimensional parameters, and α and β 308

are already non-dimensional. The other six parameters involve the rtgMMCs and we 309

choose to non-dimensionalise them using the corresponding enzyme totals, 310

ε0 = κE0,1Etot > 0 , ε1 = κE1 Etot > 0 , ε2 = κE2,1Etot ≥ 0 ,

φ0 = κF0,1Ftot ≥ 0 , φ1 = κF1 Ftot > 0 , φ2 = κF2,1Ftot > 0 .
(9)

The ε’s summarise the binding characteristics of the reactions catalysed by E; the φ’s 311

summarise the binding characteristics of the reactions catalysed by F ; and α and β are 312

ratios that compare the catalytic efficiencies of the reactions catalysed by E and F . 313
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The constraints on the parameters in Eq. 9 arise from an interesting asymmetry 314

between the reactions in which S1 is a product, S0
E→ S1 and S2

F→ S1, and the 315

reactions in which S1 is a substrate, S1
E→ S2 and S1

F→ S0. Strong irreversibility of the 316

latter reactions influences the parameters in Eq. 9: ε2 = 0 if, and only if, S1
E→ S2 is 317

strongly irreversible; and φ0 = 0 if, and only if, S1
F→ S0 is strongly irreversible. 318

However, strong irreversibility of the former reactions has no such effect: if S0
E→ S1 is 319

strongly irreversible, so that κE1,0 = 0, it is still the case that κE1,2 > 0 (Eq. 4), so that 320

κE1 > 0. In other words, even if S1 is unable to sequester E as the product of the 321

reaction S0
E→ S1, it is still able to bind to E by being the substrate of the reaction 322

S1
E→ S2. Similarly, κF1 > 0, irrespective of whether or not the reaction S2

F→ S1 is 323

strongly irreversible. It follows that the four parameters, ε0, ε1, φ1 and φ2, in Eq. 9 are 324

always positive, while the remaining two parameters, ε2 and φ0, are non-negative. 325

The three conserved totals can be non-dimensionalised as follows, 326

σ =
Stot

Etot
, λ =

Stot

Ftot
, ζ =

Etot

Ftot
.

Finally, the two state variables can be non-dimensionalised using the corresponding 327

enzyme totals, 328

u =
[E]

Etot
, v =

[F ]

Ftot
.

Non-dimensionalisation can be performed in different ways, which can lead to different 329

insights; the method adopted here works well for this particular analysis. The 330

non-dimensional parameters and non-dimensional totals are all assumed to be positive, 331

except when strong irreversibility is imposed on S1
E→ S2 or S1

F→ S0, in which case 332

ε2 = 0 or φ0 = 0, respectively. The other parameters and variables are always taken to 333

be positive. 334

The Materials and Methods show that, once the dust of calculation has settled, we 335

arrive at the equations Φ1(u, v) = 0 and Φ2(u, v) = 0, where 336

Φ1(u, v) =
αv2 + ζuv + βζ2u2 + (αε0 − αε0σ − α+ φ1ζ)uv2

+
(
ε1ζ − ε1ζσ − ζ + βφ2ζ

2
)
u2v +

(
βε2ζ

2 − βε2ζ2σ − βζ2
)
u3 + αφ0v

3

− (αε0 + φ1ζ)u2v2 −
(
ε1ζ + βφ2ζ

2
)
u3v − βε2ζ2u4 − αφ0uv

3

Φ2(u, v) =
αv2 + ζuv + βζ2u2 + (αφ0 − αφ0λ− α) v3 + (φ1ζ − φ1ζλ− ζ + αε0)uv2

+
(
βφ2ζ

2 − βφ2ζ
2λ− βζ2 + ε1ζ

)
u2v + βε2ζ

2u3 − (αε0 + φ1ζ)uv3

−
(
ε1ζ + βφ2ζ

2
)
u2v2 − βε2ζ2u3v − αφ0v

4 .

(10)

Here, Φ1 and Φ2 are each polynomial of total degree 4 in the non-dimensional variables 337

u and v, with eight non-dimensional parameters and three non-dimensional totals. The 338

polynomial equations in Eq. 10 will be the object of analysis in the rest of the paper. 339

General approach to parameter geography 340

We describe here the general approach we take to exploring the parameter geography of 341

the bistable region, which is then used in all subsequent sections of the paper. To keep 342

the analysis relatively simple, we assume that Etot = Ftot, so that ζ = 1 and σ = λ, and 343

take σ to be the parameter that varies. If σ > 1, so that Stot > Etot = Ftot, then both 344

enzymes approach saturation by the substrate, which is known to promote bistability. 345

We therefore began our analysis by examining parameter geography for 15 values of σ, 346

σ = 1.0 , 1.5 , 2.0 , 2.5 , 3.0 , 4.0 , 5.0 , 7.0 , 10 , 15 , 20 , 50 , 100 , 200 , 500 . (11)
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We order the eight non-dimensional parameters so that, if θ ∈ R8 is a point in 347

parameter space, then 348

θ1 = α , θ2 = β , θ3 = ε0 , θ4 = ε1 , θ5 = ε2 , θ6 = φ0 , θ7 = φ1 , θ8 = φ2 .

Throughout most of the analysis which follows, we consider a finite-volume box in 349

parameter space, H = [0.1, 10]
8 ⊂ R8, which constrains each parameter to lie in the 350

interval [0.1, 10]. Each non-dimensional parameter is therefore positive. As previously 351

noted, this means that the reactions in which S1 is a substrate, S1
E→ S2 and S1

F→ S0, 352

are weakly irreversible, although the reactions in which S1 is a product, S0
E→ S1 and 353

S2
F→ S1, may be either strongly or weakly irreversible. Weak irreversibility is the 354

physically realistic assumption and we focus on that first. 355

The range [0.1, 10] sets the nominal value of each non-dimensional parameter to 1. 356

This is appropriate for θ1 = α and θ2 = β because they are ratios of tgCEs for E and F 357

(Eq. 6). The other non-dimensional parameters, however, are products of rtgMMCs and 358

conserved totals (Eq. 9) and their nominal values are harder to judge. While some 359

experimental data are available, estimated values can vary widely. In the absence of 360

broadly acknowledged values, we chose 1 as the nominal value for all non-dimensional 361

parameters. 362

Bézout’s Theorem from algebraic geometry tells us that the typical number of 363

solutions of a system of polynomial equations is given by the product of the total 364

degrees of the polynomials [80]. This gives 16 solutions for the two equations in Eq. 10, 365

which each have total degree 4. However, “solution” has to be interpreted carefully. 366

Bézout’s Theorem holds over the field of complex numbers. The equation x2 + 1 = 0 367

has two complex solutions, x = ±i, but no real solutions. Bézout’s Theorem also 368

requires the use of projective space, which allows solutions at infinity, like that of the 369

equations x+ y = 1 and x+ y = 2, which do not intersect in Euclidean space. Finally, 370

solutions may be repeated, as in the case of the equation (x− 1)2 = 0, in which case 371

they must be counted with the appropriate multiplicity. 372

In practice, we found that, given ζ = 1, a fixed value of σ, and a randomly chosen 373

point θ ∈ H, the software tool Bertini yields the following 16 complex solutions for 374

Eq. 10: the zero solution, u = v = 0, which is always a solution of Eq. 10, has 375

multiplicity 6; seven additional finite solutions; and three solutions which are 376

projectively at infinity. This pattern of solutions is generic: departures from the pattern 377

can only occur on a subset of probability zero (Lebesgue measure zero) in R8 [80]. 378

Accordingly, departures do not occur for randomly selected parameter points in R8. 379

However, genericity can sometimes be lost during numerical homotopy continuation in 380

Bertini. We developed a systematic procedure for addressing this (Materials and 381

Methods), which may be of interest in other studies. We also used the software tool 382

alphaCertified to confirm that representative random samples of our numerical solutions 383

were in the vicinity of true solutions, thereby greatly reducing the possibility of 384

numerical artifacts (Materials and Methods). Importantly, of the seven finite, nonzero 385

solutions of Eq. 10 at each parameter point, we always found either one or three 386

positive real solutions. 387

Throughout this analysis, we refer to the occurrence of one positive real solution as 388

monostability, and the occurrence of three positive real solutions as bistability 389

(assuming two stable steady-states and one unstable one). We use this language only as 390

a convenience and note the importance of distinguishing between stationarity and 391

stability. For example, recent work on “mixed-mechanism” PTM systems, which 392

incorporate both distributive and processive mechanisms, has shown the existence of a 393

single unstable steady-state with limit-cycle oscillations [76,77]. Such behaviours are 394

not known to be a feature of PTM systems that employ only distributive mechanisms 395

but checking for them requires testing for stability. This is not straightforward within 396
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the algebraic approach taken here. Eq. 10 does not provide information about the 397

stability of its solutions, which depends on the transient behaviour of the system near a 398

steady-state. To determine stability, it is necessary to fix the mechanism of each 399

enzyme, as built up from the grammar in Eq. 1, and analyse the corresponding system 400

of differential equations. If the steady-state is hyperbolic, asymptotic stability can be 401

determined from the eigenvalues of the Jacobian matrix [11]. However, this would leave 402

open the question of whether the same stability would be found for other choices of 403

enzyme mechanism. We decided, therefore, to set aside the stability question and to 404

focus on what can be deduced algebraically about steady-states from Eq. 10. With that 405

in mind, as mentioned above and in the Introduction, we use the terms “monostability” 406

and “bistability” only for convenience, in place of “monostationarity” and 407

“tristationarity,” respectively. 408

Bistable volume increases sigmoidally with σ 409

Having explained our general approach in the previous section, we begin the analysis by 410

introducing the parametric region of interest. Recall that H = [0.1, 10]
8 ⊂ R8 is the box 411

in parameter space in which we will work. Given ζ = 1 and a value of σ, let Mσ ⊂ H 412

be the subset of parameter points in H at which the system is bistable, 413

Mσ = {θ ∈ H | ∃ three positive real solutions to Eq. 10} .

Our main goal in the paper is to explore how the size and shape of Mσ changes as σ 414

takes the values listed in Eq. 11. We start our exploration with the volume of the 415

bistable region. 416

Let ισ : H → {0, 1} be the indicator function of Mσ: 417

ισ(θ) =

{
1 if θ ∈Mσ

0 otherwise .

Let VH = 28 = 256 denote the (base ten) logarithmic volume of H, and let Vσ denote 418

the logarithmic volume of Mσ, normalised to that of H. This is conveniently defined by 419

the integral of the indicator function, 420

Vσ =
1

VH

∫
θ∈H

ισ(θ) d log θ . (12)

The integral in Eq. 12 is taken with respect to the logarithmic measure on R8. It cannot 421

be evaluated analytically but lends itself to efficient unbiased statistical estimation by 422

Monte Carlo methods, in which parameter points in H are randomly sampled. 423

Specifically, Vσ can be approximated as the proportion of randomly sampled points in 424

H that lie in Mσ, where “random” means with respect to the logarithmic measure. 425

This amounts to independently sampling the logarithm of each parameter, log θi, from 426

the uniform distribution on [−1, 1]. We refer to this as ILR (Independent Logarithmic 427

Random) sampling. 428

Given a set S of parameter points, randomly chosen in this way, an unbiased 429

statistical estimator for Vσ is given by 430

V̂σ =
1

#S
∑
θ∈S

ισ(θ) , (13)

where #X denotes the number of elements in the finite set X. Confidence intervals for 431

the estimator in Eq. 13 may be computed using the central limit theorem (Materials 432

and Methods). 433
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To perform this estimation, we ran Bertini and Paramotopy on a large computing 434

cluster (Materials and Methods, S1 Appendix). We generated an ILR sample of 4× 106
435

points in H to calculate V̂σ for all values of σ in Eq. 11 greater than 2.5, for each of 436

which we found sufficiently many bistable points to achieve good statistical confidence. 437

For σ = 2.5, we generated an additional ILR sample of 2× 106 points in H and 438

calculated V̂σ using the combined sample of 6× 106 points; and, for σ = 1.0, 1.5, 2.0, we 439

generated a third ILR sample of 4× 106 points in H and calculated V̂σ using the 440

combined sample of 107 points. 441

The results of the estimation are shown in Fig. 3. We first found that the estimated 442

normalised volume of the bistable region is zero at σ = 1.0. This suggests the existence 443

of a threshold in σ, below which there is no bistability; we explore this possibility 444

further below. The normalised volume then appears to increase smoothly in a sigmoidal 445

(“S-shaped”) manner and saturate at large values of σ. Saturation was not expected on 446

mathematical grounds (Discussion) and we found that it is more apparent under 447

assumptions of weak irreversibility than under strong irreversibility (below). The value 448

of σ at which saturation is established, and the saturating volume itself, are difficult to 449

determine precisely, but our analysis suggests that the saturating volume is close to 450

