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SUMMARY 32 

 33 

In combination with advanced mechanistic modeling and the generation of high-quality 34 

multi-dimensional data sets, machine learning is becoming an integral part of understanding and 35 

engineering living systems. Here we show that mechanistic and machine learning models can 36 
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complement each other and be used in a combined approach to enable accurate genotype-to-37 

phenotype predictions. We use a genome-scale model to pinpoint engineering targets and 38 

produce a large combinatorial library of metabolic pathway designs with different promoters 39 

which, once phenotyped, provide the basis for machine learning algorithms to be trained and 40 

used for new design recommendations. The approach enables successful forward engineering 41 

of aromatic amino acid metabolism in yeast, with the new recommended designs improving 42 

tryptophan production by up to 17% compared to the best designs used for algorithm training, 43 

and ultimately producing a total increase of 106% in tryptophan accumulation compared to 44 

optimized reference designs. Based on a single high-throughput data-generation iteration, this 45 

study highlights the power of combining mechanistic and machine learning models to enhance 46 

their predictive power and effectively direct metabolic engineering efforts. 47 

 48 
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INTRODUCTION 53 

Metabolic engineering is the directed improvement of cell properties through the 54 

modification of specific biochemical reactions (Stephanopoulos, 1999). Beyond offering an 55 

improved understanding of basic cellular metabolism, the field of metabolic engineering also 56 

envisions sustainable production of biomolecules for health, food, and manufacturing industries, 57 

by fermenting feedstocks into value-added biomolecules using engineered cells (Keasling, 58 

2010). These promises leverage tools and technologies developed over recent decades which 59 

include mechanistic metabolic modeling, targeted genome engineering, and robust bioprocess 60 

optimization; ultimately aiming for accurate and scalable predictions of cellular phenotypes from 61 

deduced genotypes (Nielsen and Keasling, 2016; Choi et al., 2019; Liu and Nielsen, 2019).  62 

Among the different types of mechanistic models for simulating metabolism, genome-63 

scale models (GSMs) are one of the most popular approaches, as they are genome-complete, 64 

covering thousands of metabolic reactions. These computational models not only provide 65 

qualitative mapping of cellular metabolism (Hefzi et al., 2016; Monk et al., 2017; Lu et al., 2019), 66 

but have also been successfully applied for the discovery of novel metabolic functions (Guzmán 67 

et al., 2015), and to guide engineering designs towards desired phenotypes (Yang et al., 68 

2018).As GSMs are built based only on the stoichiometry of metabolic reactions, several 69 

methods have been developed to account for additional layers of information regarding the 70 
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chemical intermediates and the catalyzing enzymes participating in the metabolic pathways of 71 

interest (Lewis et al., 2012). However, the predictive power of these enhanced models is often 72 

hampered by the limited knowledge and data available for any of such parameters affecting 73 

metabolic regulation (Gardner, 2013; Khodayari et al., 2015; Long and Antoniewicz, 2019).  74 

Machine learning provides a complementary approach to guide metabolic engineering 75 

by learning patterns on systems behavior from large experimental data sets (Camacho et al., 76 

2018). As such, machine learning models differ from mechanistic models by being purely data-77 

driven. Indeed, machine learning methods for the generation of predictive models on living 78 

systems are becoming ubiquitous, including applications within genome annotation, de novo 79 

pathway discovery, product maximization in engineered microbial cells, pathway dynamics, and 80 

transcriptional drivers of disease states (Alonso-Gutierrez et al., 2015; Carro et al., 2010; 81 

Costello and Martin, 2018; Jervis et al., 2019; Mellor et al., 2016; Schläpfer et al., 2017). While 82 

being able to provide predictive power based on complex multivariate relationships (Presnell 83 

and Alper, 2019), the training of machine learning algorithms requires large datasets of high 84 

quality, and thereby imposes certain standards for the experimental workflows. For instance, for 85 

genotype-to-phenotype predictions, it is desirable that datasets contain a high variation between 86 

both genotypes and phenotypes (Carbonell et al., 2019). Also, measurements on the individual 87 

experimental unit, e.g. a strain, should be accurate and obtainable in a high-throughput manner, 88 

in order to limit the number of iterative design-build-test cycles needed in order to reach the 89 

desired output. 90 

While mechanistic models require a priori knowledge of the living system of interest, and 91 

machine learning-guided predictions require ample multivariate experimental data for training, 92 

the combination of mechanistic and machine learning models holds promise for improved 93 

performance of predictive engineering of cells by uniting the advantages of the causal 94 

understanding of mechanism from mechanistic models with the predictive power of machine 95 

learning (Zampieri et al., 2019; Presnell and Alper, 2019). Metabolic pathways are known to be 96 

regulated at multiple levels, including transcriptional, translational, and allosteric levels 97 

(Chubukov et al., 2014). To cost-effectively move through the design and build steps of complex 98 

metabolic pathways regulated at multiple levels, combinatorial optimization of metabolic 99 

pathways, in contrast to sequential genotype edits, has been demonstrated to effectively 100 

facilitate identification of global optima for outputs of interest (i.e. production; Jeschek et al., 101 

2017). Searching global optima using combinatorial approaches involves facing an 102 

exponentially growing number of designs (known as the combinatorial explosion), and requires 103 

efficient building of multi-parameterized combinatorial libraries. However, this challenge can be 104 
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mitigated by the use of intelligently designed condensed libraries which allow uniform 105 

discretisation of multidimensional spaces: e.g. by using well-characterized sets of DNA 106 

elements controlling the expression of candidate genes at defined levels (Jeschek et al., 2016; 107 

Lee et al., 2013). As cellular metabolism is regulated at multiple levels (Feng et al., 2014; 108 

Lahtvee et al., 2017), an efficient search strategy for global optima using combinatorial 109 

approaches should also take this into consideration, e.g. by using mechanistic models, ‘omics 110 

data repositories, and a priori biological understanding.  111 

Here we combine mechanistic and machine learning models to enable robust genotype-112 

to-phenotype predictions as a tool for metabolic engineering. The approach is exemplified for 113 

predictive engineering and optimization of the complexly regulated aromatic amino acid pathway 114 

that produces tryptophan in baker’s yeast Saccharomyces cerevisiae. We defined a 7,776-115 

membered combinatorial library design space, based on 5 genes selected from GSM 116 

simulations and a priori  biological understanding, each controlled at the level of gene 117 

expression by 6 different promoters from a total set of 30 promoters selected from 118 

transcriptomics data mining. In order to train predictive models for high-tryptophan biosynthesis 119 

rate in yeast, we collected >144,000 experimental data points using a tryptophan biosensor, 120 

exploring this way approximately 4% of the genetic designs of the library design space. Based 121 

on a single Design-Build-Test-Learn cycle focused on sequencing data, growth profiles, and 122 

biosensor output, we trained various machine learning algorithms. Predictive models based on 123 

these algorithms enabled construction of designs exhibiting tryptophan biosynthesis rates 106% 124 

higher than a state-of-the-art high-tryptophan reference strain (Hartmann et al., 2003; Rodriguez 125 

et al., 2015), and up to 17% higher rate than best designs used for training the models. 126 

 127 

 128 

RESULTS 129 

Model-guided design of high tryptophan production 130 

One prime example of the multi-tiered complexity regulating metabolic fluxes, is the 131 

shikimate pathway, driving the central metabolic route leading to aromatic amino acid 132 

biosynthesis in microorganisms (Lingens et al., 1967; Braus, 1991; Averesch and Krömer, 133 

2018). This pathway has enormous industrial relevance, since it has been used to produce bio-134 

based replacements of a wealth of fossil fuel-derived aromatics, polymers, and potent human 135 

therapeutics (Curran et al., 2013; Suástegui and Shao, 2016).  136 

To search for gene targets predicted to perturb tryptophan production, we initially 137 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/858464doi: bioRxiv preprint 

https://doi.org/10.1101/858464
http://creativecommons.org/licenses/by-nd/4.0/


 

5 

performed constraint-based modeling for predicting single gene targets, with a simulated 138 

objective of combining growth and tryptophan production (Orth et al., 2010; Ferreira et al., 139 

2019). From this analysis, we retrieved 192 genes, covering 259 biochemical reactions, that 140 

showed considerable changes as production shifted from growth towards tryptophan production 141 

