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Abstract 

Brain age prediction studies aim at reliably estimating the difference between the chronological age of an individual 

and their predicted age based on neuroimaging data, which has been proposed as an informative measure of disease 

and cognitive decline. As most previous studies relied exclusively on magnetic resonance imaging (MRI) data, we 

hereby investigate whether combining structural MRI with functional magnetoencephalography (MEG) information 

improves age prediction using a large cohort of healthy subjects (N=613, age 18-88 yrs) from the Cam-CAN 

repository. To this end, we examined the performance of dimensionality reduction and multivariate associative 

techniques, namely Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA), to tackle the 

high dimensionality of neuroimaging data. Using MEG features (mean absolute error (MAE) of 9.60 yrs) yielded 

worse performance when compared to using MRI features (MAE of 5.33 yrs), but a stacking model combining both 

feature sets improved age prediction performance (MAE of 4.88 yrs). Furthermore, we found that PCA resulted in 

inferior performance, whereas CCA in conjunction with Gaussian process regression models yielded the best 

prediction performance. Notably, CCA allowed us to visualize the features that significantly contributed to brain 

age prediction. We found that MRI features from subcortical structures were more reliable age predictors than 

cortical features, and that spectral MEG measures were more reliable than connectivity metrics. Our results provide 

an insight into the underlying processes that are reflective of brain aging, yielding promise for the identification of 

reliable biomarkers of neurodegenerative diseases that emerge later during the lifespan.  
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1 Introduction 

The human brain changes continuously across the adult lifespan. This process, termed brain aging, underlies the 

gradual decline in cognitive performance observed with aging. Although aging-induced changes are not necessarily 

pathological, the risk of developing neurodegenerative disorders rises with increasing age (Abbott, 2011), and 

diseases such as Alzheimer’s disease are thought to arise partly as a result of pathological processes associated with 

accelerated brain aging (Sluimer et al., 2009). Therefore, a better understanding of the neural correlates underlying 

brain aging, as well as better ways to identify biomarkers of healthy aging could contribute to improve the detection 

of early-stage neurodegeneration or predict age-related cognitive decline. 

One promising approach for identifying individual differences in brain aging relies on the use of neuroimaging data 

to accurately predict “brain age” – the biological age of an individual’s brain (Cole et al., 2019b). In that context, 

machine learning (ML) techniques have proven to be a promising tool to ‘learn’ a correspondence between patterns 

in structural or functional brain features and the age of an individual (Dosenbach et al., 2010; Franke et al., 2010). 

ML techniques typically utilize functions in a high-dimensional space, whereby each dimension corresponds to a 

feature derived from neuroimaging data, to estimate the brain age. When predictive models are trained on 

neuroimaging datasets across the lifespan with a large number of subjects, they can generalize sufficiently well on 

unseen or ‘novel’ individuals. This provides the opportunity to deploy ML models at the population level and use 

the predicted age as a biomarker for atypical brain aging processes. 

Most studies have explored the use of ML on data obtained from neuroimaging techniques to quantify atypical brain 

development in diseased populations. A common practice entails training a ML-based prediction model on healthy 

subjects and subsequently using it to estimate brain age in patients. The difference between an individual’s predicted 

brain age and their chronological age is then computed (the “brain age delta”), providing a potential measure that 

indicates increased risk of pathological changes that may lead to neurodegenerative diseases. For instance, this 

approach has been applied to study brain disorders and diseases including Alzheimer’s disease (Franke and Gaser, 

2012; Gaser et al., 2013), traumatic brain injury (Cole et al., 2015), schizophrenia (Koutsouleris et al., 2014; 

Schnack et al., 2016; Shahab et al., 2019), epilepsy (Pardoe et al., 2017), dementia (Wang et al., 2019), Down’s 

syndrome (Cole et al., 2017a), Prader-Willi syndrome (Azor et al., 2019), and several others (Kaufmann et al., 

2019), as well as other pathologies such as chronic pain (Cruz-Almeida et al., 2019), HIV (Cole et al., 2017c) and 

diabetes (Franke et al., 2013). Additionally, brain age prediction has also been extended beyond understanding 

neurological disorders such as in the context of testing the positive influence of meditation (Luders et al., 2016), as 

well as education and physical exercise (Steffener et al., 2016b) on brain age. Recent work has also shown a 

relationship between the brain age delta and specific cognitive functions, namely visual attention, cognitive 

flexibility, and semantic verbal fluency (Boyle et al., 2020). 
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The studies mentioned above have mainly focused on estimating brain age based on structural magnetic resonance 

imaging (MRI), with most studies using T1-weighted images (e.g. Cole, Leech and Sharp, 2015; Cole, Poudel, et 

al., 2017). This is partly due to the availability of large lifespan MR-based open datasets, which has allowed 

researchers to train and validate their predictive models on a large number of subjects. However, it is well known 

that in addition to structural alterations, changes in brain function also occur during aging (Cabeza et al., 2018; 

Grady, 2012; Peters, 2006). One example of brain function changes associated with age is functional connectivity, 

which measures the statistical interdependence between time series from distinct brain regions (Sala-Llonch et al., 

2015). Functional connectivity measures derived from functional MRI (fMRI) data have been successfully used to 

predict age (Dosenbach et al., 2010; Li et al., 2018; Nielsen et al., 2018; Vergun et al., 2013). However, the 

improvement of brain age prediction and ultimately the detection of early disease stages using fMRI is limited due 

to the sluggishness of the hemodynamic response function, which severely limits the time resolution at which the 

underlying neural events can be resolved and consequently the ability to perform directional connectivity analysis 

(Smith et al., 2011). Abnormal synchronization processes at faster timescales have been detected in several 

neuropsychiatric disorders (Schnitzler and Gross, 2005), and in particular in movement disorders such as 

Parkinson’s disease (Heinrichs-Graham et al., 2014; Kondylis et al., 2016; Moisello et al., 2015; Nelson et al., 2017) 

and essential tremor (Kondylis et al., 2016; Raethjen and Deuschl, 2012; Schnitzler et al., 2009). Therefore, 

neuroimaging techniques with higher temporal resolution, such as electroencephalography (EEG) and 

magnetoencephalography (MEG), can offer complementary features associated with both normal and pathological 

aging. In particular, MEG provides higher spatiotemporal resolution compared to EEG because magnetic fields 

propagate with little attenuation and distortion (Baillet, 2017). Recently, several studies have investigated age-

related brain function changes using EEG (Dimitriadis and Salis, 2017; Sun et al., 2019; Zoubi et al., 2018), which 

has enabled researchers to build a brain age prediction model based on the temporal and spectral features of 

electrophysiological brain activity, as well as the connectivity between brain regions. A detailed overview of 

different neuroimaging modalities and ML methods that have been used to estimate brain age is presented in (Cole 

et al., 2019a).  