1.1% of the volume of H. We were surprised by how small this was. It suggests that, 451

under realistic assumptions of weak irreversibility, bistability is robust but rare. We 452

return to this point in the Discussion. 453

A threshold for bistability 454

The curve in Fig. 3 raises several questions. First, it is unclear whether the lack of any 455

observed bistability at σ = 1.0 reflects the existence of a bona fide threshold for 456

bistability, σ∗, below which there is only monostability, or rather arises as a consequence 457

of undersampling. To clarify this point, we sought further evidence that M1 is indeed 458

empty. We reasoned that, if bistability does exist for values of σ near 1, it is more likely 459

to occur near those parameter points at which bistability occurs for larger values of σ 460

(see also the section below on “blinking”). To find such points systematically, we turned 461

to importance sampling, as implemented in the VEGAS algorithm, introduced originally 462

for Monte Carlo estimation of multi-dimensional integrals [81]. 463

VEGAS starts from an initial sample of points in a subregion of a multi-dimensional 464

space and adaptively constructs augmented samples that are preferentially drawn from 465

regions of higher sample density. Specifically, the section of each coordinate axis 466

containing the projection of the sample is partitioned into a specified number, M , of 467

bins whose lengths are chosen so that each bin contains the same number of projected 468

sample points, up to some smoothing of the bin frequencies (Materials and Methods). 469

There are, therefore, proportionately more smaller bins in regions of higher sample 470

density. Subsequently, a new sample of N points is generated one coordinate at a time, 471

with each coordinate of each point chosen uniformly at random from a bin along the 472

corresponding axis, such that the N values are roughly evenly partitioned among the M 473

bins. This results in a new sample of N points biased towards high-density regions of 474

the initial sample. The initial sample is then augmented with the new sample, and the 475

entire process repeated T times. 476

We first generated 12 VEGAS samples, one for each of the following values of σ, 477

σ = 2.5 , 3.0 , 4.0 , 5.0 , 7.0 , 10 , 15 , 20 , 50 , 100 , 200 , 500 . (14)

For each value of σ listed in Eq. 14, we initialised the VEGAS algorithm using the set of 478

bistable points gathered through ILR sampling at the given value of σ. For instance, 479

the set of 27508 bistable points found through ILR sampling at σ = 10 (Fig. 3) was 480

used as an initial sample for a VEGAS sample at σ = 10. We generated each VEGAS 481
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sample over T = 6 iterations, during each of which we sampled N = 106 parameter 482

points and determined the subset of bistable points at the given value of σ using Bertini 483

and Paramotopy. All sampling was performed over logarithmic coordinates, with each 484

coordinate sampled from M = 50 bins covering the interval [−1, 1]. Thus, we obtained 485

12 VEGAS samples, one for each value of σ listed in Eq. 14, each containing 6× 106
486

points. 487

As expected for importance sampling, the proportion of bistable points found within 488

each VEGAS sample at the corresponding value of σ was much larger than V̂σ. The 489

number of bistable points in each VEGAS sample ranged between ∼2.45× 106 (at 490

σ = 2.5) and ∼3.35× 106 (at σ = 500), out of a possible 6× 106. In marked contrast, 491

running Bertini and Paramotopy on all 12 VEGAS samples at σ = 1.0 found zero 492

bistable points, out of 7.2× 107 points. This further suggests that M1 is indeed empty. 493

As a further test for this hypothesis, we generated one additional VEGAS sample for 494

smaller values of σ. Here, we reasoned that the few bistable points found through ILR 495

sampling for σ = 1.5 and σ = 2.0 (69 and 2476, respectively) rendered these sets 496

inadequate for initialising the VEGAS algorithm. Thus, we instead opted to use the set 497

of ∼2.45× 106 bistable points found in the VEGAS sample for σ = 2.5 as an initial 498

sample, and generated a VEGAS sample of M = 6× 106 parameter points in a single 499

(T = 1) iteration, again sampling each parameter from M = 50 bins covering the 500

interval [−1, 1] in logarithmic coordinates. This VEGAS sample contained numerous 501

bistable points at σ = 1.5 and σ = 2.0 (∼1.79× 105 and ∼1.48× 106, respectively), but 502

did not contain any bistable points at σ = 1.0. 503

In sum, the above results suggest that M1 is indeed empty, and that a threshold for 504

bistability, 1 ≤ σ∗ < 1.5, within H does exist. We believe this is an instance of a more 505

general mathematical result (Discussion). We note that this conclusion is limited by the 506

choice of box, H, we used to bound the parameter values. Indeed, it is entirely possible 507

that there exist parameter points outside H that exhibit bistability at σ = 1, or even at 508

arbitrarily small values of σ. We address this possibility in a subsequent section. 509

Bistable regions are connected 510

As explained in the Introduction, the positive volume of the bistable region confirms the 511

simplest requirement for robustness but does not tell us about the shape of the region 512

(Fig. 1B). We therefore sought evidence for whether the bistable region Mσ is 513

topologically connected, at least for σ ≥ 1.5 for which we know it is non-empty (Fig. 3). 514

The challenge here is that we have to assess connectedness from finite samples of 515

parameter points, S ⊂ H, which provide only discrete approximations, M̂σ = S ∩Mσ, 516

of the bistable region. 517

To address this, we constructed the connectivity graph, G∆(M̂σ), associated with the 518

sample. We adapted this idea from previous studies of robotic motion planning, in 519

which the graph is used to determine connected, obstacle-free regions of a robot’s 520

configuration space [82,83]. The vertices of the connectivity graph are the bistable 521

points, M̂σ, in the sample, and there is an undirected edge between two vertices if they 522

are within Euclidean distance ∆ of each other in logarithmic coordinates. Here, ∆ > 0 523

is an adjustable threshold. Such a graph can be partitioned into connected components. 524

Any two vertices within the same connected component can be joined by a path of 525

contiguous edges, while no such path exists between vertices in different connected 526

components. 527

Consider a sufficiently large finite sample of some connected region in a 528

multi-dimensional space. If ∆ is larger than the maximum distance between two points, 529

then every point is connected to every other point and the graph consists of a single 530

connected component. If ∆ is smaller than the minimum distance between two points, 531
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then no point is connected to any other and there are as many connected components as 532

there are vertices. In between these extremes, however, we would expect a different 533

behaviour, with a single very large connected component, comprising most of the points 534

in the interior of the region, together with many much smaller components, typically 535

comprising points close to the boundary of the region that fail to be within ∆ of the 536

largest component. 537

In contrast, consider a region that is disconnected and consists of several connected 538

components. We would then expect that for intermediate values of ∆, the 539

corresponding connectivity graph would break up into several large connected 540

components, along with many much smaller boundary components. Unless some of the 541

connected components of the region were much smaller than others, we would expect 542

each such component to manifest as a large connected component in the graph. We can 543

thereby estimate the number of the former by counting instances of the latter. 544

It is not straightforward to assess the statistical accuracy of such estimates. To do so 545

requires specifying a prior expectation for the region’s connectivity, and we have little to 546

guide us in knowing what to expect of parameter geography. It is easy to imagine 547

complicated regions, such as those with one very large part and many very small ones, 548

that would confuse a connectivity graph analysis. Also, sampling is oblivious to regions 549

of lower dimension, as noted in the Introduction, and we build the graphs from points 550

within the finite box H, both of which issues could compromise the conclusions drawn 551

from a connectivity graph analysis. With these caveats in mind, we believe the 552

structure of the connectivity graph for intermediate values of ∆ provides helpful 553

preliminary evidence for the connectivity of the bistable region. There are also further 554

tests that we can undertake, as explained below. 555

The connectivity graph is most informative when there are many sample points, so 556

we used the bistable sets obtained from the VEGAS samples described above to build 557

connectivity graphs, G∆(M̂σ), for each of the values 558

σ = 1.5 , 2.0 , 2.5 , 3.0 , 4.0 , 5.0 , 7.0 , 10 , 15 , 20 , 50 , 100 , 200 , 500 . (15)

The graphs for σ = 1.5 and σ = 2.0 were built from the single-iteration VEGAS sample 559

gathered for small σ; for each remaining value of σ, the graph was built from the 560

corresponding six-iteration VEGAS sample. 561

Constructing the graph in its entirety is computationally intractable if the sample 562

size is large because the number of edges scales quadratically with the number of 563

vertices. However, it is sufficient to construct a spanning forest, an acyclic subgraph 564

that includes every vertex of the full graph. This is because the connected components 565

of the spanning forest are individual spanning trees that are in bijective correspondence 566

with the connected components of the full graph. A full description of this algorithm is 567

given in the Materials and Methods. 568

Given a set of bistable points gathered from an ILR sample, S ⊂ H, it is 569

straightforward to estimate a value of ∆ for which, given a point in S, there is a large 570

probability, say 0.99, that there is at least one other point in S within distance ∆. This 571

seems a reasonable choice for an intermediate value of ∆ because it allows most vertices 572

in the graph to have an incident edge. It is shown in the Materials and Methods how to 573

calculate such a ∆ for ILR samples of a given size. The VEGAS samples were not 574

constructed by ILR sampling but each augmented VEGAS sample SA is generated from 575

an initial set of bistable points obtained from an ILR sample, SI . We therefore chose an 576

effective sample size, N ′, that scaled proportionally with the increase in the number of 577

bistable points, 578

N ′ =

(
# bistable points in SA
# bistable points in SI

)
#SI ,

and used N ′ in place of #S as the sample size in calculating ∆. We found using this 579
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approach that ∆ = 0.15 is a suitable choice for all values of σ given in Eq. 15 (Materials 580

and Methods). 581

The results of the connectivity graph analysis are shown in Table 1. For each value 582

of σ in Eq. 15, the largest connected component of the graph contains the vast majority 583

of vertices. For instance, for σ = 3.0, there are 2705883 bistable points in the sample, 584

which decompose into 122672 connected components. Of these, the largest component 585

contains 2556447 vertices, or ∼94% of the total, while the second largest component 586

contains a mere 21 vertices. While the proportion of vertices in the largest component 587

decreases with σ—at σ = 500, only ∼74% of the vertices lie in the largest 588

component—the size of the second largest connected component remains tiny, relative 589

to that of the largest component, as σ increases. Furthermore, the number of 590

components rapidly increases with σ, and a roughly constant percentage of them, 591

between ∼83% and ∼87%, are singletons, indicating that the connectivity graph 592

decomposes into one huge component and increasing numbers of very tiny components. 593

This is exactly what would be expected if Mσ were connected. 594

If this is in fact the case, we should be able to connect the vertices in the smaller 595

connected components to the largest component by paths of bistable points. 596

Accordingly, we undertook a further test of the initial connectivity graphs described 597

above (Table 1). For each graph, we considered each of the non-largest components and 598

chose a vertex, θ, uniformly at random in that component. We then selected the K 599

(approximate) nearest neighbours, ν(1), . . . , ν(K), to θ from the largest component, and 600

sampled along the straight line segments between θ and ν(j), for j = 1, . . . ,K, by 601

sub-dividing each line segment into sub-intervals of length 0.98∆ and collecting the 602

endpoints of these sub-intervals. We used Bertini and Paramotopy to determine which 603

of these sampled points were in the bistable region. We then recomputed the 604

connectivity graph with these newfound bistable points added to the original bistable 605

set, and iterated this procedure until the proportion of vertices in the largest component 606

remained constant between consecutive iterations. 607

The computationally intensive step here is determining which point from the largest 608

component is nearest to each randomly selected vertex, θ. For this, we used the 609

Approximate Nearest Neighbour (ANN) algorithm [84], which builds a hierarchical data 610

structure to efficiently select K points, ν(1), . . . , ν(K), which are approximately nearest 611

to θ in the sense that 612

d(θ, ν(j)) ≤ (1 + ε) d(θ, µ(j)) for j = 1, . . . ,K , (16)

where d is the distance metric being used (in our case, Euclidean distance over 613

logarithmic coordinates) and µ(j) is the true jth nearest neighbour to θ, for 614

j = 1, . . . ,K. The approximation factor, ε, can be chosen to be as small as required and 615

the algorithm is optimal in an appropriate sense [84]. Experience with the open-source 616

C++ ANN library suggests that this is an efficient procedure for samples of order 105 in 617

spaces of dimension up to 20, and that the probability of choosing a non-nearest 618

neighbour is relatively small in practice [85]. 619

For our analysis, we used an approximation factor of ε = 0.001, increasing K after 620

each iteration (Materials and Methods). Within two iterations of this procedure, we 621

were able to obtain, for each of the values of σ in Eq. 15, a set of bistable points whose 622

connectivity graph consisted of a single connected component. This provides yet further 623

evidence that the bistable region is connected. The full results of this analysis are given 624

in S1 Appendix, Table C. 625

Bistable regions are not convex but have high visibility ratios 626

As described in the Introduction, convexity tells us about the shape of a region and 627

rules out many features that compromise robustness, like the waists and holes in 628
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Fig. 1B. It is not difficult to show, by randomly sampling pairs of points within the 629

bistable regions, that none of these regions are convex. But how far do they depart from 630

convexity? The visibility ratio of a region offers a measure of this. Informally, it is the 631

probability that the line joining two points drawn at random from the region lies 632

entirely in the region. Formally, we define the visibility ratio of Mσ as 633

vis(Mσ) =
1

V 2
σ

∫
(θ,µ)∈Mσ×Mσ

ν(θ, µ) d(log θ, logµ) , (17)

where ν :Mσ ×Mσ → {0, 1} is the indicator function of the set of pairs of bistable 634

points for which the straight line segment (over logarithmic coordinates) between the 635

two points lies entirely within the bistable region, 636

ν(θ, µ) =

{
1 if ισ(10t log θ+(1−t) log µ) = 1 for 0 ≤ t ≤ 1

0 otherwise.