(Figure 1A-B, Table S4). By performing an analysis for statistical over-representation of 142 

genome-scale modelled metabolic pathways, we observed that both the pentose phosphate 143 

pathway and glycolysis were among the top pathways with a significantly higher number of gene 144 

targets compared to the representation of all metabolic genes (Figure 1C, Table S5). Among the 145 

predicted gene targets in those pathways, CDC19, TKL1, TAL1 and PCK1 were initially selected 146 

as targets for combinatorial library construction (Figure 1B), as these genes have all been 147 

experimentally validated to be directly linked or to have an indirect impact on the shikimate 148 

pathway precursors erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP). Specifically, 149 

CDC19 encodes the major isoform of pyruvate kinase converting PEP into pyruvate to fuel the 150 

tricarboxylic acid (TCA) cycle, while TKL1 and TAL1 that encode the major isoform of 151 

transketolase and transaldolase, respectively, in the reversible non-oxidative pentose 152 

phosphate pathway (PPP), have been reported to impact the supply of E4P (Patnaik and Liao, 153 

1994; Curran et al., 2013). Additionally, focusing on the E4P and PEP linkage, PCK1 encoding 154 

PEP carboxykinase, was also selected due to its regeneration capacity of PEP from 155 

oxaloacetate (Yin, 1996). Lastly, while not being predicted as a target by the constraint-based 156 

modeling approach, the PFK1 gene, encoding the alpha subunit of heterooctameric 157 

phosphofructokinase, catalyzing the irreversible conversion of fructose 6-phosphate (F6P) to 158 

fructose 1,6-bisphosphate (FBP), was selected, as insufficient activity of this enzyme is known 159 

to cause divergence of carbon flux towards the pentose phosphate pathway in different 160 

organisms across different kingdoms (Wang et al., 2013; Zhang et al., 2016).  161 

Next, we mined transcriptomics data sets for the selection of promoters to control the 162 

expression of the five selected candidate genes. Here we focused on well-characterized and 163 

sequence-diverse promoters, to ensure rational designs spanning large absolute levels of 164 

promoter activities and limit the risk of recombination within strain designs and loss of any 165 

genetic elements, respectively (Figure S1; Rajkumar et al., 2019; Reider Apel et al., 2017). 166 

Together, this mining resulted in the selection of 25 sequence-diverse promoters, which 167 

together with the five promoters natively regulating the selected candidate genes, constitutes 168 

the parts catalog for combinatorial library design (Figure 1D; Figure S1, Table S6). 169 

 170 

Creation of a platform strain for a combinatorial library 171 
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To construct a combinatorial library targeting equal representation of thirty promoters 172 

expressing five candidate genes, we harnessed high-fidelity homologous recombination in yeast 173 

together with the targetability of CRISPR/Cas9 genome engineering for a one-pot assembly of a 174 

maximum of 7,776 (65) different combinatorial designs. Due to the dramatic decrease in 175 

transformation efficiency when simultaneously targeting multiple loci in the genome 176 

(Jakočiu�nas et al., 2015), we targeted the sequential deletion of all five selected target genes 177 

from their original genomic loci, and next assemble a cluster of five expression cassettes into a 178 

single genomic landing as recently successfully reported for the "single-locus glycolysis" in 179 

yeast (Kuijpers et al., 2016)(Figure 2A). However, as CDC19 is an essential gene, and deletion 180 

of PFK1 causes growth retardation (Breslow et al., 2008; Cherry et al., 2012), this genetic 181 

background would be unsuitable for efficient one-pot transformation. For this reason our 182 

platform strain for library construction had a galactose-curable plasmid introduced expressing 183 

PFK1, CDC19, TKL1 and TAL1 under their native promoters (see METHODS DETAILS), before 184 

performing two sequential rounds of genome engineering to delete PCK1, TKL1 and TAL1, and 185 

knock-down CDC19 and PFK1 using the weak promoters RNR2 and REV1, respectively (Figure 186 

2A). Furthermore, prior to one-pot assembly of the combinatorial library, we integrated the two 187 

feedback-inhibited shikimate pathway enzymes 3-deoxy-D-arabinose-heptulosonate-7-188 

phosphate (DAHP) synthase (ARO4K229L) and anthranilate synthase (TRP2S65R, S76L) into our 189 

platform strain (Hartmann et al., 2003; Graf et al., 1993), thereby aiming to maximise the impact 190 

from transcriptional regulation of candidate genes on the overall tryptophan output, as removal 191 

of allosteric feedback inhibition is known to increase amino acid accumulation in microbial cells 192 

(Park et al., 2014; Vogt et al., 2014).  193 

 194 

One-pot construction of the combinatorial library  195 

For library construction, we first tested the transformation by constructing five control 196 

strains, including a strain with native promoters in front of each of the five selected genes 197 

(herein labelled the reference strain; Table S7). Next, we transformed in one-pot the platform 198 

strain with equimolar amounts (1 pmol/part) of double-stranded DNA encoding each of the thirty 199 

promoters, the five open reading frames encoding the candidate genes with native terminators, 200 

a HIS3 expression cassette for selection, and two 500-bps homology-regions for targeted repair 201 

of the genomic integration site. In total, this design combination included 38 different parts for 202 

7,776 unique 20 kb 13-parts assemblies at the targeted genomic locus (Chr. XII, EasyClone site 203 

V; Figure 2A). Following transformation, we randomly sampled 480 colonies from the library, 204 

together with 27 colonies from the five control strains (507 in total), and successfully cured 423 205 
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out of 461 (92%) sufficiently growing strains of the complementation plasmid by means of 206 

galactose-induced expression of the dosage-sensitive gene ACT1 (Figures 2B & S6; Liu et al., 207 

1992; Makanae et al., 2013). Next, genotyping all promoter-gene junctions by sequencing 208 

(Figure S2), identified 380 out of 461 (82%) of the sufficiently growing strains to be correctly 209 

assembled with only 9 out of 245 (3.7%) of the fully filtered library genotypes observed in 210 

duplicates (245 = 250 library and control genotypes - 5 control genotypes)(Figure 2B). Based on 211 

a Monte Carlo simulation with 10,000 repeated samplings of 10,000 library colonies, and 212 

assuming percent correct assemblies and promoter distribution as determined for the library 213 

sample (Figure 2), the expected no. of unique genotypes among all library colonies was 214 

calculated to be 3,759. This equals an estimated library coverage of 48% (3,759/7,776). 215 

Importantly, all thirty promoters from the one-pot transformation mix were represented in the 216 

genotyped designs, with promoters PGK1 (no. 14) and MLS1 (no. 15), represented the least 217 

(1%) and most (35%), respectively (Figure 2C).  218 

Taken together, these results demonstrate high transformation efficiency of the platform 219 

strain, high fidelity of parts assembly, and expected high coverage of the genetically diverse 220 

combinatorial library design. 221 

 222 

Engineering a tryptophan biosensor for high-throughput library characterization  223 

 In order to support high-throughput analysis of tryptophan accumulation in library strains, 224 

we harnessed the power of modular engineering allosterically regulated transcription factors as 225 

small-molecule in vivo biosensors (Mahr and Frunzke, 2016; Rogers et al., 2016). Here, a yeast 226 

tryptophan biosensor was developed based on the trpR repressor of the trp operon from E. coli 227 

(Roesser and Yanofsky, 1991; Gunsalus and Yanofsky, 1980). In order to engineer trpR as a 228 

tryptophan biosensor in yeast, we first tested trpR-mediated transcriptional repression by 229 

expressing trpR together with a GFP reporter gene under the control of the strong TEF1 230 

promoter containing a palindromic consensus trpO sequence (5’-GTACTAGTT-AACTAGTAC-231 

3’; Yang et al., 1996) downstream of the TATA-like element (TATTTAAG; Figure 3A; Rhee and 232 

Pugh, 2012). From this, we observed that trpR was able to repress GFP expression by 2.4-fold 233 

(Figure S3A). Next, to turn the native trpR repressor into an activator with a positively correlated 234 

biosensor-tryptophan readout we fused the Gal4 activation domain to the N-terminus of codon-235 

optimized trpR (GAL4AD-trpR) expressed under the control of the weak REV1 promoter (Figure 236 

S3B). For the reporter promoter, we placed trpO 97 bp upstream of the TATA-like element of 237 

the TEF1 promoter (Figure S3B), and observed that trpR was able to activate GFP expression 238 

by a maximum of 1.75-fold upon supplementing tryptophan to the cultivation medium (Figure 239 
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S3B). To further optimize the dynamic range of the reporter output, the GFP reporter was 240 

expressed under a hybrid promoter consisting of tandem repeats of triple trpO sequences (i.e., 241 

in total 6x trpO sequences) located 88 bp upstream of the TATA box in an engineered GAL1 242 

core promoter without Gal4 binding sites, ultimately enabling GAL4AD-trpR-mediated biosensing 243 

with a dynamic output range of 5-fold, and an operational input range spanning supplemented 244 

tryptophan concentrations from ~2-200 mg/L (Figure 3B).  245 

To further validate the designed biosensor we measured fluorescence output in strains 246 

engineered for expression of feedback-resistant versions of ARO4 and TRP2 (ARO4K229L and 247 

