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Abstract 

Cancer cell lines (CCLs) as important model systems play critical roles in cancer 

researches. The misidentification and contamination of CCLs are serious problems, 

leading to unreliable results and waste of resources. Current methods for CCL 

authentication are mainly based on the CCL-specific genetic polymorphisms, whereas 

no method is available for CCL authentication using gene expression profiles. Here, 

we developed a novel method and homonymic web server (CCLA, Cancer Cell Line 

Authentication, http://bioinfo.life.hust.edu.cn/web/CCLA/) to authenticate 1,291 

human CCLs of 28 tissues using gene expression profiles. CCLA curated 

CCL-specific gene signatures and employed machine learning methods to measure 

overall similarities and distances between the query sample and each reference CCL. 

CCLA showed an excellent speed advantage and high accuracy with a top 1 accuracy 

of 96.58% or 92.15% (top 3 accuracy of 100% or 95.11%) for microarray or 

RNA-Seq validation data (719 samples, 461 CCLs), respectively. To the best of our 

knowledge, CCLA is the first approach to authenticate CCLs based on gene 

expression. Users can freely and conveniently authenticate CCLs using gene 

expression profiles or NCBI GEO accession on CCLA website.  

 

Keywords: human cancer cell lines, cell line authentication, gene expression profiles, 

RNA-Seq, microarray 
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Introduction 1 

   Cancer cell lines (CCLs) as important components offering unlimited biological 2 

materials play vital roles in life science studies. CCLs could serve as excellent model 3 

systems for the investigation of cancer biology, the simulation of drug response, and 4 

the development of clinical treatment on cancers (Holen et al. 2017). The utilization of 5 

CCLs is an effective and common practice in cancer researches (Bairoch A 2018; 6 

Barretina et al. 2012). However, the misidentification and contamination of CCLs are 7 

long-standing and prevalent problems (Capes-Davis and Neve 2016; Horbach and 8 

Halffman 2017; Development Organization Workgroup Asn-0002 2010), which could 9 

introduce erroneous, misleading, and false positive findings, and further result in 10 

invalid results and waste of resources. Researchers have raised extensive awareness of 11 

CCL authentication, the NIH and various journals have required cell line 12 

authentication for publications (Lorsch et al. 2014; Fusenig et al. 2017; Geraghty et al. 13 

2014).  14 

    Up to date, available methods for CCL authentication were based on the DNA 15 

polymorphism information, such as short tandem repeats (STRs) and single nucleotide 16 

polymorphisms (SNPs) profiling (Dirks and Drexler 2005; Demichelis et al. 2008). 17 

STR profiling is the most common and standard method recommended by American 18 

Type Culture Collection (ATCC) for cell line authentication (Capes-Davis et al. 2010), 19 

and the SNP genotyping, either in combination with STRs or alone, was considered as 20 

an alternative method (Yu et al. 2015; Freedman et al. 2015). Although the STR and 21 
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SNP methods had been widely used to authenticate CCLs in the past decades, they need 1 

additional experiments and could not be directly applied on expression data. Even 2 

though several methods (e.g., CeL-ID) utilized RNA-Seq data to authenticate CCLs 3 

(Fasterius et al. 2017; Mohammad et al. 2019; Strong et al. 2014), their core algorithms 4 

still retrieved CCL-specific DNA polymorphism from RNA-Seq reads, which 5 

barricaded the application on gene expression data and required professional 6 

bioinformatics skills (e.g., SNP calling, polymorphism matching, and threshold). Thus, 7 

a convenient and precise tool using gene expression profiles for CCL authentication is 8 

an urgent requirement and will benefit the scientific reproducibility.  9 

    CCLs with similar genomic information have various expression profiles, which 10 

results in distinct characteristics for different CCLs (Domcke et al. 2013). The 11 

specifically expressed genes (SEGs), which were expressed in a unique or a small 12 

number of conditions, could serve as molecular features for different CCLs(Goodspeed 13 

et al. 2016; Zhang et al. 2018), and provide important clues for the CCL authentication. 14 

High-throughput transcriptome technologies including RNA-Seq and microarray have 15 

offered numerous expression data of CCLs, such as the Genomics of Drug Sensitivity 16 

in Cancer (GDSC) (Garnett et al. 2012), Cancer Cell Line Encyclopedia (CCLE) 17 

(Ghandi et al. 2019), Harmonizome (Rouillard et al. 2016), and others etc. (Klijn et al. 18 