With the normalisation in Eq. 17, it is easy to see that, if Mσ is convex, then 637

vis(Mσ) = 1. 638

Since computing ν(θ, µ) for even a single choice of θ and µ requires evaluating ισ on 639

infinitely many parameter points, we cannot directly estimate vis(Mσ). Therefore, we 640

sought to approximate ν(θ, µ) by sub-dividing the straight line segment between θ and 641

µ into K + 1 sub-intervals of equal length (over logarithmic coordinates), and checking 642

bistability only on the K endpoints of the intervals. In other words, we computed the 643

following indicator function, 644

νK(θ, µ) =

{
1 if ισ(10t log θ+(1−t) log µ) = 1 for all t = j d(θ,µ)

K+1 , j = 1, . . . ,K

0 otherwise.

This quantity converges to ν(θ, µ) as K →∞. Integrating over Mσ ×Mσ and 645

normalising, we obtain the K-fold visibility ratio, 646

vis(Mσ,K) =
1

V 2
σ

∫
(θ,µ)∈Mσ×Mσ

νK(θ, µ) d(log θ, logµ) , (18)

which converges to vis(Mσ) as K →∞. 647

Since νK(θ, µ) = 0 implies that ν(θ, µ) = 0, vis(Mσ,K) ≥ vis(Mσ) for all K > 0. 648

The K-fold visibility ratio will therefore tend to overestimate the true visibility ratio. 649

With this caveat in mind, it offers a computationally feasible estimate for the extent of 650

departure from convexity. 651

We estimated the K-fold visibility ratio by randomly choosing M pairs of bistable 652

points 653

(θ(1), µ(1)) , . . . , (θ(M), µ(M)) ∈ M̂σ × M̂σ

without replacement, where M̂σ is a set of bistable points gathered with ILR sampling 654

from H, and computing the estimator 655

v̂is(Mσ,K) =
1

M

M∑
j=1

νK(θ(j), µ(j)) .

We undertook this estimation by choosing K = 10 and sampling M = 20000 pairs of 656

points, without replacement, from the bistable points gathered through ILR sampling 657

for each of the values of σ given in Eq. 11, except for σ = 1.0 and σ = 1.5, at which too 658

few bistable points were found through ILR sampling (Fig. 3; see also the previous 659
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section on the bistable volume). Confidence intervals for these estimates were computed 660

using standard results in finite population sampling statistics (Materials and Methods). 661

The results of this analysis are shown in Fig. 4A. We found that although the 662

bistable region is not convex for any value of σ, it is close to convex for all considered 663

values of σ, with 10-fold visibility ratios exceeding 0.95. This suggests that, for a large 664

majority of pairs of bistable parameter points, the straight line connecting them in 665

parameter space consists also of bistable points. 666

The visibility ratio is a global measure of the region’s departure from convexity but 667

offers little information regarding what local geometric features may influence the loss 668

of convexity. Different shapes can have the same visibility ratio and how the visibility 669

ratio depends on shape is difficult to describe in general. Low-dimensional examples 670

suggest that interior holes reduce the visibility ratio to a greater extent that boundary 671

indentations (Fig. 4B). The fact that the visibility ratio appears to be largely 672

independent of σ suggests two possibilities. Either the bistable region grows radially 673

outward in parameter space, in such a way that the size of any local geometric feature 674

which compromises convexity scales with that of the entire bistable region; or these 675

local geometric features appear and disappear in a manner that approximately preserves 676

the visibility ratio as σ increases. The latter possibility may appear less plausible but 677

the next section suggests that the growth of the bistable region with σ may indeed 678

exhibit phenomena of this kind. 679

Non-monotonic growth of the bistable region 680

The volume of the bistable region, Vσ, appears to increase monotonically as σ increases 681

(Fig. 3). This monotonicity would follow naturally if, once a parameter point θ ∈ H 682

exhibits bistability at some value σ = a, it continues to do so for all σ > a. The bistable 683

region would then increase in extent with σ, so that if a < b, then Ma ⊂Mb. We 684

therefore tested this behaviour and were surprised to find, in contrast to our initial 685

expectation, that parameter points do not behave this way. Instead, they can transition 686

back and forth between monostability and bistability. 687

To illustrate the possibilities, Fig. 5 shows four parameter points which exhibit
different behaviours as σ takes the values 3.0, 4.0, 5.0, 7.0, and 10. Each plot shows the
“pseudo-nullclines,” Φ1(u, v) = 0 and Φ2(u, v) = 0 from Eq. 10, for which the
intersections of the two curves give the steady-states of the PTM system [30]. (The zero
solution, u = v = 0, is isolated from these curves in the real uv-plane and is omitted for
simplicity.) The first parameter point,

θ(1) = (7.239380624, 0.1047069812, 0.1045129736, 1.114909161,

2.017259480, 0.1057288524, 2.544613812, 0.1021803160) ,

is monostable at all five values of σ. The second parameter point,

θ(2) = (4.684802750, 0.5200773771, 1.589343505, 0.1804775460,

0.1270218587, 0.1129848293, 0.1816907000, 5.708851611) ,

becomes bistable between σ = 4.0 and σ = 5.0, and remains so at σ = 5.0, σ = 7.0, and
σ = 10. The third parameter point,

θ(3) = (6.865206499, 0.2105440222, 0.2524064999, 0.1025041753,

0.1178107732, 0.1017610135, 0.4495453146, 5.796119139) ,

becomes bistable between σ = 4.0 and σ = 5.0, then reverts to monostability between

PLOS 17/52

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/862003doi: bioRxiv preprint 

https://doi.org/10.1101/862003


σ = 5.0 and σ = 7.0. Finally, the fourth parameter point,

θ(4) = (4.885859541, 0.4985163876, 0.7212641184, 2.119877596,

0.1655484166, 0.1246565927, 0.7180476375, 8.912153306) ,

becomes bistable between σ = 3.0 and σ = 4.0, reverts to monostability between σ = 4.0 688

and σ = 5.0, then reverts back to bistability between σ = 7.0 and σ = 10. 689

We examined the common ILR sample of 4× 106 points in H at which solutions to 690

Eq. 10 were obtained for each value of σ in Eq. 11. We determined for each value of σ 691

the subset of bistable parameter points which become monostable at some larger value of 692

σ (Table 2). We refer to this phenomenon as “blinking.” We were able to alphaCertify 693

the solutions to Eq. 10 at each of these parameter points for all values of σ, thereby 694

confirming that the designations of monostability or bistability were mathematically 695

correct. Blinking is therefore not a numerical artifact (Materials and Methods). 696

If blinking points occur within the interior of the bistable region, it suggests that the 697

region can develop interior holes. This would be surprising in view of the high visibility 698

ratio found previously, as such features tend to lower the visibility ratio (Fig. 4B). We 699

therefore examined the blinking points in relation to the connectivity graph G∆(Mσ) of 700

the bistable region (Table 1, S1 Appendix) and summarised the findings in Table 2. The 701

number of blinking parameter points increases from 8 at σ = 2 to a maximum of 396 at 702

σ = 10 but then decreases to 34 at σ = 200 (Table 2, column 3), despite the monotonic 703

increase in the volume of the bistable region (Fig. 3). Every blinking point was found to 704

lie outside the largest connected component of the corresponding connectivity graph for 705

every value of σ (Table 2, column 4). For any given value of σ, a sizeable majority of 706

blinking points never enter the largest connected component of the graph at larger 707

values of σ (Table 2, column 5). For instance, among the 308 blinking points at σ = 5, 708

260 (84%) never enter the largest component. These findings suggest that bistable 709

points that become monostable at larger values of σ lie on the boundary of the bistable 710

region, rather than in its interior, and tend to remain near the boundary as they exit 711

and enter the bistable region as σ increases. Finally, most blinking points become 712

monostable at σ = 500 (Table 2, column 6). For instance, of the 308 blinking points at 713

σ = 5, 290 (94%) are monostable at σ = 500. This may indicate that many blinking 714

points become asymptotically monostable as σ →∞. We return to these interesting 715

findings in the Discussion. 716

The strongly irreversible case 717

Up to now, we have assumed that the enzymes in the PTM system are irreversible and 718

that the reactions in which S1 is a substrate, S1
E→ S2 and S1

F→ S0, are also weakly 719

irreversible, with nonzero affinity for product rebinding. (Recall that the reactions in 720

which S1 is a product, S0
E→ S1 and S2

F→ S1, may be either strongly or weakly 721

irreversible without affecting the signs of the non-dimensional parameters (Eq. 9) and 722

the results deduced so far.) As explained in the Introduction, weak irreversibility is the 723

realistic assumption for enzymes in a PTM system. However, in view of the nearly 724

universal reliance in the literature on the Michaelis-Menten reaction scheme, we wanted 725

to understand the impact of strong irreversibility on parameter geography. 726

Accordingly, we assume now that the reactions in which S1 is a substrate are strongly 727

irreversible, so that ε2 = φ0 = 0, and take the parameter point η ∈ R6 to be defined by 728

η1 = α , η2 = β , η3 = ε0 , η4 = ε1 , η5 = φ1 , η6 = φ2 .

We consider solutions within the finite-volume box H∗ = [0.1, 10]6. The steady-state 729

polynomial equations in Eq. 10 still have degree 4 and Bézout’s Theorem tells us that 730
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there are 16 complex solutions in projective space. Given ζ = 1, a fixed value of σ and a 731

randomly chosen parameter point in H∗, the generic solutions are as follows: the zero 732

solution, u = v = 0, which has multiplicity 6; five additional finite solutions; and five 733

solutions which are projectively at infinity. Of the five nonzero, finite solutions, we 734

always find either one or three positive real solutions, which we refer to as monostability 735

and bistability, respectively, as explained previously. Let M∗σ ⊂ H∗ denote the subset of 736

bistable parameter points at a given value of σ. 737

The volume, V ∗σ , of M∗σ and a statistical estimator of this volume, V̂ ∗σ , can be 738

defined in a similar way to Eqs. 12 and 13. Here, we used a single sample of 4× 106
739

parameter points, generated by ILR sampling from H∗, to compute V̂ ∗σ , as we found 740

sufficiently many bistable points at all values of σ to ensure high statistical confidence. 741

The results are shown in Fig. 6. As in the weakly irreversible case (Fig. 3), the volume 742

appears to increase monotonically with σ. The threshold for bistability appears, as 743

before, to be at or slightly above σ = 1. There are, however, two important differences 744

between the weakly and strongly irreversible cases. First, saturation is less apparent 745

under strong irreversibility, even with additional volumes evaluated at σ = 1000, 2000, 746

and 5000. Second, under strong irreversibility the bistable volume increases much more 747

rapidly with increasing σ: at σ = 500, the bistable region occupies 20% of H∗ under 748

strong irreversibility in contrast to only 1.1% of H under weak irreversibility. 749

Volumes scale in different ways with the dimension of the ambient space. The 750

volume of a ball of radius r goes to zero as n→∞. In contrast, the volume of a 751

hypercube of length r scales as rn. Because we have used the volume of a hypercube 752

with sides [0.1, 10] to normalise the volume of the bistable region, we expect this to 753

compensate for the change in the ambient space from six dimensions to eight, even if we 754

do not know how to accommodate the shape of the bistable region in the normalisation. 755

With this caveat, the decrease in the normalised volume from strong to weak 756

irreversibility still seems dramatic. Bistability appears to be a far more robust property 757

under the unrealistic assumption of strong irreversibility, such as with Michaelis-Menten 758

enzyme mechanisms, than it does under the realistic assumption of weak irreversibility. 759

