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Abstract 15 

Liposomes are widely assumed to present a straightforward physical model of cells. 16 

However, almost all previous liposome experiments with pulsed electric fields (PEFs) 17 

have been conducted in low-conductivity liquids, a condition that differs significantly 18 
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from that of cells in medium. Here, we prepared liposomes consisting of soy bean 19 

lecithin and cholesterol, at a molar ratio of 1:1, in higher-conductivity liquid that 20 

approximated the conditions of red blood cells in phosphate-buffered saline, with inner 21 

and outer liquid conductivities of 0.6 and 1.6 S/m, respectively. We found that a single 22 

1.1 kV/cm, 400 s PEF promoted cell-like spontaneous division of liposomes.  23 

 24 
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 28 

Introduction 29 

Bioelectrics, which studies the relationship between electricity and biology, has been 30 

the subject of both basic and applied research of note [1–9]. Electropores induced on 31 

plasma membranes may trigger responses in cells and tissues to pulsed electric fields 32 

(PEFs) [10–17]. Numerous papers have attempted to validate this hypothesis, applying 33 

pulses to liposomes composed of artificial lipid membranes [1,18–20]. However, few 34 

studies have managed to completely mimic the phenomenon in cells. In the case of cells, 35 

plasmid DNA reportedly accumulates on the cell membrane facing the cathode side, and 36 
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subsequently, actin patches appear on the surface, after which plasmid DNA is taken 37 

into the cells [3,21]. In a study using liposomes, plasmid DNA traversed the lipid 38 

membrane without accumulating [22]. Rols et al. assumed actin as the source of the 39 

difference and suggested conducting a similar experiment using actin-containing 40 

liposomes. 41 

 Little dye was seen in liposomes without actin, but liposomes with actin proceeded 42 

taking dye more than 146 s, and the latter reaction was similar to those of cells under a 43 

PEF [23]. However, those liposomes were prepared in liquid with much lower 44 

conductivity than is seen in cytoplasm and extracellular liquid (phosphate-buffered 45 

saline [PBS]) [24–27]. Because liquid conductivity influences substance influx through 46 

electropores on cells [28–30] and low-conductivity conditions differ from those of cell 47 

experiments, experiments that approximate real cytoplasm and media will require 48 

adjustment of the conditions. Furthermore, although the liposomes exhibited accurate 49 

lipid molar fractions, it is unlikely that their composition was similar to that of real cell 50 

membranes. As membrane composition can influence reactions to PEFs, liposome 51 

compositions that are closer to those of a real plasma membrane are necessary. To that 52 

end, we adopted an emulsion method that made it possible to adjust the conductivities 53 

of the interior and exterior liquids of the liposomes. We applied PEFs to liposomes with 54 
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inner- and outer-liquid conductivities comparable to those of red blood cells (0.6 S/m) 55 

and PBS (1.6 S/m) and whose membranes were composed of soybean lecithin and 56 

cholesterol. We adjusted the conductivity of liposomes’ inner liquid to that of red blood 57 

cells because their value had already been reported, and most previous simulation 58 

studies preferred this value [31]. Because soybean lecithin is not a purified lipid, but an 59 

extract, we assumed that the composition of soybean lecithin was close to that of real 60 

cell membranes. Although the actual components are uncertain, lecithin is composed 61 

mainly of phosphatidylcholine (PC), which is a main component of cell membranes. We 62 

also applied egg lecithin to the process but were unavailable to produce liposomes. 63 

 64 

Materials and methods 65 

Materials 66 

For liposome preparation, we purchased soy bean lecithin, cholesterol, liquid paraffin, 67 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1- palmitoyl- 2- oleoyl- sn- glycero- 3- 68 

phosphocholine (POPC), chloroform, glucose, and sucrose from Wako and Texas Red- 69 