2015a; Hollingshead et al. 2014). These data provided convenience for the SEGs and 19 

marker genes detection in CCLs, and laid the foundation to develop methods for CCL 20 

authentication using gene expression profiles. Moreover, gene expression profiles 21 

based CCL authentication methods could bypass the procedure of DNA polymorphism 22 
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calling, and benefit the authentication of CCLs which lack DNA information (e.g. 1 

transcriptional studies, gene function analysis, microarray data, and difficult to 2 

re-access the original cell lines etc.).  3 

   In this study, we developed a novel method and web server named CCLA (Cancer 4 

Cell Line Authentication), which combined machine learning methods and single 5 

sample gene-set enrichment analysis (ssGSEA) algorithm to authenticate 1,291 CCLs 6 

using gene expression profiles from RNA-Seq or microarray platform. Our evaluation 7 

results demonstrated that CCLA could rapidly and precisely authenticate CCLs.  8 

Results 9 

The summary of CCLA method 10 

    The workflow of CCLA is represented in the Figure 1 and the detailed algorithm is 11 

illustrated in the method section. In brief, CCLA integrated gene expression profiles 12 

and machine learning algorithms to authenticate the potential belonging for CCLs 13 

(Figure 1): 1) ssGSEA scores of signature gene sets were used as signatures for CCLs to 14 

replace the raw gene expression profiles, which could show a more robust pattern and 15 

avoid the severe bias of expression profiles from different sources; 2) A prediction 16 

model built by random forest (RF) algorithm was employed to pre-classify the query 17 

sample into a candidate category based on ssGSEA scores of signature genes; 3) After 18 

the categorization procedure, CCLA calculated the overall similarities and distances 19 

between the query sample and each reference CCL in the candidate category. Finally, 20 
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the top 5 reference CCLs with the highest correlations and the least distances were 1 

considered as the potential belongings for the query sample.  2 

Accuracy and feasibility assessment for CCLA on public datasets 3 

    To evaluate the performance of CCLA on CCL authentication, we used other 4 

datasets as test data which were independent of the reference one. We applied CCLA 5 

on three kinds of gene expression datasets from RNA-Seq and microarray platforms 6 

(Table 1), including: 1) Public untreated CCLs from different laboratories; 2) 7 

Different passages and treatments of CCLs; 3) Well-known or published incorrect and 8 

misidentified CCLs. In total, 719 samples of 461 CCLs from 15 individual studies 9 

were enrolled in this evaluation, including 573 samples of 456 CCLs from RNA-Seq 10 

technology and 146 samples of 14 CCLs from microarray platform (Table 1 and 11 

Supplementary Table S1). Among them, 511 samples were from GDSC database or 12 

E-MTAB-2706 dataset, which were shared by more than one sources. For example, 13 

the expression data of CCL “HCT15” were deposited in three databases, and the 14 

expression data in the CCLE database would be used as the reference profile, while 15 

the records in other two databases were worked as test data to assess the performance 16 

of CCLA. The confidence of CCLA results was mainly evaluated by the distributions 17 

of expressed signature genes in the query sample and resulting reference CCLs: 1) The 18 

profiles of expressed signature genes in the query sample and reference CCLs (Figure 19 

2A, 2B); 2) The distribution of gene signatures in the query sample and the resulting 20 

reference CCLs (Figure 2C). 21 
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As expected, CCLA showed a remarkable authentication power on CCLs both in 1 

the RNA-Seq and microarray datasets. Generally, CCLA achieved a high accuracy of 2 

96.58% or 92.15% for the top 1 CCL (target CCL ranking the first one) on microarray 3 

or RNA-Seq data, respectively, while considering results in the top 3 list, the accuracy 4 

of CCL authentication was increased to 100% or 95.11% (Table 1 and Supplementary 5 

Table S1). The validation datasets for CCLA evaluation were widely spread in 6 

approximate 100 cancer types, suggesting that the power of CCLA was not limited in 7 

a small number of conditions.  8 

Moreover, we wondered whether the number of reference CCLs per tissue could 9 

affect the authentication power of CCLA, and then investigated the relationship 10 

between the accuracy of CCLA and the number of reference CCLs in tissues (Figure 11 

2D, Supplementary Table S2). To avoid the bias caused by the sample size of 12 

validation datasets, tissues (organs) with validation sample size more than 10 were 13 

enrolled in this evaluation. Notably, CCLA showed excellent performances 14 

(considering the top1, top3, top5 accuracy, respectively) on tissues containing 15 

different numbers (from 11 to 143) of reference CCLs (Figure 2D). The accuracy of 16 

CCLA showed a slight difference between tissues (no statistical significance) and did 17 

not increased (or decreased) with the number of reference CCLs in tissues (Figure 18 