TRP2S65R, S76L; (Hartmann et al., 2003; Graf et al., 1993), and observed high biosensor outputs 248 

from these strains in line with previously demonstrated high enzyme activities in strains 249 

expressing ARO4K229L and TRP2S65R, S76L (Hartmann et al., 2003; Graf et al., 1993), and thus 250 

corroborating the ability of the tryptophan biosensor to monitor changes in endogenously 251 

produced tryptophan pools (Figure 3C). Most importantly, we confirmed the biosensor readout 252 

as a valid proxy for tryptophan levels, by comparing external tryptophan titers measured by 253 

HPLC with a change in GFP intensities for 6 library strains spanning 2.5-fold changes in GFP 254 

intensities (R2 = 0.75; Figure 3D).  255 

 Having established a biosensor for high-throughput screening of the combinatorial 256 

library, we next sought to explore the maximal resolution of the biosensor readout at the single-257 

design level of growing isoclonal strains, with the intention to define optimal data sampling time 258 

point. To do so, we measured time-series data of OD and GFP in triplicates for all 507 colonies, 259 

covering a total of >144,000 data points (Figure S4). Here, as we observed that the 260 

fluorescence per cell generally stabilized at an OD value of 0.075 and started to decrease 261 

beyond an OD value of 0.15 (Figure 3E, Figure S4, see METHODS DETAILS), and the between 262 

strains variation in fluorescence at the single-cell level was relatively high within this OD-263 

interval, we chose this interval for determining the GFP synthesis rate as a proxy for tryptophan 264 

flux. By sampling all variant designs, average GFP synthesis rate was observed to vary 265 

between 43.7 and 255.7 MFI/h (approx. 6-fold; Figure 3F), with an average standard error of the 266 

mean of 6.6 MFI/h corresponding to an average coefficient of variation for the mean values of 267 

4.3%. By comparison, the GFP synthesis rate of the platform strain, expressing ARO4K229L and 268 

TRP2S65R, S76L together with all five candidate genes under native promoters, was 144.8 MFI/h 269 

(Figure 3F).  270 

 271 

Using machine learning to predict metabolic pathway designs  272 

Having successfully established a combinatorial genetic library and a large phenotypic 273 
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data set thereof, we next assessed the potential of using machine learning to predict promoter 274 

combinations expected to improve tryptophan productivity. Since there is no algorithm which is 275 

optimal for all learning tasks (Wolpert, 1996), we used two different machine learning 276 

approaches: the Automated Recommendation Tool (ART) and EVOLVE algorithm (Radivojević 277 

et al., 2019; TeselaGen, 2019). The input for both algorithms was the promoter combination and 278 

tryptophan productivity (measured through the GFP proxy, Figure S4). Briefly, ART uses a 279 

Bayesian ensemble approach where eight regressors from the scikit-learn library (Pedregosa et 280 

al., 2011) are allowed to “vote” on a prediction with a weight proportional to their accuracy; the 281 

EVOLVE algorithm is inspired by Bayesian Optimization and uses an ensemble of estimators as 282 

a surrogate model that predicts the outcome of the process to be optimized (see METHODS 283 

DETAILS). As the quality of the data is of paramount importance for machine learning 284 

predictions, we initially filtered our data to avoid genotypes with insufficient growth, no 285 

sequencing data, incorrect assembly, no plasmid curation, or which exhibited more than one 286 

genotype (see METHOD DETAILS; Figure S5). Following this, approximately 58% (266/461) of 287 

the growing strains remained after filtering, while another 3% of the remaining data was 288 

removed because of lack of reproducibility (high error in triplicate measurements)(Figure S5).  289 

Both modeling approaches, ART and EVOLVE, were able to recapitulate the data they 290 

were trained on. The average (obtained from 10 independent runs) training mean absolute error 291 

(MAE) of the predicted tryptophan production compared to the measured values was 13.8 and 292 

11.9 MFI/h for the ART and EVOLVE model approaches, respectively, when calculated for the 293 

whole data set (Figure 4A-B). These MAEs represent ~7% and 6% of the full range of 294 

measurements (50 to 200 MFl/h). The train MAE uncertainty (represented by the shaded area in 295 

Figure 4A-B and quantified as the 95% confidence interval from 10 runs) decreased slightly with 296 

increasing size of the training data set for ART, whereas the overall uncertainty was smaller for 297 

the EVOLVE model approach (Figure 4A-B). The ability to predict the production for new 298 

promoter combinations the algorithms had not been trained on was tested by cross-validation, 299 

i.e. by training the model on 90% of the data, and then testing the predictions of this model 300 

against measurements for the remaining 10% (10-fold cross-validation). Here, the average 301 

cross-validated MAE (test MAE) was 21.4 and 22.4 MFI/h for ART and EVOLVE model 302 

approaches, respectively (Figure 4A-B), which represent ~11% of the full range of 303 

measurements. The test MAE decreased systematically with the size of the data set, yet the 304 

decrease rate declined markedly as more data was added. However, while the two approaches 305 

had similar average cross-validated MAEs, the uncertainty of the MAEs was slightly smaller for 306 

ART than for EVOLVE algorithm (Figure 4A-B). 307 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/858464doi: bioRxiv preprint 

https://doi.org/10.1101/858464
http://creativecommons.org/licenses/by-nd/4.0/


 

10 

 308 

Machine learning-guided engineering of designs with high tryptophan productivity 309 

Next, beyond enabling prediction of tryptophan production, we used an exploitative 310 

approach implemented in the ART model and an explorative one adopting the EVOLVE 311 

algorithm to recommend two sets of 30 prioritized designs aiming for high tryptophan production 312 

(Tables S8 and S9). The exploitative model focuses on exploiting the predictive power to 313 

recommend promoter combinations that improve production, whereas the exploratory model 314 

combines predictive power with the estimated uncertainty of each prediction, to recommend 315 

promoter combinations (Radivojević et al., 2019; TeselaGen, 2019).  316 

Among the recommendations from each of the two machine learning approaches, two 317 

overlapped (SP588 and SP627, Table S8-S9). Interestingly, while use of PGK1 promoter to 318 

control TKL1 expression was underrepresented in the original library sample (Figure 2C), the 319 

explorative set of recommendations included eight (even top-three) designs with PGK1 320 

promoter for expression control of TKL1, and the exploitative approach included none (Table 321 

S5; Figure 4C-D). From construction of these recommendations, we used the same genome 322 

engineering approach as for library construction (Figure 2A) to successfully construct 19 323 

individual assemblies of the explorative recommendations and 24 individual assemblies of the 324 

exploitative recommendations. Interestingly, we were not able to construct any of the eight 325 

designs with PGK1 promoter, partially explaining the lower number of viable strains found with 326 

the explorative approach.  327 

Of the 41 recommendations constructed, the predictions from both sets generally fitted 328 

well with the measurements, and both approaches successfully enabled predictive strain 329 

engineering for high-performing GFP synthesis rates, with the best recommendation having a 330 

measured GFP synthesis rate 106% higher than the already improved platform design, and 331 

17% higher than the best one in the library sample (Figure 4E-F). Moreover, eight 332 

recommendations were found in the top-ten of productivity, of which four were from the 333 

exploitative set, three were from the explorative set, and one overlapping between the two sets. 334 

Comparing the output of the ART and EVOLVE approaches, the variation in measurements was 335 

higher for strains recommended with the explorative EVOLVE approach than for strains 336 

recommended with the exploitative ART approach (Figure 4E-F), and the explorative approach 337 

included recommendations based on a more diverse set of promoters than the exploitative 338 

approach (Figure 4C-D). Still, taken together, both approaches successfully enabled predictive 339 

engineering of a strain with tryptophan productivity beyond those previously observed (Figure 340 