1,2- dihexadecanoyl- sn- glycero- 3- phosphoethanolamine (DHPE) from Takara. For the 70 

liposome outer liquid, we used PBS(-) (from Wako), and for the liposome inner liquid, we 71 

mixed PBS(-) with 308 mM glucose solution at a 15:26 mL volume ratio. The theoretical 72 
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osmotic pressure of PBS(-) was 306 mOsm/L. The osmotic pressure of the 308 mM 73 

glucose solution was theoretically 308 mOsm/L. Conductivities of the inner and outer 74 

liquids were 0.64 and 1.64 S/m, respectively. Cholesterol, DOPC, and POPC were 75 

dissolved in chloroform at 180 mM and Tex Red-DHPE at 0.9 mM. All solutions were 76 

stored at a temperature of −20˚C.  77 

 78 

Liposome preparation 79 

Lecithin liposome 80 

Liposome production followed the water-in-oil emulsion method [32]. We estimated the 81 

soy bean lecithin molar weight at 758.06 and then dissolved 0.53 mg of soy lecithin in 82 

500 L of liquid paraffin at 80˚C by vortex (1.4 mM). After storing the sample at a 83 

temperature of 80˚C for 10 min with the cap of the microtube left open, we added 50 µL 84 

of the inner liquid and vortexed it for 10 s and then immediately put the sample on ice 85 

for 10 min to stabilize the emulsions. Next, 400 L of the emulsion solution was put on 86 

400 L of the outer liquid, which had been on ice. The volume ratio of the emulsion 87 

solution and the outer liquid was 400:400. After treating the sample under 88 

centrifugation at 18,000 g and a temperature of 4 ˚C for 5 min, we disposed of as much of 89 

the supernatant as possible and extracted the sediments, which was the aggregation of 90 
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liposomes. 91 

 92 

Lecithin-cholesterol liposomes and fluorescent liposomes 93 

To produce cholesterol-containing lecithin liposomes (at a molar ratio of 94 

lecithin/cholesterol = 1:1 ), we added 4 µL of cholesterol solution to a heated liquid 95 

paraffin-lecithin solution at a temperature of 80˚C and then mixed them by vortex to 96 

adjust the cholesterol concentration to 1.4 mM. For a lecithin/cholesterol molar ratio of 97 

1:1.5 and 2:1 liposomes, the amounts of added cholesterol solution were 6 and 2 µL. For 98 

fluorescent labeling, 2 L of Tex Red-DHPE was added simultaneously to make a final 99 

concentration of 3.6 M (with a molar ratio of 0.13 mol%). The sample was stored at a 100 

temperature of 80˚C for 10 min with the cap of the microtube left open, and the rest of 101 

the protocol was the same as that of lecithin liposome. 102 

 103 

DOPC liposomes and POPC liposomes 104 

To produce DOPC liposomes, DOPC and cholesterol liquids were mixed in 500 L of 105 

liquid paraffin at the following ratios: 4:0 for DOPC-only liposomes, 4:4 for 106 

DOPC/cholesterol = 1:1 (molar ratio), 2:4 for DOPC/cholesterol = 1:2 (molar ratio), and 107 

2:6 for DOPC/cholesterol = 1:3 (molar ratio). In the case of POPC, the POPC and 108 
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cholesterol liquids were mixed at the following ratios; 4:0 for POPC-only liposomes and 109 

4:4 for POPC/cholesterol = 1:1 (molar ratio). The sample was stored at a temperature of 110 

80˚C for 10 min with the cap of the microtube left open, and the rest of the protocol was 111 

the same as that of lecithin liposome 112 

 113 

Calcium-ion influx detection  114 

The same osmotic pressure between inner and outer liquid 115 

First, 50 g of Fluo-8(R) sodium salt (Cosmo Bio) was dissolved in 62.5 L of Milli-Q, 116 

and 1 L of the solution was diluted in 50 L of the inner liquid for a final Fluo-8 117 

concentration of 20 M. For the calcium-ion flow experiment, liposomes were prepared 118 

with the Fluo-8-containing inner liquid. After preparing the liposome sample, a solution 119 