How does such a large relative volume of bistable parameter points in H∗ become 760

such a small relative volume in H? To address this question, we examined more closely 761

the values of ε2 and φ0 at which bistability occurs in the weakly irreversible case. 762

Fig. 7A shows the parameter values, θ5 = ε2 and θ6 = φ0, for the bistable points used to 763

calculate V̂σ in Fig. 3. We immediately notice a striking tradeoff between the two 764

parameters: bistability appears to be confined to the region in which 765

ε2φ0 < K , (19)

for some constant K whose optimal value increases with σ. There appears, in other 766

words, to be a tradeoff between bistability and product rebinding: the more of the 767

latter, as given by ε2φ0 being large, the less of the former. 768

The constraint given by Eq. 19 explains the dramatic decrease in volume from the 769

strongly irreversible case in H∗ to the weakly irreversible case in H. The bistable region 770

in the latter case is confined to the “thin” subregion of H in which ε2 and φ0 are not 771

simultaneously large, as illustrated in Fig. 7B. 772

The bistable region outside H 773

We have focused so far on the bistable region within boxes with sides [0.1, 10]. To assess 774

how far these observations remain valid in larger regions of parameter space, we 775

estimate here the volume of the bistable region in the boxes, Hp = [0.1p, 10p]8 for weak 776

irreversibility, and H∗p = [0.1p, 10p]6, for strong irreversibility, with p running through 777

the values p = 2, 3, 4, 5. As previously, we define Mσ,p, Vσ,p, V̂σ,p to be, respectively, 778
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the bistable region in Hp, its normalised volume and its estimated volume by Monte 779

Carlo sampling and use an asterisk for the corresponding quantities M∗σ,p, V ∗σ,p, V̂ ∗σ,p for 780

the bistable region in H∗p. In normalising the volumes, we note that the logarithmic 781

volumes of the respective boxes are given by VHp = (2p)8 and VH∗
p

= (2p)6. 782

We generated samples of 106 points by ILR sampling in each of the boxes 783

H2, . . . ,H5 and H∗2, . . . ,H∗5 and ran Bertini and Paramotopy to find the bistable 784

proportion of each sample at the 15 values of σ listed in Eq. 11, as well as six additional 785

values of σ between 1.0 and 1.5 which are discussed below (Eq. 20). Despite the smaller 786

sample sizes, we were able to find sufficiently many bistable points in each sample to 787

obtain high-confidence volume estimates. 788

The results for weak irreversibility are shown in Fig. 8. We found that, for each 789

value of p, the volume of the bistable region restricted to Hp increases monotonically 790

with σ, as we found previously for p = 1. The monotonic increase appears to be 791

sigmoidal for each value of p, though saturation at large values of σ becomes less 792

evident as p increases. We also found that the bistable proportion of Hp at a fixed value 793

of σ > 1 increases monotonically with p, so that Vσ,a < Vσ,b whenever a < b. This 794

suggests that, as we expand the domain of sampling in parameter space, the rate at 795

which we lose bistable points due to lower sampling density in Ha is exceeded by the 796

rate at which we find bistable points in the complement, Hb −Ha. Moreover, we 797

observed that, for all values of σ greater than a threshold near σ = 2.0, the difference 798

between volumes for successive values of p, Vσ,p+1 − Vσ,p, decreases with p, suggesting 799

the possibility that Vσ,p increases as p→∞ towards an asymptotic functional 800

dependence on σ, which is also monotonic and sigmoidal. 801

Strikingly, we also found that none of the points sampled in any of the boxes 802

exhibits bistability at σ = 1.0, further supporting our prediction that a threshold for 803

bistability exists. To find a more precise estimate of this threshold, we ran Bertini and 804

Paramotopy on ILR samples acquired for H2, . . . ,H5 at each of the following six 805

additional values of σ, 806

σ = 1.0078125 , 1.015625 , 1.03125 , 1.0625 , 1.125 , 1.25 . (20)

We found bistable points at each of these values. For instance, we found 35 bistable 807

points at σ = 1.0078125 among the sample in H4, and as many as 372 bistable points at 808

σ = 1.0078125 among the sample in H5. This implies that, if a threshold for bistability 809

exists, then it must be less than 1.0078125. Our failure to find any bistable points at 810

σ = 1.0 leads us to conjecture that the threshold is in fact exactly 1; we pose this as a 811

conjecture for further study. 812

The results for strong irreversibility are shown in Fig. 9. As in the weakly 813

irreversible case, we found that, for each value of p, the volume of the bistable region in 814

H∗p increases monotonically with σ. We found no bistable points at σ = 1 for any p, 815

again consistent with the threshold conjecture. 816

However, we also observed three interesting differences between the weakly and 817

strongly irreversible cases. First, although the asymptotic behaviour of the bistable 818

volume as σ →∞ is difficult to resolve in the weakly irreversible case, the absence of 819

saturation becomes conspicuous in the strongly irreversible case. The curves in Fig. 9 820

suggest that under strong irreversibility the bistable volume increases more linearly with 821

σ when σ is large. Second, we observed that, as for p = 1, the bistable volume increases 822

more rapidly with σ under strong irreversibility than under weak irreversibility. 823

However, this disparity becomes less prominent as p increases: a roughly 20-fold 824

difference between the bistable volumes at p = 1 (V500,1 ≈ 1.1% and V ∗500,1 ≈ 20%) 825

decreases to a roughly 2.5-fold difference between the corresponding bistable volumes at 826

p = 5 (V500,5 ≈ 4.3% and V ∗500,5 ≈ 11%). 827

Third, in contrast to the monotonically increasing dependence of Vσ,p on p for fixed 828
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σ, we find that V ∗σ,p exhibits two qualitatively distinct patterns of dependence on p. For 829

smaller values of σ, V ∗σ,p monotonically increases with p; for larger values of σ, V ∗σ,p 830

monotonically decreases with p. The transition from the first to the second behaviour 831

occurs close to σ = 10, at which value all five volume curves are close to intersecting. 832

Among the five bistable volume estimates at σ = 10, V̂ ∗10,1 appears to deviate the most 833

from the others, and this difference is statistically significant at the 0.05 level (note the 834

non-overlapping 95% confidence intervals at σ = 10 in Fig. 9). From this, it is difficult 835

to say with confidence whether there is an interval of values for σ, near to or including 836

σ = 10, in which V ∗σ,p is non-monotonic in p. With that said, our analysis suggests that, 837

for values of σ outside such an interval, V ∗σ,p depends monotonically on p but is 838

increasing for σ smaller than the interval and decreasing for σ greater than the interval. 839

Here too, it seems that V ∗σ,p may converge as p→∞ to an asymptotic functional 840

dependence on σ but in a seemingly different manner to the weakly irreversible case. 841

In summary, some of the observations made previously for the bistable region in 842

H1 = H generalise to larger sampling domains in parameter space: the volume of the 843

bistable region increases monotonically with σ from a threshold, possibly toward a 844

saturating volume in the weakly irreversible case. There is further compelling evidence 845

for a bistability threshold which we conjecture to be at σ = 1. However, the size of the 846

sampling domain affects bistable volumes in markedly different ways under weak and 847

strong irreversibility. 848

Discussion 849

Parametric robustness of a model—the maintenance of a property in the face of 850

parametric change—offers a mathematical window onto the broader concept of 851

biological robustness. We have approached this problem here through parameter 852

geography, which offers an integrated, global view of the parametric region in which a 853

property holds. We have been able to analyse the parameter geography of PTM systems 854

with two sites but arbitrary enzymatic complexity and to estimate the size and shape of 855

regions in 8-dimensional parameter space. We briefly summarise our most interesting 856

findings and comment on their broader significance. 857

The approach we have taken has relied on randomly sampling parameter points and 858

is therefore limited to features which have positive measure in the space being sampled. 859

We have also conflated monostability and bistability with monostationarity and 860

tristationarity, respectively, but merely as a convenience of language. With these 861

caveats in mind, we found compelling evidence for a threshold in total substrate below 862

which bistability does not exist. We found this both for weak irreversibility in all boxes 863

Hp = [0.1p, 10p]8 and for strong irreversibility in all boxes H∗p = [0.1p, 10p]6, with 864

p = 1, 2, 3, 4, 5. In the light of other calculations not discussed here, we believe such a 865

threshold may hold in greater generality and therefore put forward the following 866

Conjecture: Given a PTM system of the type studied in [17], consisting of a single 867

substrate and multiple enzymes, Ei, each acting through any mechanism specified in the 868

grammar of Eq. 1, there exists a threshold level, T ({Ei,tot}) > 0, depending on the total 869

amounts of each enzyme, such that the system shows no multistationarity if 870

Stot < T ({Ei,tot}). 871

For the two-site, distributive system studied here, in which we restricted attention to 872

Etot = Ftot, we found bistable points in H4 at Stot/Etot = σ = 1.0078125, which 873

suggests that the threshold lies at σ = 1, so that T (Etot, Ftot) = Etot when Etot = Ftot. 874

The conjecture above is consistent with recent work which showed that, when all 875

enzymes follow the Michaelis-Menten reaction scheme, if Stot > Etot or Stot > Ftot, 876
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parameter values can be found at which there are multiple steady-states but such 877

multistationarity does not exist if Stot < Etot and Stot < Ftot [60, 86,87]. 878

Once past the threshold value, the bistable region acquires positive measure in the 879

appropriate parameter space and thereby a volume. When σ is large, the volume 880

appears to saturate, although this is more pronounced for weak irreversibility and 881

smaller boxes (Figs. 8 and 9). However, there is a striking difference between the largest 882

volumes reached under different enzymatic assumptions. The volume of the bistable 883

region is substantially smaller under weak irreversibility than under strong 884

irreversibility. We were able to identify the reason for this as a constraint on enzyme 885

parameters (Fig. 7). This leads us to make another 886

Conjecture: For the two-site PTM system considered here, under the assumption of 887

weak irreversibility, there exists a constant K(σ), which increases with σ, such that 888

there is no bistability when ε2φ0 > K. 889

The parameters ε2 and φ0 depend on the ability of S2 to rebind to the forward 890

enzyme E, ε2 = κE2,1Etot, and the ability of S0 to rebind to the reverse enzyme F , 891

φ0 = κF0,1Ftot, respectively (Eq. 9). The above conjecture suggests there is a tradeoff 892

between total rebinding and bistability: bistability is abrogated if both E and F exhibit 893

high rebinding. 894

To our knowledge, there is no indication of such a relationship in the current 895

literature. This is not surprising in view of the widespread fixation with the strongly 896

irreversible Michaelis-Menten mechanism. As pointed out in the Introduction, one of 897

our concerns has been to understand the impact of this unrealistic assumption on 898

parametric robustness. Our results show that it can be very misleading. Under strong 899

irreversibility, bistability appears robust, with the bistable region occupying 20% of 900

[0.1, 10]6 = H∗1 at σ = 500. Under weak irreversibility, bistability appears far rarer, 901

occupying only 1.1% of [0.1, 10]8 = H1 at σ = 500. The discrepancy becomes less 902

marked for larger boxes, as noted above, but remains significant. A further difference 903

between weak and strong irreversibility arises in the dependence of the bistable volume 904

on the exponent, p, in the interval [0.1p, 10p], which determines the size of the box: 905

under weak irreversibility, volume increases monotonically with p for each σ (Fig. 8); 906

under strong irreversibility, volume increases monotonically for σ < ∼10 and decreases 907

monotonically for σ > ∼10 (Fig. 9). The reasons for this marked difference remain 908

unclear but, here too, we see that unrealistic assumptions have significant consequences. 909

The linear framework enables realistic, complex enzyme mechanisms to be readily 910

analysed at steady-state. This has not only brought out the differences between weak 911

and strong irreversibility but also led to a potential explanation for the reduction in 912

robustness with strong irreversibility, which lies in the tradeoff between rebinding and 913

bistability expressed in the conjecture above. We hope these findings will encourage less 914

reliance on unrealistic assumptions and more focus on actual enzyme mechanisms. 915

Between low and high σ, the volume of the bistable region appears to increase 916

monotonically: if σ1 and σ2 are taken from the list in Eq. 11 and σ1 < σ2, then 917

V̂σ1
< V̂σ2

. This holds for both weak (Figs. 3 and 8) and strong (Figs. 6 and 9) 918

irreversibility. It is natural to expect that such monotonicity arises because the bistable 919

region itself increases with σ, so that Mσ1
⊂Mσ2

. However, this is not the case: 920

parameter points can move back and forth between monostability and bistability 921