2D), suggesting there is no correlation between the number of reference CCLs per 19 

tissue and the accuracy of CCLA (Figure 2D, Pearson correlation coefficient < 0.27, 20 

P-value > 0.4).  21 
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Furthermore, we assessed the performance of CCLA on CCLs under different 1 

passages and treatments. The RNA-Seq dataset GSE111485 from GEO database 2 

containing 18 HeLa samples of different conditions [controls (n = 12), 7 passages (n = 3 

3) and 50 passages (n = 3)] from different laboratories was employed to evaluate the 4 

authentication power of CCLA on CCLs with different passages. Although the 5 

passage times could influence the stability of genome and transcriptional profiles for 6 

CCLs(Liu et al. 2019), CCLA still showed a robust power on CCLs from different 7 

passages and laboratories. All of the 18 HeLa samples, no matter where they from and 8 

how many passages, were accurately authenticated as HeLa-original lines by CCLA 9 

(Supplementary Table S1). In addition, CCLA can perform well on expression data of 10 

CCLs under different treatments including drug treatment, gene over-expression, and 11 

microRNA transfection treatments etc. (Table 1). For example, 133 samples of CCLs 12 

treated by drugs from 6 independent studies were accurately authenticated as the 13 

original ones by CCLA (100% accuracy for top 3 results, Table 1), while the accuracy 14 

was slightly decreased in the samples from GDSC database (87.50% accuracy for 122 15 

CCLs with drug treatment). Besides, CCLs with gene over-expression (GSE61692 16 

and GSE23655) or gene knockout (GSE101966) treatments were all correctly 17 

authenticated as the original ones by CCLA (Table 1, Supplementary Table S1). 18 

Furthermore, we also assessed the power of CCLA on the well-known 19 

misidentified CCLs, such as the MDA-MB-435 cell line, which was not a human 20 

breast cancer cell line but had been proved as M14 melanoma cell line by ATCC and 21 

several laboratories (Christgen and Lehmann 2007; Lacroix 2009; Prasad and Gopalan 22 
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2015). Interesting, the authentication for 8 MDA-MB-435 cell line samples 1 

(GSE128624) by CCLA showed that all of them were melanoma cell lines 2 

(Supplementary Table S3), implying the misidentification of MD-AMB-435 cell line 3 

was a long-time event and CCLA could serve as a valuable tool to benefit the 4 

reproducibility of scientific data and results based on the available expression data. 5 

Comparison with other approaches 6 

Although a few methods (e.g., CeL-ID and Fasterius’ method) could utilize 7 

RNA-Seq data to authenticate CCLs (Fasterius et al. 2017; Mohammad et al. 2019), 8 

their core algorithms retrieved  genomic polymorphism of samples from RNA-Seq 9 

reads (not the expression profiles) to match CCL-specific SNPs and could not be 10 

applied on microarray data. Meanwhile, these methods just stated a pipeline and did not 11 

provide any mature software (package, tool or online server) and important parameters 12 

(e.g. the version of used tools, the match pattern, the reference SNPs of CCLs, and the 13 

threshold etc.) in their publications, which made it very difficult to reproduce their 14 

results. Thus, we just compared the authentication results of CCLA and CeL-ID based 15 

on the same RNA-seq data used by CeL-ID (Table 2).  16 

Two datasets containing 20 samples (12 samples of MCF7 CCL from GSE23655, 17 

8 samples of HCT116 CCL from GSE101966) were enrolled to benchmark the 18 

performance of CCLA and CeL-ID. We first processed the RNA-Seq data to obtain 19 

gene expression profiles of CCLs according to the HISAT2-StringTie protocol (Pertea 20 

et al. 2016), and then applied CCLA to authenticate them. All samples in GSE101966 21 

dataset were authenticated as HCT116-orignal cell lines, while samples of MCF7 cell 22 
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line were authenticated as MCF7 as well. Thus, our benchmark results suggested that 1 

CCLA showed a similar accuracy as the method CeL-ID using DNA polymorphism 2 

from RNA-Seq data (Table 2). Moreover, CCLA showed several excellent advantages 3 

on time and convenience (time: a few seconds for CCLA, much time cost for SNP 4 

calling in CeL-ID; cost: free; precondition: only need gene expression profiles for 5 

CCLA, several bioinformatics tools need in CeL-ID; polymorphism loss: none for 6 

CCLA, always issues for polymorphism based methods; and etc.). Furthermore, our 7 