4E-F). 341 
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 342 

DISCUSSION 343 

We have demonstrated that mechanistic and machine learning approaches can 344 

complement and enhance each other, enabling a more effective predictive engineering of living 345 

systems. Using a single design-build-test-learn cycle, this study i) leveraged mechanistic 346 

genome-scale models to select and rank reactions/genes most likely to affect production, ii) 347 

included the efficient one-pot construction of a library with different promoter combinations for 348 

these reactions, and iii) used machine learning algorithms trained on the ensuing phenotyping 349 

data to choose novel promoter combinations that further enhance tryptophan productivity. In 350 

total, we managed to increase the tryptophan synthesis rate by 106% compared to an already 351 

improved reference strain (ARO4K229L and TRP2 S65R, S76L). 352 

To gather the large data sets required to enable machine learning approaches, we 353 

developed a biosensor which enabled the sampling of >144,000 GFP intensity measurements 354 

as a proxy for tryptophan flux for 1,728 isoclonal designs in a high-throughput fashion (Figures 355 

3E, S5A). Indeed, while requiring a few design iterations (Figures 3A, S3), the tryptophan 356 

biosensor ultimately allowed us to i) phenotypically characterize an order of magnitude higher 357 

number of strains than in previous machine learning-guided metabolic engineering studies 358 

(Alonso-Gutierrez et al., 2015; Lee et al., 2013a; Redding-Johanson et al., 2011; Zhou et al., 359 

2018a), and ii) identify optimal sampling points that displayed the largest differences between 360 

genotypes (Figures 3C, S4). Likewise, one-pot CRISPR/Cas9-mediated genome editing was a 361 

vital enabling technology for this project, since it allowed us to efficiently create a diverse 20-kb 362 

clustered combinatorial library with representation of all 30 specified sequence- and expression-363 

diverse promoters to control five expression units, including very few duplicate designs (Figure 364 

2B-C).  365 

Enabled by this high-quality data set, we used two different machine learning models for 366 

predicting productivity (ART and EVOLVE algorithm), and two different approaches to 367 

recommend new strains (exploitative and explorative). Cross-validation showed that both 368 

models could be trained to show good correlations (MAE approximately 11% of the 369 

measurement range) between predictions and measurements for data they had not seen 370 

previously (test data). The test MAE was basically the same for the two models, and plateaued 371 

quickly as a function of the number of genotypes in the training data set (Figure 4A-B). Whereas 372 

the uncertainty in predictive accuracy decreased considerably with the number of genotypes in 373 

the data set, this decrease was similar for both models. With this in mind, a relevant guideline 374 

for choosing a recommendation approach should focus on the desired outcome: the explorative 375 
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approach providing a more diverse set of recommendations (Figure 4C-D), whereas the 376 

exploitative approach provides less varied recommendations. We observed the largest 377 

improvement in productivity when using the exploitative approach (Figure 4E-F). However, if 378 

subsequent design-build-test-learn cycles are performed, the diversity of recommendations of 379 

the explorative approach could help avoid local optima of tryptophan production(Figure 4E-F). 380 

 Notably, while the recommendations were able to improve production, the predictions 381 

from both machine learning models were noticeably worse than for the library, reflecting the 382 

general challenge of extrapolating outside of the previous range of measurements. As such, we 383 

envision that future machine learning approaches will need to focus on models able to 384 

extrapolate more efficiently.  385 

With respect to advancing biological understanding of tryptophan metabolism, the results 386 

provided examples of anticipated results as well as non-intuitive predictions. The best 387 

performing strain (SP606, Table S8) predicted by machine-learning, displayed knock-downs of 388 

both CDC19 and PFK1, corroborating our intuitive strategies for increasing precursor 389 

availability: i.e. lower pyruvate kinase activity would lead to higher PEP pools, while limiting 390 

glycolysis redirects carbon flux into PPP and subsequently increases E4P. However, this strain 391 

also had low expression of TKL1 and high expression of TAL1, despite the report that 392 

overexpression of TKL1, rather than TAL1, leads to higher aromatic amino acid production in 393 

both E. coli and yeast (Curran et al., 2013). This finding remarks the importance of carefully 394 

considering the systems-level context of these “metabolic rules of thumb” (e.g. overexpress 395 

TKL1 instead of TAL1 for higher amino acid production) to ensure their validity. Consistently, 396 

both the second (SP616) and third (SP624) best performing strains, also predicted by machine 397 

learning, had low expression of TKL1 and high expression of TAL1, together with very low 398 

expression (TPK2 promoter) for PFK1 and high expression of CDC19. One possible explanation 399 

is that, although normally expressed, the pyruvate kinase activity could be limited by low level of 400 

its allosteric activator FBP due to limited PFK expression. Another plausible explanation is that 401 

medium-high expression of PCK1 (conversion of oxaloacetate to PEP) by ACT1 or TDH3 402 

promoters in these two strains can replenish PEP pools consumed by pyruvate kinase. The fact 403 

that 8 out of 10 top-performing strains had high expression of PCK1, which was not predicted to 404 

be impactful on glucose by the GSM approach, indicates that this indeed has a positive effect 405 

on tryptophan biosynthesis rate, and stresses the importance of combining mechanistic and 406 

machine learning approaches.  407 

Ultimately, in our case study, machine learning models have demonstrated significant 408 

predictive power. However, this predictive power is heavily dependent on the availability of high 409 
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quality experimental data, which is not a prerequisite for mechanistic GSMs. Without any 410 

experimental input, GSMs are able to guide metabolic engineering using various constraint-411 

based algorithms, which, however, predict a large number of potential targets and may also 412 

miss some effective ones, e.g. PFK1 in our study. This could be due to the lack of other 413 

information beyond metabolism e.g. regulation in GSMs. To address this problem, manual 414 

efforts are currently needed to filter out less relevant targets, and add intuitively promising ones 415 

based on existing knowledge and literature mining. Additionally, future GSMs that include more 416 

biological aspects and suitable predicting algorithms are envisioned to further improve gene 417 

target selection. Irrespective of the ongoing efforts for model-guided engineering of living cells, 418 

this study highlights the enhanced predictive power obtained by combining GSMs for selecting 419 

genetic targets with machine learning algorithms for leveraging experimental data. Finally, as 420 

even more efficient methods for combining data-driven machine learning algorithms and GSMs 421 

are developed, we envision dramatic improvements in our ability to engineer virtually any cell 422 

system effectively. 423 

 424 
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FIGURE LEGENDS 455 

 456 

Figure 1. Selection of gene targets and promoters for combinatorial engineering of 457 

tryptophan metabolism in S. cerevisiae. (A) Gene-gene interaction network built with 458 

Cytoscape (Shannon et al., 2003), showing that pentose phosphate pathway and glycolysis are 459 

both in the core of metabolism in close proximity to many genes. Nodes are all 909 genes in 460 

yeast metabolism (Aung et al., 2013), sharing connections based on the number of shared 461 

metabolites by the corresponding reactions that the genes are related to: the thicker the edge, 462 

the higher the number of shared metabolites. Currency metabolites such as water, protons, 463 

ATP, etc. are removed from the analysis. The prefuse force directed layout is used for 464 

displaying the network. Genes are highlighted with a yellow border if they are selected targets 465 

by the mechanistic modeling approach, and in orange and dark blue if they belong to the 466 

pentose phosphate pathway or glycolysis, respectively. (B) Simplified map of metabolism 467 

showing the selected gene targets from glycolysis (dark blue) and pentose phosphate pathway 468 

(orange) based on a combination of mechanistic genome-scale modeling and literature studies 469 

for optimizing tryptophan production. Black dashed lines indicate multi-step reactions. Dashed 470 

green line indicates allosteric activation. G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; 471 

FBP, fructose 1,6-bisphosphate; GAP, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone 472 

phosphate; PEP, phosphoenolpyruvate; OAA, oxaloacetate; 6PG, 6-phosphogluconate; E4P, 473 

erythrose 4-phosphate; S7P, sedoheptulose 7-phosphate; DAHP, 3-deoxy-7-474 

phosphoheptulonate; Tyr, tyrosine; Phe, phenylalanine; Trp, tryptophan. (C) Percentage of 475 

genes in glycolysis (dark blue) and pentose phosphate pathway (orange) that were predicted by 476 

the mechanistic modelling to increase tryptophan production compared to the percentage of 477 
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genes predicted as targets from the whole metabolism. *** = P-value < 0.05, Fisher’s exact 478 

testing. (D) Relative mRNA abundance, calculated for each gene as the proportion of mRNA 479 

reads obtained for any given promoter relative to the total sum of mRNA reads from each bin of 480 

six promoters. Absolute abundances for the 30 promoters were measured in S. cerevisiae 481 