(Fig. 5). The pattern of blinking, in which a bistable point becomes monostable, 922

exhibits several interesting features (Table 2), which suggest that blinking may be 923

restricted to the boundary of the bistable region. 924

These findings are perplexing and suggest surprising complexity in how the 925

steady-state manifold is positioned relative to the hypersurfaces defined by conservation 926

of total substrate and total enzymes. One way to focus on the problem is to ask 927
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whether or not the volume of the bistable region, Vσ, is a monotonic function of σ. If it 928

is monotonic, this makes it difficult to account for blinking points, whose disappearance 929

from Mσ must then be compensated by the appearance of other bistable points. If it is 930

not monotonic, this makes it difficult to account for the monotonicity of the estimated 931

volume, V̂σ, as shown in Fig. 3. It is, of course, possible that departure from 932

monotonicity of Vσ does occur but at a scale that is too small to be observed by random 933

sampling. If so, it becomes an interesting problem to determine the scale of these 934

volume fluctuations. Such challenges lead us to pose the following 935

Question: How does Vσ depend on σ? If the relationship is monotonic, how is blinking 936

compensated? If it is not monotonic, on what scale does it depart from monotonicity so 937

that the estimated volume, V̂σ, depends monotonically on σ? 938

The volume of the bistable region indicates its size but not its shape. This becomes 939

a subtle problem in high dimensions. Even in two dimensions, it is evident that local 940

variation in shape can greatly compromise robustness (Figs. 1B and 4B). It is 941

interesting, therefore, that the bistable region appears to be well behaved for the 942

simplest shape measures. It is both connected (Table 1) and nearly convex, with a 943

visibility ratio over 95% for all values of σ (Fig. 4A). As far as these limited measures of 944

shape are concerned, the bistable region exhibits good robustness. To know more, it 945

would be necessary to use methods like persistent homology, which give access to 946

higher-dimensional topological invariants [88,89]. While this lies beyond the scope of 947

the present paper, the datasets arising from our analysis are available for others to 948

explore this question (S1 File; see also S1 Appendix). It would be of considerable 949

interest to have an estimate of the topological type of the bistable region, which could 950

stimulate further mathematical conjectures like those above. 951

The analysis undertaken here, while based on numerical calculations and statistical 952

analysis of data, has led to precise mathematical conjectures and questions about 953

parameter geography. This has been possible by bringing together two advances: the 954

linear framework, which enables steady-state reduction of PTM systems to polynomial 955

equations, and numerical algebraic geometry, in the form of Bertini and related software 956

tools, which allow efficient sampling of high-dimensional parameter spaces. This 957

suggests that a new kind of exploratory mathematics is becoming feasible to study those 958

biological systems which can be treated in this way, through timescale separation and 959

polynomial specification. It may now be possible to accommodate more of the molecular 960

complexity that is found in biology, as we have done here for enzyme mechanisms, but 961

to also elicit mathematical insights which rise above that complexity, as described in the 962

conjectures above. Perhaps a theory of parameter geography may eventually crystallise 963

from studies of this kind. 964

Materials and Methods 965

Derivation of Eq. 10 966

We use the linear framework to show that the steady-state of the two-site PTM system 967

described in Fig. 2 is given by the solutions of the two polynomial equations given in Eq. 10. 968

Each of the four modifications in the system is of the form, Si
X→ Sj , where the indices 969

i, j ∈ {0, 1, 2} enumerate the modforms and X ∈ {E,F} is an enzyme (Fig. 2). We assume 970

that the aggregate mechanism Si
X→ Sj is described by a graph of elementary reactions in the 971

grammar in Eq. 1, with a finite number of enzyme-substrate intermediate complexes. We 972

further assume that the sets of enzyme-substrate complexes involved in distinct enzyme 973

mechanisms are disjoint. Then, by Proposition 1 in [17], the steady-state concentration of any 974
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enzyme-substrate complex, Y`, is given by 975

[Y`] =
(
µXi,`[Si] + µXj,`[Sj ]

)
[X] ,

where µXi,` and µXj,` are reciprocal generalised Michaelis-Menten constants (rgMMCs). The 976

linear framework guarantees that these parameters are positive for each Y`, unless Si
X→ Sj is 977

strongly irreversible, in which case there is no flux from Sj to any of the enzyme-substrate 978

complexes, and so µXj,` = 0 for every Y` involved in the mechanism for Si
X→ Sj . 979

We may aggregate the rgMMCs by summing the concentrations of the enzyme-substrate
complexes over each modification, to yield Eq. 2,∑

S0
E→S1

[Y∗] =
(
κE0,1[S0] + κE1,0[S1]

)
[E]∑

S1
E→S2

[Y∗] =
(
κE1,2[S1] + κE2,1[S2]

)
[E]∑

S2
F→S1

[Y∗] =
(
κF2,1[S2] + κF1,2[S1]

)
[F ]∑

S1
F→S0

[Y∗] =
(
κF1,0[S1] + κF0,1[S0]

)
[F ] ,

where
κE0,1 =

∑
S0

E→S1

µE0,∗

κE1,0 =
∑

S0
E→S1

µE1,∗

κE1,2 =
∑

S1
E→S2

µE1,∗

κE2,1 =
∑

S1
E→S2

µE2,∗

κF0,1 =
∑

S1
F→S0

µF0,∗

κF1,0 =
∑

S1
F→S0

µF1,∗

κF1,2 =
∑

S2
F→S1

µF1,∗

κF2,1 =
∑

S2
F→S1

µF2,∗

are the reciprocal total generalised Michaelis-Mentent constants (rtgMMCs). When the four 980

mechanisms are each strongly irreversible, we have 981

κE1,0 = κE2,1 = κF0,1 = κF1,2 = 0 ,

since the rgMMCs in the corresponding sums are identically zero. 982

We may further aggregate the rtgMMCs as follows, 983∑
S0

E→S1

[Y∗] +
∑

S1
E→S2

[Y∗] =
(
κE0 [S0] + κE1 [S1] + κE2 [S2]

)
[E]

∑
S2

F→S1

[Y∗] +
∑

S1
F→S0

[Y∗] =
(
κF0 [S0] + κF1 [S1] + κF2 [S2]

)
[F ] ,

(21)

where 984

κX0 = κX0,1, κX1 = κX1,0 + κX1,2, κX2 = κX2,1 for X = E, F .

When the four mechanisms are strongly irreversible, we have κE2 = κF0 = 0. 985

Note that Eq. 21 and the enzyme conservation laws, Eq. 8, imply that [E] = [F ] = 0 if, and 986

only if, Etot = Ftot = 0, which we assume is not the case. Therefore, [E] and [F ] must be 987

positive. (This is relevant to the steps that follow in which we divide by [E] or [F ].) 988

Proposition 1 in [17] implies that under mass action kinetics, the dynamics of the substrate 989

mod-forms may be written as follows, 990

d[S0]

dt
=
(
cE1,0[E] + cF1,0[F ]

)
[S1]−

(
cE0,1[E] + cF0,1[F ]

)
[S0]

d[S1]

dt
=
(
cE0,1[E] + cF0,1[F ]

)
[S0] +

(
cE2,1[E] + cF2,1[F ]

)
[S2]

−
(
cE1,0[E] + cF1,0[F ] + cE1,2[E] + cF1,2[F ]

)
[S1]

d[S2]

dt
=
(
cE1,2[E] + cF1,2[F ]

)
[S1]−

(
cE2,1[E] + cF2,1[F ]

)
[S2] ,

(22)
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where cXi,j are the tgCEs. Assuming the forward-modification tgCEs are positive, 991

cE0,1, c
E
1,2, c

F
1,0, c

F
2,1 > 0, and the reverse-demodification tgCEs are zero, 992

cE1,0 = cE2,1 = cF0,1 = cF1,2 = 0, we have, 993

cE0,1[E][S0] = cF1,0[F ][S1] and cE1,2[E][S1] = cF2,1[F ][S2]

at steady-state. This yields Eq. 5, 994

[S0] = α

(
[F ]

[E]

)
[S1] and [S2] = β

(
[E]

[F ]

)
[S1] ,

where α and β are as defined in Eq. 6, 995

α =
cF1,0
cE0,1

and β =
cE1,2
cF2,1

.

Under our assumptions, α, β, [E], and [F ] are all positive. Hence, Eq. 5 implies that, if any 996

one of the modform concentrations is zero, then all of them are. This implies in turn, via Eq. 997

21 and the substrate conservation law Eq. 7, that Stot is zero. Therefore, the modform and 998

enzyme concentrations are positive at steady-state, as long as we assume that the following are 999

positive: the conserved quantities Stot, Etot, Ftot; any one of the rtgMMCs for E, κE0 , κ
E
1 , κ

E
2 ; 1000

any one of the rtgMMCs for F , κF0 , κ
F
1 , κ

F
2 ; and all of the forward-modification tgCEs 1001

cE0,1, c
E
1,2, c

F
2,1, c

F
1,0. The strongly and weakly irreversible cases both satisfy these assumptions. 1002

We can combine Eqs. 5 and 21 to write 1003

[S0] + [S1] + [S2] =

(
α

[F ]

[E]
+ 1 + β

[E]

[F ]

)
[S1]

∑
S0

E→S1

[Y∗] +
∑

S1
E→S2

[Y∗] =

(
κE0 α

[F ]

[E]
+ κE1 + κE2 β

[E]

[F ]

)
[S1][E]

∑
S2

F→S1

[Y∗] +
∑

S1
F→S0

[Y∗] =

(
κF0 α

[F ]

[E]
+ κF1 + κF2 β

[E]

[F ]

)
[S1][F ] .

(23)

Define the rational functions

ψ1([E], [F ]) = α
[F ]

[E]
+ 1 + β

[E]

[F ]

ψ2([E], [F ]) = Etot

(
κE0 α

[F ]

[E]
+ κE1 + κE2 β

[E]

[F ]

)
ψ3([E], [F ]) = Ftot

(
κF0 α

[F ]

[E]
+ κF1 + κF2 β

[E]

[F ]

)
,

and substitute them into Eq. 23: 1004

[S0] + [S1] + [S2] = [S1]ψ1∑
S0

E→S1

[Y∗] +
∑

S1
E→S2

[Y∗] =
[S1][E]

Etot
ψ2

∑
S2

F→S1

[Y∗] +
∑

S1
F→S0

[Y∗] =
[S1][F ]

Ftot
ψ3.

(24)

Substituting Eq. 24 into the substrate conservation law, Eq. 7, gives 1005

Stot =

(
ψ1 +

[E]

Etot
ψ2 +

[F ]

Ftot
ψ3

)
[S1] ; (25)

and substituting Eq. 24 into the enzyme conservation laws, Eq. 8, gives 1006

Etot =

(
1 +

[S1]

Etot
ψ2

)
[E] and Ftot =

(
1 +

[S1]

Ftot
ψ3

)
[F ]. (26)
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These substitutions eliminate all of the state variables except for [S1], [E], and [F ]. We then 1007

eliminate [S1] by substituting Eq. 25 into Eq. 26, to get 1008

Etot =

(
1 +

Stot/Etot

ψ1 + ([E]/Etot)ψ2 + ([F ]/Ftot)ψ3
ψ2

)
[E]

Ftot =

(
1 +

Stot/Ftot

ψ1 + ([E]/Etot)ψ2 + ([F ]/Ftot)ψ3
ψ3

)
[F ] .

(27)

Finally, we substitute the non-dimensional quantities,

u =
[E]

Etot
, v =

[F ]

Ftot
, ε0 = κE0 Etot , ε1 = κE1 Etot , ε2 = κE2 Etot ,

σ =
Stot

Etot
, λ =

Stot

Ftot
, φ0 = κF0 Ftot , φ1 = κF1 Ftot , φ2 = κF2 Ftot ,

into ψ1, ψ2, and ψ3 to get

ψ1(u, v) =
α

ζ

v

u
+ 1 + βζ

u

v

ψ2(u, v) =
ε0α

ζ

v

u
+ ε1 + ε2βζ

u

v

ψ3(u, v) =
φ0α

ζ

v

u
+ φ1 + φ2βζ

u

v
,

and into Eq. 27 to get 1009

1

u
= 1 +

σ

ψ1 + uψ2 + vψ3
ψ2

1

v
= 1 +

λ

ψ1 + uψ2 + vψ3
ψ3 .