The aforementioned studies investigated the age-related structural and functional brain changes separately. 

Recently, several researchers have examined the combination of features from different modalities and 

demonstrated that this could lead to better brain age prediction performance. For instance, Liem and colleagues 

combined anatomical features extracted from MR images and fMRI connectivity measures (Liem et al., 2017). 

Another recent study combined MRI anatomical features, fMRI connectivity measures and MEG features 

(Engemann et al., 2020). However, changes in brain tissue composition with age alter the T1 signal intensity of 

brain structures (Cho et al., 1997; Salat et al., 2009), possibly as a result of changes in iron concentration (Harder 

et al., 2008; Ogg and Steen, 1998). Studies using MR-derived anatomical features such as cortical thickness and 

subcortical volume are thus not taking into account age-related changes in tissue signal properties that may improve 
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brain age prediction performance. Therefore, combining whole brain T1 signal intensities with functional 

(EEG/MEG or fMRI) features yields potential to this end. Further research is needed to determine the extent to 

which this approach can improve the latter. 

Moreover, a major roadblock to clinical applications of ML models is their explainability (Bzdok and Ioannidis, 

2019), in other words the ability to attribute their predictions to specific input variables. From a clinical perspective, 

it would be useful to identify the neuroimaging features that are important to the ML model to estimate brain age. 

As argued by Kriegeskorte et al., decoding models can reveal whether information pertaining to a specific outcome 

or behavioural measure is present in a particular brain region or feature (Kriegeskorte and Douglas, 2019). In the 

same study, the authors also highlighted the difficulties and confounds associated with interpreting weights in a 

linear decoding model and consequently suggested the use of multivariate techniques to identify the most 

informative predictors. The current brain age prediction models (e.g. Azor et al., 2019; Cole et al., 2017b) have 

used a similarity metric to retrieve lower dimensional embeddings from neuroimaging features. However, this 

technique does not warrant explainability, as it relies on the neuroimaging features similarity between individuals 

to make predictions. Therefore, it is of interest to explore dimensionality reduction techniques that allow 

identification of the informative neuroimaging features for age prediction. 

To address the aforementioned challenges related to the combined use of structural and functional neuroimaging 

data to predict age and the explainability of the associated ML models, the main aims of the present study were to: 

(i) investigate whether adding functional information from MEG recordings to the whole-brain MRI voxel intensity 

features would improve brain age prediction performance, (ii) examine the performance of dimensionality reduction 

techniques in conjunction with ML models, and (iii) improve the explainability of ML-based brain age prediction 

by applying multivariate associative statistical methods for identifying key features that exhibit the most prominent 

age-related changes. To do so, we used structural MRI and functional MEG data collected from a large cohort of 

healthy subjects. We applied Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) as 

dimensionality reduction and multivariate associative techniques, respectively, to assess their predictive 

performance compared to the widely used similarity metric technique. Finally, we identified and visualized the most 

informative features in the context of age prediction. 
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2 Materials and Methods 

2.1 Dataset 

We analyzed data from the open-access Cambridge Center for Aging Neuroscience (Cam-CAN) repository (see 

Shafto et al. 2014; Taylor et al. 2017 for details of the dataset and acquisition protocols), available at https://camcan-

archive.mrc-cbu.cam.ac.uk//dataaccess/. Specifically, we used structural (T1-weighted MRI) and functional 

(resting-state MEG) neuroimaging data from 652 healthy subjects (male/female = 322/330, mean age = 54.3 ± 18.6, 

age range 18-88 years). The MR images were acquired from a 3T Siemens TIM Trio scanner with a 32-channel 

head coil. The images were acquired using a MPRAGE sequence with TR = 2250 ms, TE = 2.99 ms, Flip angle = 

9°, Field of View = 256 × 240 × 192 mm3 and voxel size = 1 mm isotropic. The resting-state MEG data were 

recorded using a 306-channel Elekta Neuromag Vectorview (102 magnetometers and 204 planar gradiometers) at 

a sampling rate of 1kHz. For the resting-state scan, subjects were asked to lie still and remain awake with their eyes 

closed for around 9 min. Following exclusions (e.g. subjects that did not have both MRI and MEG data, 

unsatisfactory pre-processing results such as failure to remove cardiac and ocular artifacts and/or failure to extract 

the cortical surface for source reconstruction), we report findings from a final dataset including 613 subjects. A 

descriptive list of subjects included in our dataset is detailed in the Supplementary Materials, and Supp. Fig. 1 

depicts gender and age distributions for the included participants.  

 

2.2 Neuroimaging data processing 

A summary of the feature extraction process for MR images and MEG recordings is illustrated in Fig. 1. 

2.2.1 MRI structural analysis 

The processing of T1-weighted MR images followed the pipeline presented in (Cole et al., 2017b) and was 

implemented using tools from the FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl) (Jenkinson et al., 

2012). Briefly, the Brain Extraction Tool (BET) (Smith, 2002) was used to isolate the brain tissue, and the FMRIB's 

Linear/Nonlinear Image Registration Tools (FLIRT/FNIRT) (Andersson et al., 2007; Jenkinson and Smith, 2001) 

were used to perform a non-linear registration to the MNI152 template brain (2mm resolution). Next, the registered 

images were segmented into Grey Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF) using the 

MNI152 template mask for each tissue type. The GM maps were further segmented into cortical and subcortical 

regions to delineate the effects of aging on these regions. The resultant images were vectorized and subsequently z-

scored to obtain a feature vector for each subject. This process resulted in a feature matrix where each row consisted 

of normalized intensity values for a single subject (see Fig. 1 for the exact number of features from each brain 

structure). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/859660doi: bioRxiv preprint 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://doi.org/10.1101/859660
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