CCLA is the only available tool and online web server to provide mature and 8 

convenient service for CCL authentication using gene expression profiles.  9 

Website interface of CCLA 10 

For the convenient application of CCLA by users, we developed a homonymic web 11 

server to provide free service of 1,291 CCLs authentication (Figure 3). Users could 12 

easily authenticate and assess their interested CCLs using gene expression data. CCLA 13 

accepts a NCBI GEO accession of microarray data or unfiltered gene expression matrix 14 

(Figure 3A), whose rows represent the normalized expression value for genes (FPKM, 15 

RPKM and TPM format for RNA-Seq data, while RMA and MAS5 for microarray data) 16 

and columns are samples. Once the target CCL is selected (Figure 3A), CCLA provides 17 

an overall view of outputs and evidence for the authentication of query samples (Figure 18 

3B). For example, an individual page displays the detailed results: 1) The top five 19 

candidate CCLs for each query sample (Figure 3C); 2) The profiles of expressed 20 

signature genes in the query sample and reference CCLs (Figure 2A, 2B); 3) The gene 21 

signal distribution of the query sample and the resulting reference CCL to the query 22 
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sample evaluated by Pearson correlation and cosine distance (Figure 2C); 4) The 1 

expression pattern of each signature gene in the query sample and the resulting 2 

reference CCL (Figure 3D). Our CCLA is freely available at 3 

http://bioinfo.life.hust.edu.cn/web/CCLA/. 4 

Discussion 5 

    CCLs derived from human cancers are important biomaterials for cancer biology 6 

exploration, pre-clinical modeling, clinical application and drug validation (Goodspeed 7 

et al. 2016; Wilding and Bodmer 2014). The misidentification and mislabeling of CCLs 8 

are long-standing and widespread problems in biomedical researches for decades 9 

(Vaughan et al. 2017; Christgen and Lehmann 2007; Jäger et al. 2013), and large-scale 10 

cross-contaminations and misidentification of CCLs were reported recently (Horbach 11 

and Halffman 2017; Strong et al. 2014; Teixeira da Silva 2018; Rebouissou et al. 2017; 12 

Bairoch 2018). However, available methods for CCL authentication were based on 13 

DNA polymorphism, which could not be well applied on the transcriptome datasets and 14 

be too cumbersome for biomedical researchers. To address these concerns, we 15 

developed CCLA using gene expression profiles to rapidly authenticate CCLs with 16 

high accuracy and robustness. Furthermore, we built a homonymic web server to 17 

provide free CCL authentication for researchers 18 

(http://bioinfo.life.hust.edu.cn/web/CCLA/). 19 

The authentication of cell lines is a key factor for the reliability of biomedical 20 

researches, which is required for the grant application and manuscript publication 21 
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(Lorsch et al. 2014; Potash and Anderson 2009). DNA polymorphism (e.g. STRs and 1 

SNPs) based approaches for CCL authentication analyze the similarities between the 2 

query sample and reference CCLs in specific loci. Even there are high-throughput 3 

sequencing data for CCLs, the loci-specific polymorphisms needed for CCL 4 

authentication were often omitted from sequencing or quality control procedures or 5 

uncertain RNA editing (Mohammad et al. 2019; Capes�Davis et al. 2013; Richards et 6 

al. 2015; Otto et al. 2017), and different sequencers or different variant calling pipelines 7 

may generate substantial disagreement results (Hwang et al. 2015, 2019; Coudray et al. 8 

2018). Meanwhile, due to the severe genomic instability of CCLs and heterogeneous 9 

NGS profiles, the coincidence of genetic polymorphism from different laboratories and 10 

research projects was less than expected (Hudson et al. 2014; Alkan et al. 2011), thus 11 

different algorithms or workflow designs for the authentication of the same CCL were 12 

required. Moreover, the excess passages and environmental conditions (e.g. drug 13 

exposure) could lead to the acceleration of genetic drift and alteration of alleles 14 

information for CCLs, which may require special algorithms and interpretation for the 15 

profiles of STR or SNP from unstable CCLs (Eltonsy et al. 2012; Marx 2014) and pose 16 

another challenge for the authentication methods using DNA polymorphism (Eltonsy et 17 

al. 2012). Additionally, large number of CCLs used in previous studies were focused on 18 

the functional study of genes or pathways and the alterations of transcriptional profiles 19 

under specific conditions, which lacked enough genomic polymorphisms for CCL 20 

authentication (e.g. microarray and RNA-Seq data). Our CCLA implemented GSVA 21 

algorithm to calculate a robust signal score matrix for CCLs, and then employed 22 
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machine learning approaches to further identify the belongings of input dataset. Instead 1 

of a fixed panel of limited number of STRs or SNPs, CCLA utilized a stable signal 2 

matrix of gene expression profiles to represent CCLs and avoid the bias caused by 3 

different passages of CCLs and the genome instability (Table 1), which in turn 4 

strengthen the authentication power on the experimental treated CCLs (Table 1).  5 