CEN.PK 113-7D in the mid-log phase (Rajkumar et al., 2019). The promoters are grouped 482 

according to intended combinatorial gene associations.  483 

 484 

Figure 2. Construction and validation of the 13-parts assembled 20 kb combinatorial 485 

promoter:gene library. (A) Strategy for library construction including a 13-part in vivo assembly 486 

for the reintegration of target genes into a single genomic locus. The platform strain used for 487 

one-pot transformation includes a total of 9 genome edits for knowck-out, knock-down and 488 

heterologous expression of candidate genes (see METHODS DETAILS). (B) Key descriptive 489 

statistics for the library construction and genotyping. (C) Promoter distribution (name, % 490 

representation) by gene. Color intensity correlates with promoter strength (see Figure 1D). 491 

 492 

Figure 3. Phenotypic library characterization using an engineered tryptophan biosensor. 493 

(A) Schematic illustration of the design of the tryptophan (Trp) biosensor (trpRAD) engineered in 494 

this study. The trpRAD indicates the engineering tryptophan biosensor comprised of the E. coli 495 

TrpR fused to the GAL4 activation domain. The biosensor regulates and engineered reporter 496 

(yeGFP) GAL1-promoter including 6x copies of TrpR binding sites (trpO), placed upstream the 497 

TATA box of GAL1 promoter (pGAL1_6x_trpO). (B) Fluorescence normalized by optical density 498 

(OD600) for two strains related to concentration of tryptophan supplemented media (Mean 499 

Fluorescence Intensity/OD, MFI/OD with standard errors, n = 3). Both strains contain the yeGFP 500 

reporter under the control of the pGAL1_6x_trpO reporter promoter, and only one strain 501 

expresses the Gal4 activation domain fused to trpR (in green). (C) Fluorescence normalized by 502 

OD600 for a wild-type strain and strains with expression of feedback-resistant versions of ARO4 503 

and TRP2, ARO4K229L and TRP2S65R,S76L, respectively (mean fluorescence intensity, MFI/h with 504 

standard errors, n = 3). (D) Extracellular tryptophan normalized by OD600 related to 505 

fluorescence normalized by OD600 (mean values with standard errors, n = 3). (E) Fluorescence 506 

divided by OD600 related to OD600 for library and control strains. Dashed lines are shown at 507 

OD600 equals 0.075 and 0.15. (F) Measured mean green fluorescent protein synthesis rate. 508 

MFI/h with standard errors, n = 3. The data is ranked according to increasing mean rate. The 509 

strain with five native promoters expressing the five candidate genes is highlighted in green. 510 

MFI = Mean Fluorescence Intensity. OD600 = Optical density (600 nm). a.u. = arbitrary units. 511 
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 512 

Figure 4. Machine learning-guided predictive engineering of tryptophan metabolism. (A-513 

B) Learning curves for ART and EVOLVE algorithms, respectively. Mean absolute error (MAE) 514 

from model training and testing as a function of the number of genotypes in the dataset. Shaded 515 

areas represent 95% confidence intervals. Blue curves indicate MAE when calculated for the 516 

whole data set (Train), while red curves indicate the cross-validation, i.e. by training the models 517 

on 80% of the data and then testing the predictions of this model against measurements for the 518 

remaining 20% (Test). (C-D) Promoter distributions for the 30 recommendations of the 519 

exploitative (ART) and explorative (EVOLVE) approach, respectively. The orders and colors of 520 

promoters correspond to those in Figure 1C. (E-F) Cross-validated predictions vs average of 521 

measured GFP synthesis rate for the exploitative (ART) and explorative (EVOLVE) approach, 522 

respectively. Data is shown for library and controls strains (grey markers; green markers show 523 

the platform strain expressing ARO4K229L and TRP2S65R,S76L), as well as for recommended 524 

strains (blue markers; orange markers show recommendations that overlap between the two 525 

approaches). 526 

 527 

TABLES 528 

 529 

STAR*METHODS 530 

 531 

Detailed methods are provided in the online version of this paper and include the following:  532 

- KEY RESOURCES TABLE 533 

- CONTACT FOR REAGENT AND RESOURCE SHARING 534 

- EXPERIMENTAL MODEL AND SUBJECT DETAILS 535 

- METHOD DETAILS 536 

- Mechanistic modeling of high tryptophan flux 537 

- Promoter selection 538 

- General strain construction 539 

- Platform strain construction 540 

- Construction of combinatorial library 541 

-  Development of tryptophan biosensor 542 

- Validation of biosensor by HPLC 543 

- Genomic DNA sequencing 544 

- Measuring fluorescence and growth 545 
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- QUANTIFICATION AND STATISTICAL ANALYSIS 546 

- Modelling 547 

- DATA AND SOFTWARE AVAILABILITY 548 

 549 

 550 

STAR*METHODS 551 

 552 

Detailed methods are provided in the online version of this paper and include the following: 553 

 554 

KEY RESOURCES TABLE 555 

 556 

REAGENT or RESOURCE  SOURCE IDENTIFIER 

Chemicals, Peptides, and Recombinant Proteins 

yeast synthetic drop-out media Sigma P#:Y2001 

LB medium Sigma P#:L3522 

Ampicillin Sigma P#:A0166 

L-Leucine Sigma P#:L8912 

Uracil Sigma P#:U1128 

L-Tryptophan Sigma P#: T0254 

PEG Sigma Cat#P3640-1KG 

LiAc Sigma Cat#517992-100G 

Salmon sperm Sigma Cat#D9156 

Critical Commercial Assays 

PlateSeq PCR Kits Eurofins PID:3094-000PPP 

Deposited Data 

RNAseq data (Arun) (Rajkumar et al., 2019) N/A 

Genotypes The Joint BioEnergy Institute's Inventory of 

Composable Elements (ICE; https://public-

registry.jbei.org) 

Zhang and Petersen 

et al. 2019  

Time series The Joint BioEnergy Institute's Experiment 

Data Depot (EDD; https://public-

edd.jbei.org) 

Zhang and Petersen 

et al. 2019 

Experimental Models: Organisms/Strains 

MATa his3∆1, LEU2, ura3-52, TRP1 MAL2-8c SUC2 EUROSCARF CEN.PK113-11C 

MATa his3∆1, leu2-3_112, ura3-52, trp1-289, MAL2-8c 

SUC2 

EUROSCARF CEN.PK2-1C 

MATa PGAL1core_6xtrpO-yEGFP-TADH1, PTEF1_trpO-mKate2-

TCYC1, pCfB176  

This study TrpA-1 

MATa PGAL1core_6xtrpO-yEGFP-TADH1, PTEF1_trpO-mKate2- This study TrpA-2 
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TCYC1, ARO4wt::ARO4K229L, pCfB176  

MATa PGAL1core_6xtrpO-yEGFP-TADH1, PTEF1_trpO-mKate2-

TCYC1, TRP2wt::TRP2S65R, S76L, pCfB176  

This study TrpA-3 

MATa PGAL1core_6xtrpO-yEGFP-TADH1, PTEF1_trpO-mKate2-

TCYC1, ARO4wt::ARO4K229L, TRP2wt::TRP2S65R, S76L, 

pCfB176 

This study TrpA-4 

MATa tkl1∆ tal1∆ pck1∆, PPFK1::PREV1-PFK1, 

 PCDC19::PRNR2-CDC19, PPFK1-GAL4ad-trpR-TADH1,  

PGAL1core_3xtrpO-yEGFP-TADH1, PTEF1_trpO-mKate2-TCYC1, 

PPGK1-ARO4K229L-TADH1,  

PTEF1-TRP2S65R, S76L-TCYC1, pCfB176, pCfB9307 

This study TrpNA-W 

Recombinant DNA 

Plasmids used in the study, see Table S2 This study N/A 

Oligonucleotides 

Primers for strain construction, plasmid construction 

and sequencing, see Table S1 

This study N/A 

Software and Algorithms 

Chromeleon™ Chromatography Data System Software 

v7.1.3 

Thermo fisher 

(https://www.thermofisher.com/) 

Chromeleon™ CDS 

7.1.3  

Python and standard packages for data analysis Python (https://www.python.org) N/A 

S. cerevisiae v7 consensus genome scale model Sourceforge 

(https://sourceforge.net/projects/yeast/) 

Yeast 7.0 

COBRA Toolbox 

 

Github (https://github.com) opencobra/cobratool

box 

GSM analysis Github (https://github.com) biosustain/trp-scores 

ART Github (https://github.com) JBEI/AutomatedRec

ommendationTool 

Teselagen EVOLVE model TeselaGen’s platform 

(https://teselagen.com) 

 

 