 

 

2.2.2 MEG analysis 

The MEG data were processed using the open-source software MNE-Python (https://martinos.org/mne) (Gramfort 

et al., 2014). Raw MEG data were high-pass filtered at 1 Hz, notch filtered at 50 Hz and 100 Hz to remove power 

line artifacts, and resampled at 200 Hz. Cardiac and eye movement artifacts were identified using Independent 

Component Analysis (ICA) and automatically classified comparing the ICA components with the simultaneously 

recorded electrocardiography (ECG) and electrooculography (EOG) signals (Jas et al., 2018). Artifact-free MEG 

data were converted from sensor to source space on the subject’s cortical surface using the linearly constrained 

minimum variance (LCMV) beamformer (Van Veen et al., 1997). The cortical surface was reconstructed from the 

T1-weighted MR images as obtained from the FreeSurfer recon-all algorithm (Dale et al., 1999; Fischl et al., 2004, 

2002, 2001, 1999a, 1999b; Fischl and Dale, 2000). The sources were constrained within the cortical regions of the 

brain and assumed to be perpendicular to the cortical envelope. The noise covariance matrix was estimated using 

the empty room recordings, and the data covariance matrix was estimated directly from the MEG data. After source 

Figure 1. Feature extraction pipeline for MRI and MEG data.  
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reconstruction, we parcellated the cortex into 148 brain regions using the Destrieux atlas (Destrieux et al., 2010). 

Each parcel time series were corrected for signal leakage effects using a symmetric, multivariate correction method 

intended for all-to-all functional connectivity analysis (Colclough et al., 2015). For each parcel, the power spectral 

density (PSD) for the entire resting state scan was calculated and averaged within 7 frequency bands, namely Delta 

(2–4 Hz), Theta (4–8 Hz), lower Alpha (8–10 Hz), higher Alpha (10-13 Hz), lower Beta (13–26 Hz), higher Beta 

(26–35 Hz) and Gamma (35–48 Hz). Relative power was calculated by dividing the power within each band by the 

total power across all bands (Niso et al., 2019). In addition to the PSD values, amplitude envelope correlation (AEC) 

within each frequency band was used to estimate the functional connectivity between different cortical parcels 

(Brookes et al., 2012; Hipp et al., 2012), as this method provides a robust measure for stationary connectivity 

estimation (Colclough et al., 2016). Inter-layer Coupling (ILC) was also calculated from the functional connectivity 

matrices to estimate the similarity of the connectivity profile across frequency bands (Tewarie et al., 2016). 

Therefore, each row of the resulting MEG feature matrix consisted of PSD, AEC and ILC values for a single subject 

(see Fig. 1 for the exact number of features from each type). 

 

2.3 Brain age prediction analysis 

We examined the performance of three dimensionality reduction techniques: the similarity metric, PCA and CCA. 

The MRI and MEG features were embedded into a lower dimensional space using these techniques. The 

transformed features were subsequently used as input features in the prediction models. The higher dimensional 

feature set prior to transformation was also directly used as input to evaluate the potential improvement achieved 

by using dimensionality reduction techniques. All the prediction models were implemented using the scikit-learn 

toolbox (Pedregosa et al., 2011) in Python. 

2.3.1 Dimensionality reduction techniques 

2.3.1.1 Similarity metric 

Following the approach presented by Cole and colleagues (Cole et al., 2017b), we represented the data as a 𝑁 ×  𝑁 

similarity matrix (𝑁 being the number of subjects in the training set). The similarity between any two subjects was 

calculated using the dot product between their corresponding feature vectors. Therefore, each testing subject was 

represented as an N-element vector containing similarity values corresponding to each of the N training subjects. 

However, the use of a similarity metric entails the following issues: (1) the training set requires an adequate number 

of subjects to sample the spectrum of healthy aging completely, and (2) the predictions are based on how similar a 

test subject is to each of the training subjects. To address these issues, we used dimensionality reduction techniques, 

namely PCA and CCA, to identify the neuroimaging features that mostly contribute to brain age prediction. 

Specifically, PCA and CCA project the data onto a lower dimensional space and allow ML models to represent age 
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as a function of neuroimaging features, as opposed to similarity scores. This approach allowed us to visualize the 

age-related neuroimaging features after the model was trained.  

2.3.1.2 Principal Component Analysis (PCA) 

PCA is a linear dimensionality reduction technique using singular value decomposition (SVD) of the data to project 

it onto a lower dimensional space (Jolliffe, 2002). It is widely used to decompose multivariate datasets into a set of 

successive orthogonal components that explain the maximum amount of the data variance (e.g. Amico and Goñi, 

2017; Larivière et al., 2019). The obtained principal components correspond to the maximal modes of variation and 

hence correspond to the most prominently changing features in the dataset. Often, the number of principal 

components is selected visually as the point where the total variance explained by increasing the number of 

components starts plateauing (“knee rule”). We applied PCA to project the feature matrix onto a lower dimensional 

space and subsequently estimate brain age using a prediction model. In each case, we used the knee of the curve 

relating the variance explained vs the number of principal components to decide the number of components to be 

retained. In all the models using only MRI data, 5 components were retained, whereas in all models using MEG 

data or a combination of MRI and MEG data, 10 components were retained. The number of retained principal 

components explained about 60-66% of the variance in the data. 

2.3.1.3 Canonical Correlation Analysis (CCA) 

CCA is an alternative dimensionality reduction technique that identifies latent variables to model the covariance 

between some input and output variables (Thompson, 2005). CCA has been successfully applied in the context of 

brain-behavior relationships (Smith et al., 2015), neurodegenerative diseases (Avants et al., 2014) and 

psychopathology (Xia et al., 2018). CCA, similarly to PCA, uses the SVD factorization method to reduce the 

dimensionality of the data. However, in CCA the covariance matrix is used instead of the input variance matrix. 

Therefore, the obtained canonical components are maximally correlated to the output variable. 

In the present case, the CCA inputs were the neuroimaging feature matrices and the output the chronological age 

vector. Therefore, CCA retrieved a linear combination of the neuroimaging features that were maximally correlated 

to the age of the subjects. We used CCA to project the feature vector along this direction and subsequently used the 

projection values to predict age.  