(28)

Cross-multiplying Eq. 28 gives 1010

(1− u) (ψ1 + uψ2 + vψ3)− σuψ2 = 0

(1− v) (ψ1 + uψ2 + vψ3)− λvψ3 = 0.
(29)

Finally, we note that the two left-hand-side expressions in Eq. 29 are not polynomials in u and 1011

v, since ψ1, ψ2, and ψ3 include terms with both u/v and v/u. So we multiply both sides by 1012

ζuv to get, 1013

Φ1(u, v) = ζuv ((1− u) (ψ1 + uψ2 + vψ3)− σuψ2) = 0

Φ2(u, v) = ζuv ((1− v) (ψ1 + uψ2 + vψ3)− λvψ3) = 0 .
(30)

One can check that expanding Eq. 30 and substituting in the expressions for ψ1, ψ2, and ψ3 1014

gives Eq. 10. 1015

Solving Eq. 10 with Bertini and Paramotopy 1016

We briefly describe how homotopy continuation works and discuss the practical issues we 1017

encountered in using Bertini and Paramotopy. For more complete details, see [74]. A complete 1018

description of our workflow, along with details on the supplemental code and datasets, is given 1019

in S1 Appendix. 1020

Homotopy continuation with Bertini 1021

Consider a system of n polynomial equations in n variables, 1022

f(x) = f(x1, . . . , xn) =


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)

 = 0 .

We are interested in solutions of such systems which consist of finitely many isolated points. 1023

Homotopy continuation uses two steps. First, another system of n polynomial equations, the 1024
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start system, g(x) = 0, is selected, whose set of solutions can be easily computed. Second, a 1025

continuous map H : Cn × [0, 1]→ Cn is defined so as to give a homotopy between f and g, 1026

H(x1, . . . , xn, 1) = g(x1, . . . , xn) and H(x1, . . . , xn, 0) = f(x1, . . . , xn) .

The idea is that, as t is changed from 1 to 0, H(x1, . . . , xn, t) = 0 traces a continuous 1027

deformation, or path, from each of the known solutions of g(x1, . . . , xn) = 0 to the desired 1028

solutions of f(x1, . . . , xn) = 0. 1029

Bertini’s default choice of homotopy H is the total-degree homotopy, given by, 1030

H(x1, . . . , xn, t) = (1− t) f(x1, . . . , xn) + γ t g(x1, . . . , xn) ,

where γ 6= 0 is a random complex number and g is a total-degree start system, which is one that 1031

has the maximal number of finite isolated solutions given by Bézout’s Theorem. For example, 1032

we may set gi, for i = 1, . . . , n, to the polynomial [74] 1033

gi(x1, . . . , xn) = xdii − 1 ,

where di is the degree of fi. We found this choice of start system and homotopy to be adequate 1034

for our analysis. 1035

The homotopy H defines a complex-valued path from each solution of g(x1, . . . , xn) = 0 to 1036

a solution of f(x1, . . . , xn) = 0. Bertini tracks these paths using numerical predictor-corrector 1037

methods. More sophisticated algorithms, called endgames, are used to track the paths with 1038

enhanced precision once t is close to zero. The use of projective coordinates, which introduce 1039

additional points at infinity, allows the reliable tracking of divergent paths to arbitrary 1040

precision. 1041

A solution x∗ is non-singular if it has multiplicity 1; otherwise, the solution is singular. 1042

Bertini determines the endpoint x∗ of a homotopy path to be singular if the condition number 1043

of the Jacobian matrix of f at x∗ is large. A non-singular solution, if reasonably accurate, can 1044

be sharpened to arbitrarily many digits by performing additional post-endgame iterations of 1045

Newton’s method. This provides a rapid alternative to re-tracking the homotopy with more 1046

stringent Bertini settings to obtain highly accurate non-singular solutions. It also guarantees a 1047

desired level of accuracy irrespective of the path-tracking behaviour. However, this method is 1048

not useful for obtaining highly accurate singular solutions, near which Newton’s method can 1049

converge more slowly, or not at all [74]. Bertini incorporates a large number of customisable 1050

settings which control its path-tracking behaviour; for a comprehensive discussion see [74]. 1051

Parameter homotopy continuation with Paramotopy 1052

The polynomial systems of interest to us contain parameters and can be written as f(x; θ) = 0, 1053

where x = (x1, . . . , xn) and θ = (θ1, . . . , θm) ∈ Cm. We typically have a set of parameter 1054

points, θ(1), . . . , θ(N) ∈ Cm, at which solutions of f(x; θ(i)) = 0 are required. Paramatopy is a 1055

software package built on Bertini which allows such parameterised polynomial systems to be 1056

solved efficiently in parallel through homotopies in parameter space. It uses the following 1057

two-step process. 1058

Step 1. Randomly sample a parameter point, θ∗ ∈ Cm, and find all the isolated solutions of 1059

f(x; θ∗) = 0 using homotopy continuation in Bertini. 1060

Step 2. For each j = 1, . . . , N , solve the system f(x; θ(j)) = 0 by tracking in parallel the 1061

solutions of the parameter homotopy, 1062

f(x; p(t)) = 0 , where p(t) = (1− t) θ(j) + t θ∗ .

Paramotopy exploits the fact that a parameterised polynomial system has the same number 1063

of non-singular solutions at any parameter point outside a set of measure zero [74]. Therefore, 1064

if the system has k non-singular solutions, and d ≥ k is the maximal number of finite isolated 1065

solutions given by Bézout’s Theorem, then Paramotopy would track d paths during Step 1 and 1066

kN paths during Step 2. This can offer significant computational savings in comparison with 1067

running Bertini N times, once for each parameter point θ(j), which would require tracking a 1068

total of dN paths. 1069
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As noted in the main text, we have d = 16 for Eq. 10. In the weakly irreversible case, we 1070

found k = 7 “proper” (meaning nonzero, non-singular and non-projectively infinite) complex 1071

solutions at each parameter point. In the strongly irreversible case, we found k = 5 proper 1072

solutions. 1073

Despite having a wide range of path-tracking methods, Bertini may still fail to track a path 1074

to t = 0 if numerical difficulties arise. Paramotopy collects all such instances of early path 1075

tracking termination, called path failures, and can re-track these failed homotopies with a new 1076

Step 1 parameter point. This can be repeated as many times as necessary until all path failures 1077

are resolved. 1078

Use of cluster computing 1079

We ran Bertini and Paramotopy on the Orchestra and O2 high-performance computing clusters 1080

at Harvard Medical School. The vast majority of the Paramotopy runs were performed on 1081

Orchestra, with the Step 2 path-tracking performed in parallel over 10–20 cores per batch of 1082

2.5× 105 parameter points; the remaining computations were performed on O2, which 1083

succeeded Orchestra in March 2018. O2 currently consists of more than 11000 cores across 300 1084

Intel Xeon x86 multi-core processors of various specifications. 1085

The Paramotopy runs are generally time-consuming: solving the system in Eq. 10 on a 1086

batch of 2.5× 105 parameter points in a single Paramotopy run usually requires a runtime of 1087

several hours. The exact runtime depends on the values of the parameters and conserved 1088

quantities, the number of cores used, and details of the underlying numerics, such as the choice 1089

of Step 1 parameter point θ∗ (see above) and the Bertini settings (see below). See S1 Appendix 1090

for details. 1091

Classifying solutions and numerical settings 1092

Bertini and Paramotopy incorporates various tunable settings for distinguishing between zero 1093

and nonzero endpoints (ImagThreshold) and between finite and projectively infinite endpoints 1094

(EndpointFiniteThreshold). However, enforcing a fixed threshold can lead to misleading 1095

conclusions, as the accuracy of a solution obtained through parameter homotopy continuation 1096

depends on many factors. We therefore used a different strategy for distinguishing between 1097

zero, nonzero finite, and projectively infinite values for each solution obtained via Paramotopy. 1098

A reported numerical solution coordinate, x∗ = a∗ + ib∗ ∈ C, was categorised as one of the 1099

following, depending on three positive thresholds, Tzmin, Tzmax, and T∞, chosen such that 1100

0 < Tzmin ≤ Tzmax � 1� T∞: 1101

x∗ is



small if |a∗| , |b∗| < Tzmax

ambiguous if Tzmin < |b∗| < Tzmax

infinite if |a∗| > T∞ or |b∗| > T∞

nonzero real if Tzmax < |a∗| < T∞ and |b∗| < Tzmin

nonzero non-real otherwise.

(31)

A reported solution, (u∗, v∗) ∈ C2, was determined to be proper if (1) (u∗, v∗) was reported by 1102

Paramotopy as non-singular, and (2) both u∗ and v∗ were categorised as nonzero real or 1103

nonzero non-real. 1104

We also determined a reported solution coordinate, x∗ = a∗ + ib∗, to be insufficiently 1105

precise if Paramotopy specified either a∗ or b∗ with fewer than Td digits, for some positive 1106

integer Td. By using Bertini’s sharpening module, most non-singular solutions were specified 1107

with the desired precision but insufficiently precise solutions could occasionally arise in one of 1108

two ways. On the one hand, a path failure in Step 2 that was not subsequently resolved with 1109

sufficiently stringent Bertini settings occasionally manifested as an insufficiently precise 1110

solution. On the other hand, an ill-conditioned Jacobian matrix (whose condition number 1111

exceeds an internal threshold) was occasionally encountered during sharpening for a small 1112

minority of solutions—many of which were at parameter points sampled from H∗4 or H∗5—at 1113

which point Bertini terminated sharpening prematurely. In view of these numerical issues, we 1114

set Td to slightly (usually five) fewer digits than the value of SharpenDigits (Table 3 and 1115

below) for the corresponding Paramotopy run. 1116
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Using the classification in Eq. 31, we were able to find the generic number of proper 1117

solutions to Eq. 10 with sufficient precision—seven under weak irreversibility and five under 1118

strong irreversibility—for the majority of parameter points on the first attempt, using the 1119

first-pass Bertini settings in Table 3 and the threshold values Tzmin = 10−25, Tzmax = 10−10, 1120

T∞ = 108, and Td = 20. However, each such first-pass Paramotopy run resulted in between 1121

∼100 and ∼105 parameter points with at least one questionable solution (i.e., a solution 1122

reported by Paramotopy as singular, or a solution with at least one small, ambiguous, infinite, 1123

or insufficiently precise coordinate). We therefore re-ran Paramotopy on all such points with a 1124

new choice of Step 1 point and more stringent Bertini settings. Upon obtaining a new solution 1125

set for each of these parameter points, we repeated this process—collecting all parameter 1126

points with at least one questionable solution and re-running Paramotopy on these points with 1127

increasingly stringent Bertini settings—until we identified the generic number of proper 1128

solutions for each point in the entire sample. We collected together a final set of proper 1129

solutions for each point in the sample, with which we performed all downstream analyses. The 1130

list of all Paramotopy runs and re-runs, and the Bertini settings used for each, are given in S1 1131

Dataset; see S1 Appendix for further details. 1132

We found by manual exploration that setting Tzmin = 10−25, Tzmax = 10−10, and T∞ = 108
1133

was appropriate for most Paramotopy runs. For a small subset of Paramotopy re-runs, we 1134

found that alternative values for the thresholds were more appropriate, based on seeing 1135

repeated convergence to questionable values despite stringent Bertini settings. For instance, we 1136

found that re-running Paramotopy on certain parameter points with more stringent Bertini 1137

settings yielded solutions with imaginary parts with absolute value less than 10−10 but greater 1138

than 10−11, so that Tzmax = 10−11 is a more appropriate choice. Likewise, certain parameter 1139

points also exhibited seemingly finite solutions with absolute value greater than 108, 1140

necessitating the use of larger values for T∞. 1141

As mentioned above, we set Td to (usually) five fewer digits than the value of 1142

SharpenDigits for the corresponding run or re-run. For instance, each first-pass Paramotopy 1143

run was performed with SharpenDigits set to 25 (Table 3), and we set Td = 20 when 1144

classifying the solutions reported from these runs. Subsequent re-runs were performed with 1145

incrementally increasing values for SharpenDigits (S1 Dataset), with Td also increasing 1146

proportionately. 1147

The list of values used for Tzmin, Tzmax, T∞, and Td for each Paramotopy run and re-run is 1148

given in S1 Dataset, with further details in S1 Appendix. 1149

Certifying solutions 1150

The solutions reported by Bertini and Paramotopy are approximate. The software package 1151

alphaCertified, which implements Smale’s α-theory [74,75,90], can determine if an approximate 1152

non-singular solution x∗ to the polynomial system f(x) = 0 would converge under repeated 1153

application of Newton’s method to an exact solution ξ. If so, we have a guarantee that the 1154

numerically obtained approximate solution is in the vicinity of an actual solution and we say 1155

that x∗ is a certified approximate solution to f(x) = 0 with associated solution ξ. This method 1156

cannot be applied to singular solutions, which do not behave well with respect to Newton’s 1157

method. Accordingly, we sought to certify only the seven or five proper solutions identified for 1158

each parameter point at each value of σ. 1159

To exploit this capability, we randomly chose 5% of each collection of proper solution sets 1160

associated with each Paramotopy run, yielding a total of ∼2.5× 107 proper solution sets across 1161

24 values of σ (S1 Appendix), and used alphaCertified to certify each of these solutions. 1162

alphaCertified comes with a built-in module for sharpening non-singular solutions by additional 1163

Newton iterations, so we implemented a certify-and-sharpen procedure, in which any 1164

uncertified solution would undergo further sharpening before being passed to alphaCertified for 1165

another certification attempt. 1166

With this procedure, we were able to certify almost every proper solution among the chosen 1167

∼2.5× 107 proper solution sets within five iterations of certification and four iterations of 1168

sharpening (totalling eight iterations of Newton’s method). A tiny minority of 106 solution 1169

sets, all from parameter points sampled in H∗5, exhibited at least one uncertifiable proper 1170

solution, even after four iterations of sharpening. Among these 106 solution sets, 99 exhibited 1171
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only one uncertifiable solution. Manual inspection of the alphaCertified output suggests that 1172

the uncertifiable solutions are in fact close to singular: applying successive iterations of 1173

Newton’s method on these solutions, (u∗, v∗), fails to show convergence in one or both of |u∗| 1174

or |v∗| (S1 Appendix). These apparently singular solutions evaded the tests imposed in Bertini 1175

and Paramotopy. However, they are extremely rare and were found only for the bistable region 1176

in H∗5. Accordingly, we do not believe they affect any of the quantitative conclusions we have 1177

drawn, even for H∗5. 1178

In addition, we followed the same procedure to certify every proper solution, for every value 1179

of σ in Eq. 11, associated with each parameter point found to “blink” at some value of σ 1180

(Results, Table 2). Each of these proper solutions was successfully certified within five 1181

iterations of certification and four iterations of sharpening. 1182

A full description of our certification procedure, along with a discussion of uncertifiable 1183

solutions, is given in S1 Appendix. 1184

Confidence estimates for bistable volumes 1185

Given an ILR sample S ⊂ H of N parameter points, it follows from Eq. 13 that the unbiased 1186

volume estimator is given by 1187

V̂σ =
1

N

N∑
θ∈S

ισ(θ) .