 EVOLVE module 

Code for preprocessing and ART modelling approach Github (https://github.com) Zhang and Petersen 

et al. 2019 

(sorpet/Zhang_and_

Petersen_et_al_201

9) 

 557 

CONTACT FOR REAGENT AND RESOURCE SHARING 558 

 559 

Further information and requests for resources and reagents should be directed to and 560 

will be fulfilled by the Lead Contact, Michael Krogh Jensen (mije@biosustain.dtu.dk). 561 

 562 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 563 

 564 

Saccharomyces cerevisiae strains were derived from CEN.PK2-1C (EUROSCARF, 565 

Germany). These were cultivated in yeast synthetic drop-out media (Sigma-Aldrich) at 30 °C. 566 

Escherichia coli DH5α were cultivated in LB medium containing 100 mg/l ampicillin (Sigma-567 

Aldrich) at 37 °C. 568 

 569 

METHOD DETAILS 570 

 571 

Mechanistic modeling of high tryptophan flux 572 

In order to select targets for increased tryptophan accumulation, we followed a 573 

constraint-based strategy implemented in a recent study (Ferreira et al., 2019), similar to the 574 

FSEOF approach (Choi et al., 2010). Briefly, flux balance analysis (FBA; Orth et al., 2010) was 575 

used to simulate growth of S. cerevisiae at 11 different sub-optimal growth conditions ranging 576 

from 30% to 80% of the maximum specific growth rate, with all remaining flux oriented towards 577 

tryptophan accumulation. Based on these simulations, a score was calculated for each reaction 578 

in metabolism as the average simulated flux fold-change compared to maximum growth rate 579 

conditions. These reaction scores were in turn used to compute gene scores, by averaging the 580 

associated reaction scores. A gene score higher than one means that the gene is associated to 581 

reactions that increase in flux as tryptophan production increases, and could point to a target for 582 

overexpression. On the other hand, a gene score lower than one signifies that the gene is 583 

connected to reactions that decrease their flux as tryptophan production increases, and 584 

therefore could be a target for downregulation. The analysis was performed with either glucose 585 

or ethanol as carbon sources, so to find candidates under a mixed-fermentation regime, a 586 

purely respiratory regime and the overlap between both regimes. The 7th version of the 587 

consensus genome-scale model of S. cerevisiae (Aung et al., 2013), a parsimonious FBA 588 

(pFBA) approach (Lewis et al., 2010), and the COBRA toolbox (Heirendt et al., 2019) were used 589 

for all simulations. 590 

  591 

Promoter selection  592 

Each of the five gene targets was expressed under six unique promoters. The six 593 

promoters included the promoter native to the gene as well as 5 promoters chosen to span a 594 

wide expression range All promoters were chosen based on absolute mRNA abundances 595 

measured for S. cerevisiae CEN.PK 113-7D in the mid-log phase (Rajkumar et al., 2019), and 596 
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unless otherwise stated were 1 kb in length by default. To minimize homologous recombination 597 

during one-pot transformation for library construction and potential loop-out of promoters and 598 

genes following genomic integration, all scanned promoter sequences were aligned to ensure 599 

there were no extensive homologous sequence stretches. 600 

 601 

General strain construction 602 

Strains were edited using the CasEMBLR method (Jakočiu�nas et al., 2015). All 603 

integration were directed towards EasyClone sites (Jensen et al., 2014). Homology regions 604 

between DNA parts were by default 30 bp, and homology regions, framing the repair assembly, 605 

were about 0.5 kb. Yeast transformations were performed by LiAc/SS carrier DNA/PEG method 606 

(Gietz and Schiestl, 2007). DNA parts and plasmids were purified using kits from Macherey-607 

Nagel. PCR products for USER assembly were amplified using Phusion U Hot Start PCR 608 

Master Mix (ThermoFisher), bricks for transformation by Phusion High-Fidelity PCR Master Mix 609 

with HF Buffer (ThermoFisher), whereas colony PCRs were performed using 2xOneTaq Quick-610 

Load Master Mix with Standard Buffer (New England Biolabs). Genomic DNA was extracted 611 

from overnight cultures using Yeast DNA Extraction Kit (Thermo Scientific). Oligos were 612 

purchased from IDT. Sequencing was performed by Eurofins. All primers, plasmids, and yeast 613 

strains, are listed in Tables S1, S2, and S3, respectively. 614 

 615 

Platform strain construction 616 

Several enzymes within the aromatic amino acid (AAA) biosynthesis are subject to 617 

allosteric regulations. Specifically, 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) 618 

synthase (encoded by ARO4), which controls the entry of the shikimate pathway, is feedback 619 

inhibited by all three aromatic amino acids, although to different extents. Anthranilate synthase 620 

(encoded by TRP2), which catalyzes the first committed step towards the tryptophan branch, is 621 

also inhibited by its end product tryptophan (Braus, 1991). To maximise the transcriptional 622 

regulatory effect on the tryptophan flux, and benchmark with current state-of-the-art in shikimate 623 

pathway optimization, feedback resistant variants of these two enzymes, ARO4K229L (Hartmann 624 

et al., 2003) and TRP2S65R, S76L (Graf et al., 1993), were overexpressed under the TEF1 and 625 

TDH3 promoters, respectively at EasyClone site XI-3 (Jessop�Fabre et al., 2016; Table S2). 626 

Secondly, a tryptophan biosensor system (see Library phenotypic characterization) was 627 

introduced by integrating corresponding sensor and reporter sequences into EasyClone sites at 628 

Chr. XI-2 and XI-5, respectively (Jensen et al., 2014). 629 

 630 
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Construction of combinatorial library  631 

Due to the dramatic decrease in transformation efficiency targeting multiple loci in the 632 

genome (Jakočiūnas et al., 2015), we opted for removing all five target genes from their original 633 

loci and assemble the five expression units into a single cluster for targeted integration into 634 

EasyClone site XII-5 (Jensen et al., 2014), and thereby ensuring comparable genomic 635 

accessibility of all genes. While PCK1, TKL1 and TAL1 were successfully knocked out; deleting 636 

PFK1 and/or CDC19 was unsuccessful. Alternatively, we replaced PFK1 and CDC19 promoters 637 

with weak REV1 and RNR2 promoters, respectively. Due to an expected loss of activity in 638 

phosphofructokinase (PFK1) and pyruvate kinase (CDC19), and consequently slow ATP 639 

generation, the resulting strain (TrpNA-W) grew extremely poorly and was barely transformable 640 

using linear DNA fragments for assembly. To overcome this limitation, the TrpNA-W strain was 641 

complemented with plasmid pCfB9307 (Table S2) harboring PFK1, CDC19, TKL1 and TAL1 642 

genes, which restored the growth to the wild type level. The plasmid backbone carries yeast 643 

ACT1 gene under the control of GAL1 promoter, which can be used as counter-selection of the 644 

plasmid due to the growth arrest caused by ACT1 overexpression on galactose as the sole 645 

carbon source (Makanae et al., 2013, Figure S6).  646 

For combinatorial library construction we adopted CasEMBLR (Jakočiu�nas et al., 647 

2015). Briefly, five target genes together with a HIS3 expression cassette (in the order of PCK1-648 

TAL1-TKL1-CDC19-PFK1-HIS3) were assembled in the same orientation and integrated at 649 

EasyClone site XII-5 (Jensen et al., 2014). All five target genes (the complete ORFs) together 650 

with their terminators (500 bp downstream of the stop codon) were amplified from the genomic 651 

DNA of yeast strain CEN.PK113-7D using primers listed in Table S1. All 30 promoters (defined 652 

as the 1000 bp upstream the ORF) were amplified using primers with a 30 bp overlap to 653 

adjacent DNA parts (i.e. the terminator upstream and the target gene). All promoters can be 654 

found in Tables S4. The HIS3 cassette was amplified from plasmid pRS413-HIS3 (Sikorski and 655 

Hieter, 1989) with primers 30 bp overlapping with the PFK1 terminator and fragment 656 

homologous to the downstream of XII-5. The HIS3 cassette was included as one part of the 657 

assembly. The one-pot transformation of all 38 parts (30 promoters, 5 candidate genes, HIS3 658 

cassette, and up- and down-homology regions for EasyClone site XII-5) was performed with 50 659 

mL the base strain grown to an optical density of 1.0 (equivalent to 6.5 mg of cell dry weight), 660 

5.0 ug of plasmid expressing the guide RNA targeting XII-5, and 1.0 picomole of each of 13 661 