CCA yields a loading vector for every CCA component, which quantifies the contribution of each feature to that 

CCA component (Wang et al., 2018). We used these loading values to assess the contribution of each feature to 

brain age prediction and thereby understand which regions of the brain mostly exhibited age-related changes. To 

estimate the reliability of these loading values, we used the bootstrapped ratio, whereby we repeated the CCA 

analysis for 1000 bootstrapped samples of the dataset chosen at random with replacement (Efron and Tibshirani, 

1986; McIntosh and Lobaugh, 2004). The bootstrapped ratio (BSR) of the loading values indicates which areas 
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reliably contribute to the brain age prediction, thus increasing the overall reliability of the prediction models. The 

procedure for generating the BSR of the loading values is illustrated in Fig. 2. 

We also examined deep CCA (Andrew et al., 2013) to learn a non-linear combination of features that maximally 

covary with age. However, deep CCA was not numerically stable and hence it was not explored further. 

 

 

2.3.2 Prediction model  

Predictive models using MRI or MEG features independently were implemented using Gaussian Process Regression 

(GPR) models with an additive dot-product and white kernel. The GPR models were defined using the neuroimaging 

features as inputs (i.e. independent variables) and chronological age as the output (i.e. dependent variable). GPR 

has been widely used for predicting chronological age from T1-weighted images (Aycheh et al., 2018; Cole et al., 

2018, 2017a, 2017b, 2017c, 2015). GPR is a non-parametric approach, which finds a distribution over possible 

functions that are consistent with the data (Rasmussen and Williams, 2006). The main assumption underlying GPR 

is that any finite subset of the available data must follow a multivariate Gaussian distribution. The prior belief about 

the relationship between variables is decided by the sufficient statistics of these multivariate Gaussian distributions, 

namely the mean vector and standard deviation matrix. The standard deviation matrix, therefore, indicates the 

confidence of model predictions. Multivariate Gaussian distributions also have the ability to reflect local patterns 

of covariance between individual data points. Therefore, a combination of multiple such distributions in a Gaussian 

process can model non-linear relationships and is more flexible than conventional parametric models, which rely 

on fitting global models. The implemented GPR models contained two hyperparameters that required tuning, the 

inhomogeneity of the dot-product and the noise level of the white kernel, which were selected among five candidate 

values ranging between 0.01 and 100.  

Figure 2. Calculation of loadings and bootstrapped ratio (BSR) of loading values from the employed CCA model. 
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Models combining both MRI and MEG features were implemented through a stacking framework using random 

forest regression, following recent age prediction studies proposing model-stacking strategies to combine features 

from different neuroimaging modalities (Engemann et al., 2020; Liem et al., 2017). To aggregate the information 

from MRI and MEG data, a feature vector was constructed, which comprised the cross-validation predictions from 

the single-modality GPR models and the corresponding uncertainty in prediction (characterized by the standard 

deviation of GPR prediction). This feature vector contained four features per subject and was used to train the 

random forest model. Note that the same training-testing splits as in the single-modality models were used to train 

the random forests to ensure they were tested on left-out predictions. The random forests contained two tunable 

hyperparameters: the number of trees, which was set to 10, 50, or 100, and the tree-depth, which was set to 5, 10, 

20 or None (None indicating splitting till leaf nodes contained only one sample).  

The performance of each model was evaluated using a nested 10-fold cross-validation strategy and scored based on 

the mean absolute error (MAE) between estimated and chronological age. The hyperparameter selection for the 

GPR and random forest models was done by grid search within a 5-fold inner loop. Specifically, we performed the 

dimensionality reduction followed by fitting the regression model on the training set of each fold of the inner loop. 

We repeated these steps for multiple sets of hyperparameter values and selected the hyperparameter set that yielded 

the best performance across the validation sets of the inner loop. Using this optimal hyperparameter set, we repeated 

the dimensionality reduction and fitting the regression model on the training set of the outer fold. This pipeline was 

thereafter applied on the test set to evaluate its performance on new data points. The nested cross-validation scheme 

was repeated 10 times to attain a less biased estimate of model performance, hence 100 MAE values were obtained 

for each model. To get an estimate of the chance level of age prediction, we used predictions from a random model 

with no training. Irrespective of the modality of data used, the chance level of MAE was ~16.74 years and 𝑅2 was 

around zero. These values served as a baseline to assess the performance of the examined prediction models. 

The codes implementing all the preprocessing and examined prediction models are available on GitHub at 

https://github.com/axifra/BrainAge_MRI-MEG. 
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3 Results 

We compared the performance of all models using a 10-fold cross-validation approach and repeated the cross-

validation framework 10 times. A summary of the performance of the different brain age prediction methods is 

presented in Fig. 3, in terms of the MAE difference with respect to an MRI-only model using GPR. In Table 1, we 

report the absolute MAE values. All models, irrespective of the data modality, performed better than chance level 

(MAE ~16.74 years) thus indicating that all the considered neuroimaging features exhibited some age-related 

effects. 

Figure 3. Boxplots depicting the age prediction performance for models using different dimensionality reduction techniques 

based on MRI and MEG features, as well as combining both data modalities using a stacking model. Each dot represents the 

mean absolute error (MAE) difference from the MRI-based GPR model at a given fold (10 k-folds x 10 repetitions). The best 

performance was obtained with the stacking model, either using GPR alone or GPR combined with CCA, showing an 

improvement of around 1 year with respect to the MRI-based GPR model. PCA degraded performance in all cases. 
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3.1 Dimensionality reduction techniques 

3.1.1 MRI features 

The voxel-wise T1-weighted intensity levels (from all tissues) were used as input to the different dimensionality 

reduction techniques. CCA+GPR yielded the best performance with respect to age prediction, with a corresponding 

MAE of 5.33 years (Table 1), which corresponded to an improvement of around 0.5 years compared to feeding the 

high dimensional feature vector directly into a GPR model, and an improvement of around 0.3 years compared to 

the similarity metric method (Fig. 3). PCA resulted in a significantly inferior performance, yielding a MAE of 8.07 

years (Table 1). The failure of the similarity metric to yield the best performance is likely due to the sample size of 

the dataset, which was much smaller than the dataset used in (Cole et al., 2017b). This could possibly have led to 

incomplete sampling of the aging subspace and hence yielded worse performance. 