of D-PBS(+) preparation with a Ca and Mg reagent solution 100× (Nacalai Tesque) was 120 

added at 1 % (v/v) to mix the calcium ions in the outer liquid.  121 

 122 

Different osmotic pressures between inner and outer liquid 123 

To strengthen calcium influx, we set the outer-liquid osmotic pressure at half of that of 124 

the inner liquid. The inner-liquid composition was the same as that used to text Ca-ion 125 

influx, but in the case of the outer liquid, the PBS (-) was diluted twice with Milli-Q. The 126 
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rest of the protocol was the same as that of no osmotic pressure difference. 127 

 128 

PEF application system and microscopy 129 

We used two slices of a platinum plate, which are 0.2-mm thick and 2.7-mm wide, as 130 

electrodes. The electrodes were fixed with a 640-µm gap on a glass slide and connected 131 

to the PEF generator. We set the glass slide–electrode device on a fluorescent 132 

microscope (Leica, DMi8) combined with a digital camera (Canon, EOS 8000D). Movies 133 

were recorded at 67 frames per second. The details of microscopy are provided in a 134 

previous paper [33]. 135 

 136 

Results 137 

 We referred to HeLa cells, which were familiar to us, for the lipid molar ratio of cell 138 

membranes, facilitating a comparison of liposome and cell results. As PC and 139 

cholesterol constitute primarily of HeLa cell membranes, their molar ratio was 1:1, and 140 

other lipids represented only minor parts [34,35], we mixed lecithin and cholesterol at a 141 

molar proportion of 1:1.  142 

 143 

Liposomes divided spontaneously 144 
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 When we applied a single 1.1 kV/cm, 400 s PEF to the liposomes, the liposomes 145 

divided spontaneously (Fig. 1A, B, and C). To determine the optimal PEF condition to 146 

induce division, we scanned the pulse duration and electric field intensity, showing that 147 

a 400 or 500 s, 1.1 kV/cm PEF appeared to have the potential to induce division (Table. 148 

1). A PEF with identical energy but a shorter pulse did not promote self-division (Table. 149 

2). Because a single 1.1 kV/cm, 400 s PEF can theoretically increase the PBS 150 

temperature by 2˚C, the thermal influence may be small. These results suggest that 151 

energy was not an important factor in the division. 152 

 153 

Here Fig. 1. 154 

Here Table. 1 155 

Here Table. 2 156 

 157 

Do cholesterol and lecithin have division ability? 158 

As liposomes without cholesterol did not divide, it is possible that cholesterol has the 159 

potential to induce division. Varying the molar ratios of cholesterol, liposomes with 160 

more than 50% of cholesterol divided (Fig. 2A, B, C, and D).  161 

 162 
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Here Fig. 2. 163 

 164 

PC is a main component of lecithin. Previous studies have used DOPC, POPC, and 165 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), all of which are classified as PC. 166 

To evaluating which elements contributed to the liposome division, we prepared the 167 

liposomes, with each lipid and cholesterol at a 1:1 molar proportion. DOPC produced 168 

lecithin-like liposomes, but POPC did not (Fig. 3). Because POPC had higher phase 169 

transition temperature than DOPC and temperature influences liposome production 170 

[36], we anticipated that the surface aggregation on POPC liposomes may be aggregates 171 

of gel-phase POPC. We did not prepare DPPC liposomes because DPPC has a much 172 

higher phase transition temperature, making it unlikely for DPPC liposomes to produce 173 

lecithin-like liposomes. No division occurred in DOPC liposomes, which most likely 174 

resembled lecithin liposomes (Fig. 3A), even though the cholesterol fraction increased 175 

by more than 50% (Fig. 3B and C). These results suggest that several lipids together 176 

induced division, rather than only one element of phospholipids contributing to the 177 

division. 178 

 179 

Here Fig. 3. 180 
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 181 

Conductivity of liquids related to the division 182 

When we lowered the conductivity of both inner and outer liquids to 105 S/m, no 183 

division occurred (lecithin/cholesterol = 1:1) (Table. 3). Because the emulsion method 184 

required heavier inner liquids than outer liquids, we mixed glucose solution and PBS (-) 185 

for the inner liquid to ensure that inner conductivity decreased to 0.6 S/m. For the same 186 

reason, we did not execute the experiments with 1.6 S/m inner liquid. Instead, 0.6 S/m 187 

for the inner liquid and 1.6 S/m for the outer liquid (the same as for the red blood cells in 188 