DNA fragments. A total of 480 colonies were picked from 10 transformation plates by dividing 662 

the area of each individual plate into 4 subareas of equal size and picking 12 colonies of varying 663 

size from each subarea. 664 
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Finally, the complementation plasmid introduced was cured by culturing strains to 665 

stationary phase twice in media with galactose instead of glucose as carbon source (Figure S6). 666 

The success of curing were then gauged by a growth assay where LEU auxotrophs were 667 

considered as cured and prototrophs as not cured. Control strains and recommended strains 668 

were constructed similarly to the library strains except that instead of transforming pools of 669 

promoter parts for each gene only specific promoters were transformed per gene. 670 

 671 

Development of tryptophan biosensor 672 

The yeast tryptophan biosensor was developed based on the trpR repressor of the trp 673 

operon from E. coli (Gunsalus and Yanofsky, 1980). The trpR gene was amplified from E. coli 674 

M1665 genome. All yeast promoters as well as the activator domain of GAL4 were amplified 675 

from S. cerevisiae strain CEN.PK113-7D genome. All designs of trpR biosensor and GFP 676 

reporter were first cloned into the pRS416 (URA3) and pRS413 (HIS3) vectors, respectively, by 677 

USER cloning (Bitinaite et al., 2007). The activator domain of GAL4 (GAL4AD) was fused to trpR 678 

with a GSGSGS linker by USER cloning. The trpO sequence was inserted into the TEF1 679 

promoter 8 bp downstream of the TATA-like element (TATTTAAG) by inverse PCR from a 680 

plasmid containing the PTEF1-yEGFP-TADH1 cassette, with both primers containing the overhang 681 

AACTAGTAC (ie., half of the trpO sequence). The linear PCR product was treated with DpnI 682 

enzyme to fragmente the template plasmid and self-ligated to generate circular plasmid (Quick 683 

Ligation™ Kit, NEB). Promoters containing multiple trpO sequences were constructed by USER 684 

cloning from a synthetic DNA fragment (Integrated DNA Technologies) of a minimal GAL1 685 

promoter (-329 to -5 relative to the GAL1 open reading frame, thus without the GAL4 binding 686 

sequence which is located at -435 to -418) with 3x tandem repeats of trpO (separated by 2 687 

nucleotides) inserted at 88 bp upstream of the TATA box (TATATAAA). Plasmids containing the 688 

sensor and reporter cassettes were transformed into yeast strain CEN.PK113-11C. To test the 689 

biosensor performance, yeast transformants were grown in selection media overnight and 690 

regrown in Delft medium supplemented with various tryptophan concentrations (2-1000 mg/L) 691 

for 6 hrs (typically reaching early exponential phase). GFP and mKate2 outputs were measured 692 

on SynergyMX microtiter plate reader (BioTek) with excitation/emission at 485/515 nm and 693 

588/633 nm, respectively, and always normalized by absorbance at 600 nm (OD600nm). To 694 

construct the base strain for library assembly, the tryptophan sensor (PREV1-GAL4AD-trpR-TADH1) 695 

and the reporter cassette (PGAL1core_3xtrpO-yEGFP-TADH1, PTEF1_trpO-mKate2-TCYC1) were integrated 696 

into strain TC-3 (Jakočiūnas et al., 2015) at the EasyClone sites XI-2 and XI-5 (Jessop�Fabre 697 

et al., 2016), respectively.  698 
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 699 

Validation of biosensor by HPLC 700 

To validate the correlation between biosensor reporter gene output and tryptophan 701 

production, we quantified extracellular tryptophan levels by HPLC using a method described by 702 

Luo et al. (2019). Supernatants of cultivated strains were separated from the culture broth 703 

following 24 hrs of cultivation in synthetic dropout medium without tryptophan and histidine. 704 

From this 200 µl was used for HPLC and the data were processed using Chromeleon™ 705 

Chromatography Data System Software v7.1.3.  706 

 707 

Genomic DNA sequencing 708 

Genomic DNA was extracted from overnight cultures using method described by Lõoke 709 

et al. (2011). Each extract was used as template in 5 PCR reactions spanning the 5 integrated 710 

promoters and amplifying from 1,200 - 1,700 bp. The PCR products were validated using a 711 

LabChip GX II (Perkin Elmer) and sequenced using PlateSeq PCR Kits (Eurofins) according to 712 

the manufacturer's instructions. From the LabChip results, a PCR reaction was considered as 713 

trusted if it showed a strong band of the correct size, not trusted if it showed a strong band of 714 

the wrong size, and as no information gained if it showed a weak or no band. From the 715 

sequencing results, a sequencing reaction was considered as trusted if it showed an 716 

unambiguous sequence of the expected length (i.e. only limited by length of PCR fragment, 717 

stretches of the same nucleotide in the promoter or of about 1,000 bp limit of sanger sequencing 718 

reactions), not trusted if it showed an unambiguous sequence of the expected length with an 719 

assembly error, and no information gained if there were no or bad sequence results. If one or 720 

more sequencing results from the same strain showed double peaks in the promoter region the 721 

strain was considered as a double population. Finally, the promoter was noted as failed 722 

assembly (FA) if either LabChip and or sequencing results were considered not trusted, as no 723 

information (NI) if the sequencing result was no information and else as the promoter predicted 724 

by pairwise alignment between sequencing results and promoter sequence. 725 

 726 

Measuring fluorescence and growth 727 

Yeast cells were cultured ON to saturation, diluted to OD600 0.025 (measured by reading 728 

the absorbance at 600 nm on Synergy Mx Microplate Reader, BioTek) and then cultured again 729 

in a Synergy Mx Microplate Reader. While culturing, the reader measured OD600 and 730 

fluorescence with excitation and emission wavelengths of 485 and 515 nm, respectively every 731 

15 min for 20 hrs. All wells were sealed with VIEWseal membrane (Greiner Bio-One). 732 
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 733 

QUANTIFICATION AND STATISTICAL ANALYSIS 734 

 735 

Modelling 736 

All genotype and time series data as well as scripts for preprocessing are publicly 737 

available (see section DATA AND SOFTWARE AVAILABILITY). Briefly, all OD and GFP 738 

measurements were subtracted background signal (i.e. mean value of OD and GFP 739 

measurements in wells containing pure media). Background signals were calculated for each 740 

96-well plate. Strains were quality-controlled based on 5 criteria. The criteria were: 1. Optical 741 

densities must cover the whole range up to 0.15 OD units to exclude uninoculated wells and 742 

wells with insufficient growth, 2. Sequencing results must exist for all five promoter gene 743 

junctions, 3. The integrated sequence must be exactly as designed, 4. The complementation 744 

plasmid must be cured, and 5. The sequencing results must not indicate the presence of 745 

multiple genotypes (Figure S5A). GFP synthesis rates were calculated in the OD600 interval from 746 

0.075 to 0.150, as measured by a Synergy Mx Microplate Reader from BioTek.  747 

In the ART approach, outliers were identified and removed based on replicate 748 

differences in GFP synthesis rate relative to the mean value for the strain. Replicates with the 749 

one percent most extreme differences were identified and the corresponding strains were 750 

removed. GFP synthesis rate was modelled as a function of promoter combination, represented 751 

through one-hot encoding, using the Automated Recommendation Tool (ART; Radivojević et al., 752 

2019). Briefly, ART uses a probabilistic ensemble model consisting of eight individual models. 753 

The weight of each ensemble model is considered a random variable with a probability 754 

distribution characterized by the available training data, and determined through Bayesian 755 

inference and Markov Chain Monte Carlo (Brooks et al., 2011). ART uses the trained ensemble 756 

model in combination with a Parallel Tempering approach (Earl and Deem, 2005) to recommend 757 

30 new promoter combinations (unseen designs), which are predicted to improve production. 758 

The recommended designs were chosen as the 30 strains with the highest expected GFP 759 

synthesis rate predicted by the model. This recommendation approach was labelled exploitative 760 

since predictions with high uncertainty were not prioritized, although ART can provide both 761 

exploitative and explorative recommendations 762 

For the TeselaGen EVOLVE algorithm used in this study, outliers were identified and 763 

removed based on a method described by Rousseeuw and Hubert (2011). The decision was 764 

made on a per strain basis taking into account replicate to mean value differences. In cases 765 

where just a single replicate was left after filtering, this replicate were excluded as well. Of the 766 
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remaining strains, GFP synthesis rate were modelled as a function of promoter combination 767 

coded as categorical variables using a TeselaGen-developed machine learning algorithm based 768 

on Bayesian Optimization (Mockus, 1994). The algorithm was set-up to recommend 30 new 769 

promoter combinations (unseen designs), and designs were chosen by highest selection score. 770 