To delineate the contribution of cortical and subcortical MRI features, we compared the performance for each of 

these features separately. Subcortical MRI features clearly outperformed cortical features, irrespective of the model 

used (Fig. 4, Supp. Table 1). The GPR model and CCA+GPR method yielded similar performance, with subcortical 

MRI features yielding a MAE of ~5.76 years and cortical MRI features yielding a MAE of ~7.11 years. The 

performance of the similarity metric technique was slightly worse and PCA, as before, resulted in a significantly 

poorer performance compared to all other techniques. These results indicate that the subcortical regions were more 

Input Features Model MAE (years) R2 

MRI 

GPR 5.88 ± 0.56 0.83 ± 0.05 

Similarity+GPR 5.61 ± 0.72 0.85 ± 0.05 

PCA+GPR 8.07 ± 0.68 0.69 ± 0.07 

CCA+GPR 5.33 ± 0.51 0.86 ± 0.03 

MEG 

GPR 9.60 ± 0.98 0.55 ± 0.09 

Similarity+GPR 9.80 ± 0.94 0.54 ± 0.10 

PCA+GPR 12.64 ± 1.12 0.28 ± 0.13 

CCA+GPR 9.68 ±0.89 0.55 ± 0.09 

MRI+MEG (Stacking) 

GPR 4.97 ± 0.53 0.88 ± 0.03 

Similarity+GPR 5.17 ± 0.60 0.87 ± 0.04 

PCA+GPR 7.26 ± 0.73 0.73 ± 0.07 

CCA+GPR 4.88 ± 0.52 0.88 ± 0.03 

 

Table 1. Comparison of age prediction by GPR models combined with different dimensionality reduction techniques based on 

MRI and MEG features, as well as stacking of both modalities. Mean absolute error (MAE) values were calculated over the 

testing set (mean ± standard deviation). 
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reliable indicators of brain age compared to cortical regions. This finding was further supported by the CCA 

loadings of MRI features, whereby subcortical regions exhibited higher BSR of loading values compared to cortical 

regions (Fig. 6b). 

 

3.1.2 MEG features 

The MEG features extracted from the source-space MEG data were the relative PSD within seven frequency bands 

for each brain region examined, as well as the AEC and ILC measures to quantify functional connectivity (Tewarie 

et al., 2016). Using the high dimensional feature vector directly as the input to a GPR model yielded similar 

performance as the models transforming the features to a low dimensional embedding using the similarity metric 

or CCA, with a MAE of ~ 9.70 years (Table 1). On the other hand, PCA yielded inferior performance, similarly to 

the MRI features (Table 1). Overall, MEG features yielded a considerably inferior performance compared to MRI 

features (Fig. 3).  

Figure 4. Boxplots depicting the age prediction performance for models using either cortical or subcortical MRI features, using 

different dimensionality reduction techniques. Each dot represents the mean absolute error (MAE) at a given fold (10 k-folds 

x 10 repetitions). Better performance was obtained with subcortical MRI features compared to cortical MRI features. 
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An important consideration when comparing MEG age prediction performance to MRI is that the MEG features 

only contained information from the cortex, whereas the MRI intensities were from both cortical and subcortical 

regions. Therefore, we compared the performance of models using MEG features to those including only cortical 

MRI features. MEG features still yielded worse performance for all the examined methods, compared to using 

cortical MRI features (worse by 2.49 years for GPR, 2.66 years for similarity, 2.59 years for PCA, and 2.67 years 

for CCA respectively). This suggests that MEG features were worse predictors of brain age than MRI features. 

We subsequently explored which MEG features were better at predicting brain age. We found that ILC values did 

not significantly contribute to age prediction, with the corresponding MAE values being very close to those of the 

random model (Supp. Table 2). PSD performed better than AEC when using the high dimensional feature vector 

directly into a GPR model, but AEC performed better than PSD when using the CCA+GPR model (Supp. Table 2).  

 

3.2 Combining structural and functional features from MRI and MEG data 

We next examined the potential benefit of combining MEG and MRI features compared to using MRI features 

alone. Note that we included MRI features from all structural tissues (GM, WM and CSF) and both spectral and 

connectivity MEG features. To build the multimodal prediction, we combined the age predictions from each 

modality using a stacking model. All models exhibited improved performance when both modalities were used for 

age prediction (Table 1). Without dimensionality reduction, we found that using the stacking model yielded an age 

prediction improvement of around one year compared to using MRI-only features (Fig. 3). Furthermore, CCA 

yielded the best performance with a MAE of 4.88 years (Table 1), improving the performance of CCA+GPR model 

using MRI-only features by around 0.5 years. These results suggest that functional MEG features contained 

complementary information to anatomical MRI features, thereby providing non-redundant information that 

improved the estimation of brain age.  

Recently, several studies have reported an age-related bias in estimates of brain age, commonly observed as an 

overestimation of age in younger subjects and an underestimation of age in older subjects (Aycheh et al., 2018; 

Cole and Franke, 2017; Liang et al., 2019; Smith et al., 2019). Our cohort had less subjects within the lower and 

higher age ranges (Supp. Fig. 1), which could have led to an age-related bias in the estimates. To investigate this, 

in Fig. 5 we show the predicted vs. chronological age for the best model using both MRI and MEG features (stacking 

CCA+GPR). The fitted model yields a good match with the ideal model, and no bias is observed for the youngest 

and oldest subjects. 
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3.3 CCA loadings 

One of the goals of the present work was to identify the brain regions exhibiting more pronounced age-related 

changes. The CCA loadings provided a way to assess the contribution of each neuroimaging feature to age 

prediction, thus indicating the features that yielded the most reliable age-related changes. The histogram of the BSR 

of voxel intensity loading values, as well as the top 15% BSR of loading values for GM, WM, and CSF are shown 

in Fig. 6a & 6b, respectively. The histogram of BSR values indicates that GM and WM voxels exhibited more 

reliable age-related changes as compared to CSF (the histogram peak for GM and WM was located around -300 

and -400 respectively, whereas the histogram peak for CSF was located around -100). Almost all of the loading 

values were negative, indicating a decreased voxel intensity with increasing age. Further, the top 15% of BSR values 

corresponded to subcortical regions, thus supporting our results that these regions yield better age prediction (Supp. 