In other words, V̂σ is the sample mean of a sequence of independent and identically distributed 1188

Bernoulli random variables, ισ(θ), with success probability Vσ. Therefore, the statistical 1189

properties of V̂σ, in the limit of large N , are determined by the central limit theorem, as 1190

lim
N→∞

Pr

(
−ε <

√
N(V̂σ − Vσ)

δ
< ε

)
= Φ(ε)− Φ(−ε) = 2Φ(ε)− 1

for any ε > 0, where Φ is the standard normal cumulative distribution function, and 1191

δ =
√
Vσ (1− Vσ) is the standard deviation of ισ over H. Since the value of δ is unknown, we 1192

introduce the sample standard deviation of ισ over S, 1193

δ̂ =

√
1

N − 1

∑
θ∈S

(ισ(θ)− V̂σ)2 ,

which converges to δ as N →∞. Therefore, we can write 1194

lim
N→∞

Pr

(
−ε <

√
N(V̂σ − Vσ)

δ̂
< ε

)
= 2Φ(ε)− 1

for any ε > 0. In particular, for any α > 0, we have 1195

lim
N→∞

Pr

(
|V̂σ − Vσ| < Φ−1

(
1− α

2

) δ̂√
N

)
= 1− α.

Hence, the 100 (1− α) % confidence interval for V̂σ is given by 1196

V̂σ ± Φ−1
(

1− α

2

) δ̂√
N
,

provided that N is large. 1197

Confidence estimates for visibility ratios 1198

In contrast to the volume estimator, V̂σ, the estimator for the K-fold visibility ratio, 1199

v̂is(Mσ,K), was computed by generating a random sample without replacement of M = 20000 1200

pairs of bistable points, 1201

(θ(1), µ(1)) , . . . , (θ(M), µ(M)) ,
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from a finite population M̂σ × M̂σ, where M̂σ is a set of bistable points gathered with ILR 1202

sampling from H, and evaluating 1203

v̂is(Mσ,K) =
1

M

M∑
j=1

νK(θ(j), µ(j)) .

Let N = #(M̂σ × M̂σ). Provided that M and N −M are sufficiently large, an approximate 1204

100 (1− α) % confidence interval for v̂is(Mσ,K) is given by [91] 1205

v̂is(Mσ,K)± Φ−1
(

1− α

2

) δ̂√
M

√
1− M

N
,

where δ̂ is the sample standard deviation of νK over S, 1206

δ̂ =

√√√√ 1

M − 1

M∑
j=1

(
νK(θ(j), µ(j))− v̂is(Mσ,K)

)2

,

and
√

1−M/N is a correction factor accounting for the finiteness of the population 1207

M̂σ × M̂σ. It is important to note that M̂σ × M̂σ is fixed throughout this calculation. 1208

Running this calculation repeatedly with many distinct samples of size M from M̂σ × M̂σ, 1209

roughly 100 (1− α) % of the resulting confidence intervals would contain the value, 1210

1

N

∑
(θ,µ)∈M̂σ×M̂σ

νK(θ, µ).

As such, this confidence interval does not directly measure the accuracy of the estimate, 1211

v̂is(Mσ,K), relative to the K-fold visibility ratio, vis(Mσ,K); such a measurement would 1212

require, at a minimum, generating many distinct samples of bistable points, M̂σ, with which to 1213

compute v̂is(Mσ,K). 1214

We also note that M � N for all values of σ, so that the correction factor becomes 1215

negligible. Thus, we simply compute the 100 (1− α) % confidence interval as 1216

v̂is(Mσ,K)± Φ−1
(

1− α

2

) δ̂√
M

.

The VEGAS sampling algorithm 1217

We outline here the VEGAS sampling algorithm described in the Results. Let T be the total 1218

number of iterations, N the size of each sample, M the number of intervals, and K the 1219

smoothing factor. We begin with an initial bistable sample, M̂(0)
σ ⊂ [0.1, 10]8, gathered 1220

through some other sampling process (such as ILR sampling). 1221

1. For each j = 1, . . . , 8, partition the interval [−1, 1] into M bins I
(j)
1 , . . . , I

(j)
M of equal 1222

length. 1223

2. For each t = 1, . . . , T , do the following: 1224

(a) For each j = 1, . . . , 8, do the following: 1225

i. Compute the histogram of values in the projection 1226

M̂(t−1)
σ,j =

{
θj : θ ∈ M̂(t−1)

σ

}
, according to the partition of [−1, 1] given by 1227

I
(j)
1 , . . . , I

(j)
M . 1228

ii. Re-normalise the bin frequencies, f
(j)
1 , . . . , f

(j)
M , as follows: 1229

f
(j)
i ←

⌈
Kf

(j)
i

#M̂(t−1)
σ

⌉
+ 1 ,

where dxe denotes the ceiling of x, i.e., the least integer greater than x. 1230
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iii. Re-size the bins,
{
I

(j)
i =

[
a

(j)
i , b

(j)
i

]
: i = 1, . . . ,M

}
, to have length 1231

proportional to f
(j)
i . 1232

iv. Sample a number, r, uniformly from [0, 1], then partition the N values to be 1233

sampled among the M bins, so that the bin from which to generate the jth 1234

coordinate of the nth point, θ
(n)
j , in S(t) is given by 1235

I(n, r) = I
(j)
i ,

where i is the least integer such that i/M ≥ (r + n)/N . 1236

v. For each n = 1, . . . , N , do the following: 1237

A. Sample a value, s, from the uniform distribution on I(n, r). 1238

B. Set θ
(n)
j = 10s. 1239

(b) Determine the bistable subset, Mσ ∩ S(t), and update the total bistable sample as 1240

M̂(t)
σ ← M̂(t−1)

σ ∪
(
Mσ ∩ S(t)

)
. 1241

Step 2a,ii is a smoothing which we introduced for the following reason. If the bistable 1242

region, Mσ, has very small volume relative to the bounding box then a sample M̂σ can have 1243

many empty bins in the histograms over each projection. This can lead to heavy bias in future 1244

iterations of the sampling. With this in mind, we incorporated the smoothing factor, K, to 1245

re-normalise the bin frequencies and incremented each bin frequency by 1, so that each bin has 1246

a nonzero frequency. This slightly shifts the sampling probability along each parameter axis 1247

towards regions of lower sample density; this effect grows stronger as we accumulate more 1248

points in Mσ. We fixed M = 50 and K = 1000 throughout our analysis, across all VEGAS 1249

samples generated for all values of σ. The values of T and N are described in the Results. A 1250

full description of our VEGAS implementation is given in S1 Appendix. 1251

Building the connectivity graph 1252

We outline here the algorithm for building the connectivity graph, G∆(M̂σ). 1253

Choosing ∆ 1254

We first consider the task of choosing ∆ for a bistable sample M̂σ coming from an ILR sample 1255

S ⊂ H. We reasoned that a suitable threshold for determining whether two points in M̂σ are 1256

directly connected should be that, for any point θ ∈ S, the probability that there is a second 1257

point µ ∈ S such that d(θ, µ) ≤ ∆ (where d is Euclidean distance over logarithmic coordinates) 1258

is large, say, 0.99. That is, we want to choose ∆ such that 1259

Pr (∃ µ ∈ S such that µ 6= θ and d(θ, µ) ≤ ∆) ≈ 0.99 .

This is clearly 1 minus the probability that there exists no such point µ. The probability that 1260

no point in S (other than θ) is within distance ∆ of θ, assuming that S is an ILR sample, is 1261

given by 1262(
1− V8(∆)

VH

)#S−1

,

where V8(∆) is the volume of an 8-dimensional ball of radius ∆, 1263

V8(∆) =
π4∆8

24
.

So we want to choose ∆ such that 1264

1−
(

1− π4∆8

24VH

)#S−1

≈ 0.99 .

Rearranging, we find that a suitable value for ∆ is given by 1265

∆ ≈
(

24VH
π4

(
1− 0.011/(#S−1)

))1/8

.
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Now suppose that M̂σ was built from an augmented VEGAS sample SA obtained from an 1266

initial (ILR) sample SI . We can estimated an effective sample size, N ′, for SA as follows, 1267

N ′ =

(
# bistable points in SA
# bistable points in SI

)
#SI .

For instance, the VEGAS sample for σ = 10 was initialised with an initial set of 27508 bistable 1268

points from an ILR sample of 4× 106 points (Fig. 3), and, after T = 6 iterations, consisted of 1269

6× 106 points, of which 3208681 were bistable (Table 1). This gives an effective sample size of 1270

N ′ ≈ 4.67× 108, which gives a value of ∆ ≈ 0.17. Performing this calculation for each value of 1271

σ given in Eq. 15 and the corresponding bistable sample, we found that suitable values of ∆ 1272

range between ∼0.10 and ∼0.18. Accordingly, we used ∆ = 0.15 for our connectivity analysis. 1273

Constructing G∆(M̂σ) 1274

Given a set M̂σ of bistable points and a constant ∆ > 0, chosen as above, the graph G∆(M̂σ) 1275

is built as a spanning forest which contains each point in M̂σ as a vertex, and connects two 1276

points with an edge if, and only if, the Euclidean distance between the two points is less than 1277

∆. Such a spanning forest is not unique. 1278

Suppose M̂σ = {θ(j) : j = 1, . . . , N}. The algorithm below returns an N ×N adjacency 1279

matrix A and a vector L of N component labels. The matrix satisfies Aij = 1 if points θ(i) and 1280

θ(j) are connected by an edge and Aij = 0 otherwise. The vector L assigns each point to the 1281

label of its connected component. 1282

1. Initialise unvisited← M̂σ, label← 1, Li ← 0 for all i = 1, . . . , N , and Aij ← 0 for all 1283

i, j = 1, . . . , N . Initialise an empty queue, pointqueue. 1284

2. While unvisited is not empty, do the following: 1285

(a) Choose a point θ(i) ∈ unvisited. 1286

(b) Remove θ(i) from unvisited. 1287

(c) Push θ(i) onto the end of pointqueue. 1288

(d) While pointqueue is not empty, do the following: 1289

i. Pop the first point θ(j) from the start of pointqueue. 1290

ii. Set Lj ← label. 1291

iii. For each θ(k) ∈ unvisited such that d(θ(j), θ(k)) < ∆, do the following: 1292

A. Remove θ(k) from unvisited. 1293

B. Set Ajk ← 1. 1294

C. Push θ(k) onto the end of pointqueue. 1295

(e) Update label← label + 1. 1296

A complete description of our implementation of this algorithm is given in S1 Appendix. 1297

Refining the connectivity graph 1298

The refinement procedure was described in the main text. We used an approximation factor of 1299

ε = 0.001 (Eq. 16) throughout the analysis and sought to speed up this refinement process by 1300

increasing K between iterations. Specifically, for each value of σ listed in Eq. 15, we updated 1301