PBS) were deemed appropriate. 189 

 190 

Here Table. 3. 191 

 192 

Ca-ion influx had little relation to division 193 

To analyze ion influx under the PEF that induced the liposome division, we attempted 194 

to observe Ca-ion influx into liposomes. However, we detected no Ca-ion flow into 195 

liposomes after a single PEF (Fig. 4). Lecithin liposomes, the surfaces of which are not 196 

smooth, collapsed immediately after PEF exposure (Supplementary Fig. 1A). When the 197 

liposomes disintegrated, green fluorescence emerged from the outside of the liposomes, 198 
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indicating that Fluo-8 in the liposomes had seeped to the surroundings and connected to 199 

Ca ions (Supplementary Fig. 1B). This proved that our method could detect Ca-ion 200 

influx. Because a Ca ion is much smaller than dyes such as propidium iodide, Ca ions 201 

are prone to flowing across lipid membranes faster than dyes [37]. Our failure to detect 202 

a Ca influx indicated that the extent of liquid flow accompanied by the single 1.1 kV/cm, 203 

400 s PEF was small.  204 

   205 

Here Fig. 4. 206 

 207 

Endocytosis-like phenomena are also induced 208 

Lecithin-cholesterol liposomes sometimes showed that lipid patches were detached from 209 

the membrane surface as in endocytosis (Fig. 5A). Additionally, lipids aggregated on the 210 

membrane just after PEF application (Fig. 5B). However, on DOPC-cholesterol 211 

liposomes, which did not have division ability, lipid aggregation and patch uptake did 212 

not occur (Fig. 5 C, D). 213 

 214 

Here Fig. 5. 215 

 216 
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Discussion 217 

Why did liposomes divide? 218 

Why current conditions trigger liposome division and endocytosis-like behavior 219 

remains unknown. Previous studies have reported that electrofusion of liposomes 220 

promotes spontaneous liposome division, explaining the phenomenon in terms of 221 

thermodynamics; as the amount of lipid per liposome increased by electrofusion, the 222 

system became unstable, and consequently, liposomes divided to increase entropy and 223 

stabilize the system [38,39]. In our case, however, electrofusion did not precede division, 224 

so the previous theory did not explain our results. Because liposome division 225 

accompanied liposome deformation, it seemed possible to describe the phenomenon in 226 

terms of liposome volume change, but the influence of volume change is likely small 227 

because the osmotic pressures of the inner and outer liquids were almost identical. In 228 

fact, calcium-ion influx was too small to detect. 229 

 In addition, we have no reasonable explanation on why liposome divisions did not 230 

occur in previous studies. However, our study with less-conductive inner and outer 231 

liquids suggests that liquid conductivity is one of the determining factors. Indeed, one 232 

paper using buffered solution as an electroformation buffer showed vesicle budding 233 

without releasing daughter vesicle [40]. 234 
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 235 

Membrane conditions may be related to liposome division 236 

We increased Ca-ion influx by reducing the osmotic pressure of the outer liquid 237 

compared with the inner liquid. Using 154 mM glucose solution with a conductivity of 238 