Table 1). Some of these areas are shown in Fig. 6b, while 3D nifti volumes of the CCA loadings are available in 

NeuroVault (https://identifiers.org/neurovault.collection:6091). The highlighted GM areas were localized in 

subcortical structures such as the putamen, thalamus, and the caudate nucleus, as well as regions in the cerebellum. 

Most of the highlighted WM voxels were confined to the corpus callosum, thus indicating that the latter was 

associated to the most consistent age-related changes among WM voxels. Another structure among WM voxels that 

exhibited age-related changes was the thalamic radiation.  

Figure 5. Plot of predicted vs. chronological age for the stacking CCA+GPR model using both MRI and MEG features. The black 

dotted line corresponds to the ideal linear model (𝒚 = 𝒙), whereas the red line corresponds to the fitted model (𝒚 = 𝜶 + 𝜷𝒙). 
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Furthermore, we visualized the CCA loadings for the MEG features. The PSD loadings are shown in Fig. 7 and the 

AEC loadings are shown in Supp. Fig. 2. We found that PSD values were more reliable (BSR values ~450) than 

AEC values (BSR values ~300). Regarding the PSD loadings (Fig. 7), we observed different regions showing age-

related effects within various frequency bands. Contrary to MRI loadings, whereby most of the loading values were 

negative, PSD loadings were found to be both positive and negative. The low-frequency bands exhibited decreasing 

PSD values with age, with delta and theta band PSD exhibiting maximal age-related effects in the frontal areas and 

alpha band PSD exhibiting maximal age-related effects in the visual and motor areas. Higher frequency bands (beta 

and gamma) exhibited increasing PSD values with age in frontal and motor areas. Regarding the AEC loadings 

(Supp. Fig. 2), the all-to-all connectivity matrices (one per frequency band) were sorted by functional networks 

according to the Yeo 7-network brain cortical parcellation (Yeo et al., 2011). Most functional connections exhibited 

increased connectivity with age within all frequency bands, with the exception being the visual network, which 

(a) 

(b) 

Figure 6. BSR of CCA loading values for T1-weighted intensity levels. (a) Distribution of BSR values for GM (orange), 

WM (green) and CSF (blue) voxels. (b) Brain regions with the top 15% BSR values, highlighting that the most reliable 

voxels for brain age prediction were located within subcortical regions. 
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exhibited decreased connectivity with age for the high alpha and high beta frequency bands. The ILC loadings are 

not shown since ILC values did not significantly contribute to age prediction (Supp. Table 2). 

 

 

 

  

Figure 7. BSR of CCA loading values depicting cortical regions with PSD values that are correlated (pink) or anti-correlated 

(blue) with age for each frequency band. 
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4 Discussion 

 In this study, we aimed to leverage multimodal neuroimaging data to predict brain age in a large cohort of healthy 

subjects (N=613) between 18-88 years and assess the performance of several dimensionality reduction techniques. 

We found that applying a CCA+GPR model to each imaging modality and combining their predictions through a 

stacking model yielded the best performance (Fig. 3), with a MAE of 4.88 years. Conversely, we found that PCA 

yielded inferior performance for brain age prediction, regardless of the imaging modality (Fig. 3). Furthermore, we 

identified and visualized the regions that exhibited age-related changes and found that subcortical T1-weighted 

intensity levels were more informative for age prediction compared to cortical regions (Figs. 4, 6). We also 

identified age-related changes in the spectral features of various cortical regions using MEG data (Fig. 7). In 

addition, we demonstrated that using multivariate associative techniques such as CCA yields better explainability 

of the predictive models, which may contribute to the identification of clinically relevant biomarkers of pathological 

aging. 

 

4.1 Dimensionality reduction techniques 

We used T1-weighted MR images and resting-state MEG data to develop a brain-age prediction framework that 

uses both structural and functional information of the brain. We restricted our analysis to cortical sources of the 

MEG data and thereby had functional information from cortical regions only. Since the goal was to predict age, the 

desired MAE for the perfect model would be 0 years. However, owing to subject variability and the ill-conditioning 

of the problem, specifically the definition of a “healthy” subject and the assumption that chronological age should 

perfectly correspond to brain age, we did not expect to achieve a MAE of 0 years. 

In the present study we used GPR as the regression model of choice for brain age prediction. Furthermore, we 

explored the contribution of dimensionality reduction techniques to age prediction. A commonly used 

dimensionality reduction technique in neuroimaging studies is PCA. However, PCA yielded inferior prediction 

performance for both imaging modalities (Fig. 3). This result may be explained by the fact that large variability 

exists between neuroimaging features across subjects. As argued by (Stringer et al., 2019), PCA decomposition 

yields a lower dimensional space where the data manifold is smoother compared to the original data manifold in 

the high-dimensional neuroimaging feature space. Given that this smoother manifold is comprised of the top 

principal components, it is indicative of the low frequency information in the data. Our results indicate that this 

lower dimensional principal component-induced manifold is not predictive of brain age, thereby implying that aging 

causes higher frequency changes in the original data manifold. The high frequency nature of the age-related 

information suggests that neighbouring points (each point representing a subject) on the data manifold may have 

different brain age values. As stated earlier, similarity between neuroimaging features of two subjects could be 
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guided by other phenotypical factors, thus resulting in the two subjects from different age groups being placed in 

each other’s neighbourhood on the data manifold. Additionally, PCA yields components that are maximally varying 

in the dataset, which could be aligned to directions of subject variability in the dataset instead of age-related changes. 

Therefore, our results suggest that using PCA to perform dimensionality reduction does not lead to good 

performance in the context of brain age prediction. In contrast, CCA improved performance by yielding the 

component that maximally covaries with age, therefore identifying features that are informative for age prediction.  