K as follows, 1302

K ←


j + 1 if #C2 > 10

3 (j + 1) if 3 < #C2 ≤ 10

10 (j + 1) otherwise,

where j = 0, 1, 2, . . . is the iteration number, and C2 is the second-largest component in the 1303

graph. This procedure yielded a single-component graph in two iterations for each value of σ 1304

listed in Eq. 15. Full details are given in S1 Appendix. 1305
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Supporting Information 1306

S1 Appendix. Supplemental methods. This document provides a comprehensive 1307

description of our implementations of the methods described in the paper and guidelines 1308

for navigating the supplemental code and datasets. Supplemental figures: (A) Workflow 1309

for computing and parsing solutions with Paramotopy. Supplemental tables: (A) Seeds 1310

used to initialise the MATLAB pseudo-random number generator for sampling; (B) 1311

Seeds used to initialise the MATLAB pseudo-random number generator for VEGAS 1312

sampling; (C) Details of the refined connectivity graphs. 1313

S1 Code. Scripts used to process Paramotopy output. A detailed description 1314

of each script in this collection is given in S1 Appendix. 1315

S1 Dataset. Summary of Paramotopy runs and associated Bertini settings. 1316

This dataset contains: (1) a tab-delimited text file (metadata.tsv) enumerating all 1317

Paramotopy runs and re-runs performed in this analysis, along with the samples on 1318

which they were performed and the Bertini settings employed for each run and re-run; 1319

(2) a directory of tab-delimited text files (thresholds/) enumerating all Paramotopy 1320

runs and re-runs with their corresponding values of the thresholds Tzmin, Tzmax, T∞, and 1321

Td; and (3) an XML file (defaultprefs.xml), passed as input into Paramotopy, that 1322

enumerates the default Bertini settings given in Table 3. See S1 Appendix for details. 1323

S1 File. Dataset DOIs. All datasets are available on Mendeley Data under the 1324

given DOIs. See S1 Appendix for details. 1325
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Fig 1. Models and their parameter geography. A: Behaviour of a hypothetical
mathematical model, as in a system of ordinary differential equations. When a point is
chosen in the parameter space (right), indicated by a number 1, . . . , 4, a dynamics takes
place in the state space (left), shown by the trajectories with arrowheads. The state
space and parameter space are shown here as 2-dimensional but could be of any
dimension. The parameter space is expected to break up into regions, shown here
within a box of finite volume (dotted boundary) following the method adopted in the
paper, such that the dynamics remains qualitatively similar within each region, as for
parameter points 2 and 3, and becomes qualitatively different between regions.
Parameter point 1 gives bistability in the dynamics, parameter points 2 and 3 give
monostability, and parameter point 4 gives a stable limit cycle. Stable attractors are
magenta; unstable attractors are cyan. B: Hypothetical shapes of regions in parameter
space, assumed to be within a finite volume in two dimensions. All except region 2 have
nonzero volume in two dimensions in the vicinity of each point. Region 1 is convex;
region 2 has one-dimensional subregions, which would not be detectable by random
sampling in two dimensions; region 3 has a hole in its interior; region 4 has a narrow
“neck;” region 5 is disconnected.

Fig 2. Reaction network and example enzyme mechanism for a two-site
PTM system. A two-site PTM system is shown, in which modification and
demodification are sequential and in which each enzymatic step yields a single product
(“distributivity”). The box on the right shows an example of an enzyme mechanism
made up from the elementary reactions in the grammar in Eq. 1, illustrating multiple
routes and multiple intermediate enzyme-substrate complexes. This example is weakly
irreversible: the product S1 can bind to E but cannot be converted back into substrate
S0, so that the mechanism is irreversible overall.

Fig 3. Volume of the bistable region under weak irreversibility. The
8-dimensional volume of the bistable region, normalised as a proportion of the volume of
the box H, is plotted against the values of σ in Eq. 11, for the case when the reactions

S1
E→ S2 and S1

F→ S0 are weakly irreversible. The accompanying table lists the number
of bistable points found for each value of σ, together with the percentage of the box H
occupied by the bistable region. The error bars give 95% confidence intervals for each
estimate (Materials and Methods). The estimates have been joined by line segments.

Fig 4. Visibility ratio of the bistable region under weak irreversibility. A:
The 10-fold visibility ratio of the bistable region under weak irreversibility is plotted as
a function of σ. B: Three families of 2-dimensional regions, with length parameters a
and R, as shown, along with plots of their 10-fold visibility ratios as functions of a/R,
with R = 1 and a varying. 10-fold visibility ratios were numerically computed using
M = 20000 random pairs of points, as in the main text. The dotted red lines in the
plots indicate the values of a/R at which the visibility ratio is 0.9.
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Fig 5. Parameter points move between monostability and bistability.
Pseudo-nullcline plots for the steady-state equations, Φ1(u, v) = 0 (blue) and
Φ2(u, v) = 0 (green), in Eq. 10 are shown for the four parameter values given in the
main text, at five values of σ, showing how steady-states (red dots) appear and
disappear at the intersections of the pseudo-nullclines. The zero solution, u = v = 0 is
isolated from the pseudo-nullclines in the real uv-plane and is not shown for simplicity.

Fig 6. Volume of the bistable region under strong irreversibility. The
6-dimensional volume of the bistable region, normalised as a proportion of the volume of
the box H∗, is plotted against the values of σ in Eq. 11, along with the additional values

σ = 1000, 2000, 5000, for the case when the reactions S1
E→ S2 and S1

F→ S0 are
strongly irreversible. The accompanying table lists the number of bistable points found
for each value of σ, together with the percentage of the box H∗ occupied by the bistable
region. The error bars give 95% confidence intervals for each estimate (Materials and
Methods). The estimates have been joined by line segments.

Fig 7. Tradeoff in weak irreversibility for bistability. A: The bistable regions
under weak irreversibility, whose volumes are shown in Fig. 3, are shown here projected
onto the parameters θ5 = ε2 and θ6 = φ0 for the indicated values of σ (top-right corner).
In the bottom-right corner of each plot is the approximate value of the bound, K, on
ε2φ0, with the hyperbola ε2φ0 = K is shown in red. B: A 3-dimensional schematic of
the tradeoff between ε2 and φ0. The other six parameters are depicted as spanning a
single dimension (the vertical axis). The 6-dimensional hypercube H∗ is therefore a line
segment along this vertical axis; the bistable region is shown occupying around 20% of
this line segment (with respect to the logarithmic measure). The tradeoff between ε2
and φ0 yields a region that occupies a small volume in the 8-dimensional hypercube H.

Fig 8. Volume of the bistable region outside H under weak irreversibility.
The 8-dimensional volume, V̂σ,p, of the bistable region under weak irreversibility,
normalised as a proportion of the volume of the box, Hp = [0.1p, 10p]8, is plotted for the
21 values of σ in Eqs. 11 and 20, for p = 2, 3, 4, 5. The curve for p = 1 is taken from
Fig. 3. The error bars give 95% confidence intervals for each estimate (Materials and
Methods). The estimates have been joined by line segments.

Fig 9. Volume of the bistable region outside H∗ under strong irreversibility.
The 6-dimensional volume, V̂ ∗σ,p, of the bistable region under strong irreversibility,
normalised as a proportion of the volume of the box, H∗p = [0.1p, 10p]6, is plotted for the
21 values of σ in Eqs. 11 and 20, for p = 2, 3, 4, 5. The curve for p = 1 is taken from
Fig. 6. The error bars give 95% confidence intervals for each estimate (Materials and
Methods). The estimates have been joined by line segments. The inset shows the curves
in the vicinity of σ = 10, at which point all five curves are close to intersecting. The
95% confidence interval for V̂ ∗10,1 does not overlap with that for V̂ ∗10,p for p = 2, 3, 4, 5,
indicating that the difference between the former and the latter is statistically
significant at the 0.05 level.
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Table 1. Connectivity of the bistable region. Details of the connectivity graphs
for the indicated values of σ in column 1. Column 2 gives the number of bistable points
in the set used to construct the graph; column 3 gives the number of connected
components in the resulting connectivity graph; columns 4 and 5 give the sizes of the
largest and second-largest components of the graph, respectively; column 6 gives the
number of singleton components; and column 7 gives the size of the largest component
as a percentage of the number of bistable points in the sample.

Table 2. Blinking parameter points. For each value of σ in column 1, the number
of bistable points in the 4× 106 ILR samples is shown in column 2 (see also Fig. 3). Of
these bistable points, the number of blinking points, or those which become monostable
at some larger value of σ, is shown in column 3 (titled BP). The subsequent columns
indicate, for each value of σ, the number of blinking points that lie outside the largest
component in the corresponding connectivity graph (BPSC, column 4), the number of
blinking points that never enter the largest component of the connectivity graphs for
larger values of σ (BPNL, column 5), and the number of blinking points that are
“asymptotically monostable” at σ = 500 (BPAM, column 6).

Table 3. First-pass Bertini settings. Every first-pass Paramotopy run was
performed using these Bertini settings; all other settings were set to their default
values [74]. The column title PFR refers to “path failure resolution” and give the values
used for the first iteration of this process; the Bertini settings were modulated
appropriately for subsequent iterations. A complete list of all Bertini settings used for
every Paramotopy run and re-run is given in S1 Dataset, with further details in S1
Appendix.
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Fig 1. Models and their parameter geography.
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Fig 2. Reaction network and example enzyme mechanism for a two-site
PTM system.
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# % # %

1.0 0 0.00 10 27508 0.69

1.5 69 0.00069 15 32242 0.81

2.0 2476 0.025 20 34832 0.87

2.5 5105 0.085 50 39737 0.99

3.0 6213 0.16 100 41490 1.0

4.0 11592 0.29 200 42381 1.1

5.0 15942 0.40 500 42933 1.1

7.0 22061 0.55

Fig 3. Volume of the bistable region under weak irreversibility.
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Fig 4. Visibility ratio of the bistable region under weak irreversibility.
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Fig 5. Parameter points move between monostability and bistability.
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# % # %

1.0 0 0.00 15 351866 8.8

1.5 761 0.019 20 404008 10

2.0 11861 0.30 50 555246 14

2.5 32312 0.81 100 650952 16

3.0 55537 1.4 200 731420 18

4.0 101491 2.5 500 815799 20

5.0 141381 3.5 1000 865081 22

7.0 205745 5.1 2000 902240 23

10 274876 6.9 5000 937284 23

Fig 6. Volume of the bistable region under strong irreversibility.
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Fig 7. Tradeoff in weak irreversibility for bistability.

PLOS 49/52

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/862003doi: bioRxiv preprint 

https://doi.org/10.1101/862003


100 101 102

σ

0.00

0.01

0.02

0.03

0.04

V̂σ, p

p= 1

p= 2

p= 3

p= 4

p= 5

Fig 8. Volume of the bistable region outside H under weak irreversibility.
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Fig 9. Volume of the bistable region outside H∗ under strong irreversibility.
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σ #M̂σ # components #C1 #C2 # singletons #C1/#M̂σ

1.5 179130 4519 173773 12 3923 97%
2.0 1481421 29484 1446437 16 25788 98%
2.5 2456156 76896 2362892 22 66180 96%
3.0 2705883 122672 2556447 21 105260 94%
4.0 2932035 209165 2672497 36 177833 91%
5.0 3050788 278684 2702553 28 235930 89%
7.0 3146912 373650 2672992 35 314273 85%
10 3236189 452663 2659036 33 379762 82%
15 3271113 527437 2592576 38 440444 79%
20 3303594 563899 2576185 55 470983 78%
50 3366306 631931 2548744 54 527579 76%
100 3382039 658003 2529828 42 548689 75%
200 3401104 669140 2533572 62 558110 74%
500 3396987 677710 2519055 38 565368 74%

Table 1. Connectivity of the bistable region.

σ #M̂σ # BP # BPSC # BPNL # BPAM
1.5 23 0 0 0 0
2.0 992 8 8 3 2
2.5 3451 62 62 40 36
3.0 6213 94 94 67 70
4.0 11592 230 230 180 205
5.0 15942 308 308 260 290
7.0 22061 381 381 313 370
10 27508 396 396 348 392
15 32242 337 337 288 334
20 34832 299 299 281 298
50 39737 169 169 157 169
100 41490 82 82 76 82
200 42381 34 34 34 34

Table 2. Blinking parameter points.

Setting Step 1 Step 2 PFR
CondNumThreshold 108 1014 1014

FinalTol 10−11 10−11 10−8

MaxNorm 105 105 108

MaxNumberSteps 10000 10000 20000
SecurityLevel 0 1 1
SharpenDigits 0 25 0
SharpenOnly 0 1 0

TrackTolBeforeEG 10−5 10−5 10−6

TrackTolDuringEG 10−6 10−6 10−7

UserHomotopy 0 2 2

Table 3. First-pass Bertini settings.
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