0.7 S/m and a theoretical osmotic pressure of 154 mOsm/L as the outer liquid and 239 

PBS(-)-glucose solution with a conductivity of 0.6 S/m and a theoretical osmotic 240 

pressure of 308 mOsm/L as the inner liquid, Ca-ion influx was not detected in lecithin 241 

liposomes (Supplementary Fig. 2A and B), whereas lecithin-cholesterol liposomes 242 

disintegrated with Ca-ion influx (Supplementary Fig. 2C and D). These tendencies 243 

coincided with those of previous studies that revealed that liposomes, including charged 244 

lipids, such as cholesterol and POPG, were likely to collapse more easily due to PEF 245 

exposure compared with those without charged lipids [41,42]. This prompted the 246 

question of whether charged lipids can trigger liposome division. We therefore examined 247 

the behavior of lecithin-POPG liposomes and lecithin-POPC liposomes. POPG has a 248 

negative charge, whereas POPC does not, but both have similar hydrophobic backbones 249 

with one saturated and one unsaturated fatty acid chain. Both POPG-containing 250 

liposomes and POPC-containing liposomes divided (Supplementary Fig. 2E and F). This 251 

suggested that it is not lipid charge but membrane condition that induces liposome 252 
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division. In fact, Riske et al. reported changes in lipid composition in a plasma 253 

membrane during mitosis [43]. Determining which type of lipid can induce liposome 254 

division with lecithin should be subjected to a screening wand, and we intend to follow 255 

this line of inquiry in the future. 256 

 257 

Future tasks 258 

There are several important points to examine in the future: the relationship between 259 

PEF conditions and the time lag from PEF application to division or endocytosis, the 260 

influence of inner-liquid viscosity, the relationship between PEF conditions and the size 261 

of mother liposomes and that of daughter liposomes, PEF direction and division or 262 

endocytosis polarities, and how membrane composition or conditions affect the division. 263 
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Figures 415 

 416 

Figure 1. A) Spontaneous liposome divisions and PEF conditions. B) 417 

Lecithin/cholesterol = 1:1 (molar ratio) liposomes divided spontaneously after a 1.1 418 

kV/cm, 400 µs single PEF application. As we did not measure the time, there is no time 419 

display in series A. All time displays are in seconds. “00:00” = timing of PEF application. 420 

C. Liposomes with lecithin/cholesterol/texas red-DHPE = 1.4:1.4:0.0036 mM. ⊕ = the 421 

anode side of the electrode; ⊖ = the cathode side of the electrode.  422 
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Figure 2. Reactions of several liposome types with 1.1 kV/cm, 400 µs single PEF. A) 424 

Lecithin-only liposomes did not divide. B) Lecithin/cholesterol = 2:1 (molar ratio) 425 

liposomes did not divide. C) Lecithin/cholesterol = 1:1 (molar ratio) liposomes budded 426 

daughter liposomes. The white arrow indicates the budding position. (D) 427 

Lecithin/cholesterol = 1:1.5 (molar ratio) budded daughter liposomes. All time displays 428 

are in seconds. “00:00” = timing of PEF application. ⊕ = the anode side of the electrode; 429 

⊖ = the cathode side of the electrode.  430 

 431 
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 451 

Figure 3. Liposomes without lecithin did not exhibit division. PEF was 1.1 kV/cm, 400 452 

µs single pulse. A) DOPC/cholesterol = 1: 1 (molar ratio). B) DOPC/cholesterol =1:2 453 

(molar ratio). C) DOPC/cholesterol = 1:3 (molar ratio). D) POPC-only liposome. E and F) 454 

POPC/cholesterol = 1:1 (molar ratio). All time displays are in seconds. “00:00” = timing 455 

of PEF application. ⊕ = the anode side of the electrode; ⊖ = the cathode side of the 456 

electrode. 457 
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 472 

 473 

 474 

 475 

Figure 4. Calcium ion influx was not detected in lecithin/cholesterol = 1:1 (molar ratio) 476 

liposomes with 1.1 kV/cm, 400 µs single PEF. A) Bright-field photo of liposomes before 477 

PEF application. B) Fluorescent photos of liposomes with a GFP filter. There was no 478 

signal after pulse application. All time displays are in seconds. “00:00” = timing of PEF 479 

application. ⊕ =the anode side of the electrode; ⊖ = the cathode side of the electrode. 480 
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 505 