 

4.2 Combining structural and functional features from MRI and MEG data 

Combining anatomical information from MR images and functional information from MEG recordings resulted in 

an improvement in brain age prediction for all models (Fig. 3). Particularly, the performance of the GPR model 

with the high dimensional MRI features improved by around one year when the MEG features were also considered, 

and the CCA+GPR model performance improved by around 0.5 years. The superior performance of the age 

prediction model when combining structural and functional features suggests that both modalities carry 

complementary information that are to some degree independent. Our results are in agreement with a recent study 

that used MRI and MEG data from the CamCAN dataset to estimate brain age where it was reported that combining 

both modalities showed an improvement in age prediction of around 0.8 years compared to MRI-only prediction 

(Engemann et al., 2020). Comparing the age prediction results in absolute values, Engemann et al. reported a MAE 

of 5.2 years, whereas our models achieved better performance (GPR model: 4.97 years, CCA+GPR: model 4.88 

years). A key difference between the two studies is that the MRI features considered by Engemann et al. were 

cortical thickness, cortical surface area and subcortical volume, whereas in this study we used whole-brain MRI 

voxel intensity features. Therefore, our results suggest that brain age prediction models may benefit from exploiting 

the rich information contained in MR images, instead of extracting specific anatomical features from them. 

 

4.3 CCA loadings 

Apart from yielded the best prediction accuracy, CCA was used to identify the brain regions that contribute more 

reliably to age prediction. CCA returns loading values for each input feature, therefore improving model 

explainability. Using the BSR of loading values for MRI features, we found that most of the voxel T1-weighted 

intensity levels were negatively correlated with age (Fig. 6a). A decrease in voxel intensities with age has been 

reported by (Salat et al., 2009), who suggested that this association was an indicator of brain atrophy. Thus, our 

findings are in agreement with previous studies that have reported cortical thinning with age (Fjell et al., 2009; 

Hogstrom et al., 2013; Salat et al., 2004; Storsve et al., 2014).  
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Furthermore, our results indicate that subcortical regions are more reliable predictors of age compared to cortical 

regions. The brain structures that most reliably exhibited age-related changes included the putamen, thalamus, and 

caudate nucleus, which are important structures involved in relaying a variety of information across the brain, in 

sensorimotor coordination, and in higher cognitive functions (Grahn et al., 2008; Sefcsik et al., 2009; Sherman and 

Guillery, 2002). A number of stereological and MRI studies have reported atrophy in subcortical regions associated 

with aging, specifically in the putamen (Bugiani et al., 1978), amygdala (Coffey et al., 1992; Fjell et al., 2013), 

hippocampus (Fjell et al., 2013; Nobis et al., 2019), caudate nucleus (Krishnan et al., 1990), substantia nigra 

(McGeer et al., 1977), thalamus (Sullivan et al., 2004; Fjell et al., 2013), and cerebellum (Andersen et al., 2003; 

Good et al., 2001; Torvik et al., 1986). Recent studies using large subject cohorts have also reported an age-related 

decrease in the hippocampal and temporal lobe volumes (Nobis et al., 2019). Hence, our findings are in agreement 

with the changes in size of specific brain areas associated with aging as reported in previous relevant studies. 

Furthermore, we explored whether there was an association between the decrease in volume for several subcortical 

regions and their respective BSR of CCA loadings, illustrated in Fig. 8. We found that a higher CCA loading was 

associated with a larger decrease in volume across age (R=0.44, p=0.08). This suggests that the CCA loadings, to 

some extent, reflect the shrinkage of subcortical structures. However, it is likely that they are also associated with 

increased iron deposition in subcortical areas with age (Harder et al., 2008; Ogg and Steen, 1998). Moreover, we 

Figure 8. Association between the percentage decrease in volume with age and the bootstrapped ratio (BSR) of CCA loadings 

for each subcortical region. A significant correlation was observed, whereby a higher CCA loading was associated with a larger 

decrease in volume across age. The subcortical volume of each structure was extracted using FreeSurfer for each subject. Note 

that the BSR of CCA loadings are depicted as absolute values.   
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cannot rule out the possibility that the absence of strong negative correlations between age and MRI voxel intensities 

in the cortex could be attributed to improper alignment of sulci and gyri to the standard MNI152 brain template. 

We found that the WM regions affected by age were mostly confined to the corpus callosum and the thalamic 

radiation. These results are in strong agreement with previous studies that have reported age-related alterations in 

WM structures (Salat et al., 2005), such as atrophy in corpus callosum fiber tracts (Ota et al., 2006; Pfefferbaum et 

al., 2000) and thalamic radiation (Cox et al., 2016). Although CCA loadings for CSF voxels did not exhibit high 

BSR values compared to their GM and WM counterparts, including CSF improved model performance. CSF 

information possibly indicates changes in brain volume and ventricle size that resulted in improved brain age 

prediction. 

Among the examined MEG features, PSD and AEC values yielded the best performance; however, the PSD values 

were found to be more reliable than AEC values (compare BSR values in Fig. 7 and Supp. Fig. 2). These results 

align with previous EEG and MEG studies (Dimitriadis and Salis, 2017; Engemann et al., 2020; Sun et al., 2019; 

Zoubi et al., 2018), which reported improved brain age prediction using power spectral features. We found the BSR 

of loading values for PSD values to be both positively and negatively correlated with age, depending on the 

frequency band (Fig. 7). Our results revealed that delta and theta power decreases with age, most prominently in 

frontal regions. These results are in agreement with the fact that slower waves (0.5–7 Hz) have been reported to 

decrease in power in older adults as compared to their younger counterparts (Caplan et al., 2015; Cummins and 

Finnigan, 2007; Leirer et al., 2011; Vlahou et al., 2014). Increased frontal theta activity has been linked to better 

performance in memory tasks (Jensen and Tesche, 2002; Onton et al., 2005), which may explain the decreasing 

power in lower frequencies for increasing age. Regarding the alpha band, the strongest effect of age was observed 

in the occipital cortex, whereby increased power within the higher alpha subband (10-13 Hz) was negatively 

correlated with age. These results align with several studies that have reported an association between a decrease in 

alpha power and increasing age (Gómez et al., 2013; Hübner et al., 2018). However other studies have not reported 

significant changes in alpha power with age (Heinrichs-Graham and Wilson, 2016; Xifra-Porxas et al., 2019). 