The selection score was the expected improvement (Bergstra et al., 2011), calculated based on 771 

predicted high GFP synthesis rate and the uncertainty of prediction. The approach was labelled 772 

explorative since high uncertainty weighed positively in the selection score calculation. While 773 

using EVOLVE for explorative recommendations, thereby complementing the ART approach, it 774 

should be mentioned that EVOLVE can be set up to provide both explorative and exploitative 775 

recommendations. 776 

 777 

DATA AND SOFTWARE AVAILABILITY 778 

 779 

The complete flux balance analysis, with additional simulation details and filtering 780 

criteria, is publicly available at https://github.com/biosustain/trp-scores. The genotype and time 781 

series datasets generated during this study are available at The Joint BioEnergy Institute's 782 

Inventory of Composable Elements (ICE; https://public-registry.jbei.org) and Experiment Data 783 

Depot (EDD; https://public-edd.jbei.org), respectively under the study 'Zhang and Petersen, et al 784 

2019' (Ham et al., 2012; Morrell et al., 2017). The complete preprocessing and all statistical 785 

calculations are documented in a jupyter notebook, available at 786 

https://github.com/sorpet/Zhang_and_Petersen_et_al_2019. The notebook also contains the 787 

ART approach for modeling and strain recommendations. The Teselagen software is available 788 

through commercial and non-commercial licenses (https://teselagen.com). 789 

 790 

SUPPLEMENTAL ITEM TITLES  791 

 792 

Figure S1. Related to Figure 1. Dendrogram of the sequence diversity of 30 selected 793 

native yeast promoters. Sequence pTEF1c1a with a single nucleotide change from pTEF1 has 794 

been added as a reference. The dendrogram was constructed using the neighbor-joining 795 

method (Saitou and Nei, 1987; Studier and Keppler, 1988).  796 

 797 

Figure S2. Related to Figure 1. Genotyping strategy. Schematic outline of the genotyping 798 

strategy to assess correct in vivo junction-junction assemblies of 11 parts, and the integration at 799 

EasyClone site XII-5 (Jensen et al., 2014). Marked in red are chromosomal regions of 800 
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EasyClone site XII-5, whereas green marks the promoters, and yellow the coding sequences 801 

and terminators. Marked in blue is the selectable HIS3 expression cassette, while genotyping 802 

PCRs are marked in light red. Primers used for sequencing of the 5 PCR reactions are marked 803 

seq1-seq5. 804 

 805 

Figure S3. Related to Figure 3. Biosensor development and characterization. Overnight 806 

cultures of the strain containing sensor and reporter was used to inoculate fresh media 807 

supplemented with various concentrations of tryptophan and grown for 6 hours (early-mid 808 

exponential phase). Optical density (measured as absorbance at 600 nm) was used to 809 

normalize the green fluorescence (excitation/emission at 485/515 nm). (A) E. coli trpR was 810 

directly expressed in a yeast strain harboring the yEGFP reporter under the control of TEF1 811 

promoter containing trpO sequence inserted downstream of the TATA-like element. (B) The 812 

trpR gene was fused to the C-terminus of the activator domain of GAL4 (GAL4ad) with a 813 

GSGSGS linker, turning this transcriptional repressor into an activator (trpAD). Accordingly, the 814 

trpO sequence was placed upstream of a truncated TEF1 promoter (lacking region with multiple 815 

Rap1-binding sites).  816 

 817 

Figure S4. Related to Figure 3E-F. Parameter estimation from time series data. (A) 818 

Representative growth curve of S. cerevisiae in microtiter plates. S. cerevisiae was grown in 819 

yeast synthetic drop-out media in 96-well microtiter plates, and cell density measured at 600 nm 820 

(OD600) over 24 hrs. (B) Representative tryptophan biosensor output measured as fluorescence 821 

(GFP) in S. cerevisiae cells (n = 1). S. cerevisiae was grown in yeast synthetic drop-out media 822 

in 96-well microtiter plates, and GFP measured at 485 nm (OD485) over 24 hrs. (C) Tryptophan 823 

biosensor output normalized by absorbance at 600 nm (OD600) over 24 hrs. For (A-C) the red 824 

line shows model fitting using a univariate spline. All plots represent a single replicate 825 

measurement (n = 1). The green, yellow and blue markers indicate OD600 = 0.075, OD600 = 0.15, 826 

and maximum rate of OD600 increase, respectively. 827 

 828 

Figure S5. Related to Figures 3-4. Data filtering and outlier removal. (A) Schematic 829 

illustration of the various filtering steps applied for data quality control. The six steps used for 830 

filtering are indicated by number to the left, and listed to the right are the numbers of unique 831 

genotypes as inferred from sequencing, the number of strains, and the number of experimental 832 

units (Exp. units, n = 3). (B) The distribution of absolute differences between replicate 833 

measurements (n = 3) of strain GFP synthesis rate. (C) Same as in (B), but with y-axis 834 
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expanded by a factor 10. For (B-C) the dashed red lines delimits the 1% most extreme 835 

differences between replicates which were removed in the ART modelling approach. (D) GFP 836 

synthesis rate compared to strain genotype (n = 3). The data is ordered according to decreasing 837 

mean GFP synthesis rate. Data points included in the TeselaGen EVOLVE modeling approach 838 

are shown in green, whereas data points in red or black were excluded. Red markers indicate 839 

outliers whereas black markers indicates strains for which only one replicate is left after outlier 840 

removal.  841 

 842 

Figure S6. Construction of an easy-curable plasmid using counter selection. Two dosage 843 

sensitive genes (ACT1 & CDC14) were expressed under the control of the galactose-inducible 844 

GAL1 promoter and cloned into USER vector pRS413-mKate2 (pCfB2866, Zhang et al., 2016). 845 

To test the efficiency of counter selection, yeast strain with a plasmid containing one of the 846 

counter selection cassettes (pRS413-HIS3 PGAL1-ACT1-TIDP1 or PGAL1-CDC14-TADH1) was grown 847 

in both non-induction (synthetic complete + glucose) and induction (synthetic complete + 848 

galactose) media for 18 hrs. A diluted aliquot of culture was spread onto both YPD (without 849 

selection for the HIS3 selectable marker) and SC-HIS (with selection for the HIS3 selectable 850 

marker) drop out agar plates. Only cultures without growth on SC-HIS selective media were 851 

used for further studies.  852 

 853 

Table S1. Primers used in study. Sequence features of interest are separated by a space. 854 

 855 

Table S2. Plasmids constructed and used in study. 856 

 857 

Table S3. Yeast strains engineered and used in study. 858 

 859 

Table S4. Related to Figure 1. Gene scores of all 192 genome-scale modelled (FBA) genes 860 

with significant changes in flux towards tryptophan production under glucose and ethanol 861 

conditions. A score higher than one means the gene is an up-regulation candidate, a score 862 

between zero and one means the gene is a down-regulation candidate, a score equal to zero 863 

means the gene is a knockout candidate, and a blank score means the gene is associated to 864 

reactions that do not change significantly in flux as tryptophan production increases under that 865 

particular condition. The four out of five gene targets identified by FBA and selected for this 866 

study are marked in bold. 867 

 868 
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Table S5. Related to Figure 1. FBA results for all pathways in metabolism, including the number 869 

of gene targets predicted in each pathway, the total size of each pathway, the fraction of genes 870 

in each pathway that are gene targets, and the significance of that representation in each 871 

pathway compared to the rest of metabolism (“Whole metabolism”), indicated by a P-value 872 

computed with a Fisher's exact test. 873 

 874 

Table S6. Related to Figure 1. The 30 selected native yeast promoters, and their position in the 875 

combinatorial cluster. 876 

 877 

Table S7. Related to Figure 3D. Promoter combinations of library control strains. The numbers 878 

in each row refer to promoter numbers as shown in Table S5. Design no. 1 contains the 879 

promoters that are native to the genes at the five positions. 880 

 881 

Table S8. Related to Figure 1 and 4C. Top-30 promoter combinations as recommended by 882 

ART. Size of color bars indicate promoter expression strength (see Figure 1), and column 883 

“dgfp/dt” shows predicted GFP synthesis rate. 884 

 885 

Table S9. Related to Figure 1 and 4C. Top-30 promoter combinations as recommended by 886 

TeselaGen EVOLVE. Size of color bars indicate promoter expression strength (see Figure 1), 887 

and column “dgfp/dt” shows predicted GFP synthesis rate.   888 
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