 506 

 507 

 508 

Figure 5. (A) Lecithin/cholesterol = 1:1 (molar ratio) liposomes sometimes exhibited 509 

endocytosis-like behavior after a single 1.1 kV/cm, 400 µs PEF application. B) 510 

Lecithin/cholesterol = 1:1:1 (molar ratio) liposomes showed patch-like aggregation of 511 

lipids on the membrane just after PEF application. White arrows indicate aggregated 512 

points. C and D) DOPC/cholesterol = 1:1 (molar ratio) liposomes did not show patch-like 513 

aggregation of lipids on the membrane. All time displays are in seconds. “00:00” = 514 

timing of PEF application. ⊕ = the anode side of the electrode; ⊖ = the cathode side of 515 

the electrode.  516 
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Tables 519 

Table 1. Various PEF duration vs. whether the liposome division happened. Electric 520 

field was 1.1 kV/cm. 521 

Pulse duration / us Division 

100 × 

200 × 

300 △ 

400 ○ 

500 ○ 

○ = liposome division occurred almost every time; △ = division occurred some of the 522 

time; × = division did not occur. 523 

 524 

 525 

Table 2. Two different PEF conditions with the same energy of 1.1 kV/cm PEF (400 µs). 526 

Both conditions did not trigger liposome division.  527 

Electric field (kV/cm) Pulse duration (s) Division 

6.9 10 × 

21.9 1 Discharged 

× indicates no liposome division 528 

 529 

 530 

Table 3. Several conductivity patterns of inner and outer liquids. PEF was 1.1 kV/cm 531 

(400 s). ex is the conductivity of the outer liquid, whereas in is the conductivity of the 532 

inner liquid.  533 

Condition Division 

ex = 1.6 S/m, in = 0.6 S/m ○ 

ex = 105 S/m, in = 0.6 S/m × 

ex = 1.6 S/m, in = 105 S/m × 

ex = 105 S/m, in = 105 S/m × 

○ indicates liposome division and × indicates no liposome division. For in = 105 S/m, 534 

we used sucrose solution and for ex = 105 S/m, we used glucose solution. 535 

 536 

 537 

 538 

 539 

 540 
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Supplementary Figures 541 

 542 

Supplementary Figure 1. A) Lecithin/cholesterol = 1:1 (molar ratio) liposomes with a 543 

rough membrane surface collapsed just after application of a single 1.1 kV/cm, 400 µs 544 

PEF. B) Just after integration of lecithin/cholesterol = 1:1 (molar ratio) liposomes, a 545 

fluorescent signal emerged within 1 s. C) Bright-field photo of the liposomes before PEF 546 

application. D) Bright-field photo of the liposomes after PEF application. All time 547 

displays are in seconds. “00:00” = timing of PEF application. ⊕ = the anode side of the 548 

electrode; ⊖ = the cathode side of the electrode. 549 
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Supplementary Figure 2. A) Lecithin-only liposomes did not exhibit calcium influx 551 

under low-osmotic-pressure outer liquid. B) Lecithin-only liposomes remained after 552 

PEF exposure. C) Lecithin/cholesterol = 1:1 (molar ratio) liposomes showed Ca-ion 553 

influx just after PEF application under low-osmotic-pressure outer liquid. D) 554 

Lecithin/cholesterol = 1:1 (molar ratio) liposomes disappeared after PEF exposure. E) 555 

Lecithin/POPG = 2:1 (molar ratio) liposomes divided. White arrow indicates the 556 

daughter liposome. F) Lecithin/POPC = 2:1 (molar ratio) liposomes divided. All time 557 

displays are in seconds. “00:00” = timing of PEF application.  558 

 559 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 1, 2019. ; https://doi.org/10.1101/860841doi: bioRxiv preprint 

https://doi.org/10.1101/860841
http://creativecommons.org/licenses/by-nd/4.0/