Likely, the later studies did not have sufficient statistical power to detect this age-related decrease in alpha power, 

since the cohort size was below 35 subjects, whereas the studies that reported an association between alpha power 

and age (including ours) had a sample size larger than 85. Nevertheless, it is worth pointing out that the observed 

reduced alpha power in older adults could be a result of dividing the alpha power in conventional lower and upper 

alpha bands, considering that a recent study reported that younger and older adults had equivalent alpha power at 

the individual alpha peak frequency (Scally et al., 2018). 

In line with many previous studies, we observed an association between beta power and age (Heinrichs-Graham 

and Wilson, 2016; Hübner et al., 2018; Rossiter et al., 2014; Xifra-Porxas et al., 2019). Specifically, we found that 

the age-related increase in lower beta power (13-26 Hz) was restricted to frontal regions, whereas higher beta power 
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(26-35 Hz) was restricted to the motor cortex. This beta power increase has been linked to higher levels of 

intracortical GABAergic inhibition as tested by pharmacological manipulations (Hall et al., 2011; 

Muthukumaraswamy et al., 2013). This suggests that the age-related changes in beta power may be associated with 

greater GABAergic inhibitory activity within motor cortices of older subjects. 

Finally, we found that AEC measures exhibited an age-related increase in connectivity within all frequency bands 

across all brain networks, apart from the visual network which showed a decrease in connectivity within the high 

alpha and high beta frequency bands. These results align well with a recent study where Larivière et al. reported 

lower beta-band connectivity in the visual network and higher beta-band connectivity in all other brain networks 

with age (Larivière et al., 2019). Higher functional connectivity in older adults has been associated with a lower 

cognitive reserve (López et al., 2014), and individuals with mild cognitive impairment exhibit an enhancement of 

the strength of functional connections (Bajo et al., 2010; Buldú et al., 2011). Overall, the results from these studies 

suggest that the age-related increase in MEG functional connectivity, as seen in our study, may play a role in 

modulating cognitive resources to compensate for the lack of efficiency of the memory networks (Bajo et al., 2010), 

and therefore represent a marker of the decline in cognitive functions observed during aging. 

 

4.4 Limitations 

A limitation of brain age prediction is the use of chronological age as a surrogate for brain age. Although we used 

a cohort of healthy subjects, brain age is known to depend on various other factors, such as education (Steffener et 

al., 2016a). In this work, we ignored all lifestyle factors and aimed to predict the biological age from neuroimaging 

features. Furthermore, we used a single model to predict the brain age for both males and females. These factors 

contribute to the biological age labels being an imperfect surrogate of the “true” brain age of each subject.  

Moreover, the MEG features extracted in this study were restricted to cortical regions. As MRI features from 

subcortical structures were found to be the best age predictors, we speculate that including functional features from 

deep brain structures could have resulted in greater improvement in the prediction models. This suggests that the 

use of newly developed methodologies to more reliably detect brain activity in deeper structures using MEG (Pizzo 

et al., 2019) could contribute to improved age prediction in future studies. 
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5 Conclusions 

Leveraging structural and functional brain information from MRI and MEG data, we showed that combining 

features from both modalities using a stacking model yielded better performance compared to using a single 

neuroimaging modality. We showed that dimensionality reduction techniques can be used to improve brain age 

prediction and identify key neuroimaging features that reflect age-related effects. Specifically, we found that using 

CCA in conjunction with GPR yielded the best age prediction performance, whereas using PCA deteriorated 

prediction performance. We also showed that the most reliable MRI predictors of age-related effects were features 

derived from subcortical structures such as the putamen, thalamus, and caudate nucleus, and WM regions such as 

the corpus callosum. Finally, we found that spectral MEG features were more reliable than connectivity metrics. 
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Model Input Features MAE (years) 

GPR 

GM 6.12 ± 0.61 

WM 6.39 ± 0.64 

Cortical GM 7.11 ± 0.68 

Subcortical GM 5.76 ± 0.54 

Similarity + GPR 

GM 6.20 ± 0.63 

WM 6.56 ± 0.66 

Cortical GM 7.14 ± 0.68 

Subcortical GM 5.98 ± 0.63 

PCA + GPR 

GM 9.32 ± 0.81  

WM 10.98 ± 1.07 

Cortical GM 10.05 ± 0.89 

Subcortical GM 8.84 ± 0.76 

CCA + GPR 

GM 6.02 ± 0.52 

WM 6.38 ± 0.54 

Cortical GM 7.01 ± 0.60 

Subcortical GM 5.78 ± 0.53 

 

Supp. Table 1. Comparison of age prediction by GPR models combined with different dimensionality reduction 

techniques based on MRI features from grey matter (GM), white matter (WM), as well as cortical vs subcortical GM. 

Mean absolute error (MAE) values were calculated over the testing set (mean ± standard deviation). 

Model Input Features MAE (years) 

GPR 

PSD 10.09 ± 1.29 

AEC 10.92 ± 1.03 

ILC 14.10 ± 1.13 

Similarity + GPR 

PSD 10.23 ± 0.89 

AEC 14.26 ± 1.15 

ILC 13.11 ± 0.92 

PCA + GPR 

PSD 10.67 ± 0.98 

AEC 13.33 ± 1.11 

ILC 14.27 ± 1.04 

CCA + GPR 

PSD 12.55 ± 0.94 

AEC 10.91 ± 0.89 

ILC 15.68 ± 1.05 

 

Supp. Table 2. Comparison of age prediction by GPR models combined with different dimensionality reduction 

techniques based on MEG features. Mean absolute error (MAE) values were calculated over the testing set (mean ± 

standard deviation). 
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Supp. Fig. 2. BSR of CCA loadings for AEC values depicting functional connections for which strength increased (red) or 

decreased (blue) with age for each frequency band. The AEC matrices were sorted by functional networks according to the 

Yeo 7-network brain cortical parcellation (Vis=Visual, SM=Somatomotor, DA=Dorsal attention, VA=Ventral attention, 

Lim=Limbic, FP=Frontoparietal, DMN=Default mode network). Most functional connections tended to increase their strength 

with age, except from the connectivity within the visual network for the alpha high and beta high frequency bands. 

Supp. Fig. 1. Demographic data for the included participants from the Cam-CAN dataset. 
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