CCLA achieved an excellent authentication power for CCLs both on the RNA-Seq 6 

and microarray data (Table 1). The results of CCLA from comprehensive validation 7 

data (719 samples of 461 CCLs in 21 tissues from 15 independent datasets) 8 

demonstrated that CCLA could authenticate CCLs with high precision: 92.15% 9 

(528/573), 95.11% (545/573) of top1, top3 accuracy for RNA-Seq data; 96.58% 10 

(141/146), 100% (146/146) of top1, top3 accuracy for microarray data (Table 1). 11 

Furthermore, CCLA performed well on CCLs with different passages or drugs or gene 12 

manipulation treatments (Table 1), suggesting the robustness of CCLA on expression 13 

data of various treatments. Additionally, our validation results showed that CCLA had 14 

a good sensitivity and accuracy on distinguishing CCLs from the same tissue origin 15 

(Figure 2D and Supplementary Table S2). In this way, CCLA is an essential tool to 16 

integrate metadata and ensure the reproducibility and reliability of results from cancer 17 

research using CCLs of previous studies.  18 

Although CCLA showed a high accuracy for the authentication of 1,291 CCLs, the 19 

contamination (such as mixed with other cell lines and the Mycoplasma) remained a 20 

serious problem uncovered in this study. The issue of contamination with other cell 21 

lines often exists without obvious signs in experiments, and could result in global 22 
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alteration of signal scores for the donor cell line. Considering the core algorithm, 1 

CCLA may not perform well on the cross-contamination conditions, while the DNA 2 

polymorphism based methods may be a better choice for this case. The contamination 3 

of Mycoplasma could influence cell metabolism and growth, induce chromosomal 4 

abnormalities, and alter transcriptome profiles (Geraghty et al. 2014; Olarerin-George 5 

and Hogenesch 2015). Our results demonstrated that ~30% (21/60) CCLs with 6 

low-level Mycoplasma contamination were identified to their original ones, whereas 7 

nearly 70% (39 out of 60) CCLs with severe Mycoplasma contamination were 8 

authenticated as others (Supplementary Table S4). One possible reason is that the 9 

expression patterns of CCLs with severe Mycoplasma contamination were significantly 10 

changed, which was reported by previous studies (Olarerin-George and Hogenesch 11 

2015; Zhang et al. 2006). In this manner, CCLs with severe contamination of 12 

Mycoplasma may be authenticated as different one by CCLA, and CCLA could serve 13 

as an indirect approach to imply the contamination of mycoplasma (or perhaps used 14 

the wrong CCL). Finally, CCLA consolidated 1,291 commonly used CCLs in this 15 

version and we will keep updating with the increase of standard datasets. No a single 16 

method could provide all of the information for human cell line authentication 17 

(Development Organization Workgroup Asn-0002 2010), and our CCLA could 18 

represent the valuable candidate to identify CCLs on gene expression data. 19 

The authentication of CCLs is an essential issue to avoid fake data and ensure the 20 

scientific reproducibility and credibility. Although DNA polymorphism profiling based 21 

methods are recommended for CCL authentication (Development Organization 22 
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Workgroup Asn-0002 2010), the cost and inconvenience of these methods and the 1 

physical re-access for the original CCLs appear as main roadblocks for their universal 2 

applications on CCLs of previous studies (Freedman et al. 2015). Our transcriptome 3 

profiles based method CCLA could be an important supplemental approach and new 4 

direction. Additionally, most of available methods were not user-friendly for 5 

researchers because they need extra bioinformatics and programming skills. Our 6 

CCLA offered a convenient web server for the scientific community to rapidly 7 

authenticate CCLs and valuable references for journals with less time, money and effort, 8 

and even shed new light for the transcriptome profiles based cell line authentication.  9 

Conclusion 10 

In summary, CCLA is freely available and will largely contribute to the decrease of 11 

CCLs misidentification. To the best of our knowledge, CCLA is the first approach and 12 

the first online website to authenticate CCLs using gene expression data. CCLA can 13 

serve as a useful resource for cancer research and improve the reliability of 14 

biomedical results.   15 
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Materials and Methods  1 

Collection for gene expression profiles of non-redundant reference 2 

cancer cell lines (CCLs) 3 

   To obtain the relatively unbiased and authoritative gene expression profiles of 4 

reference CCLs, we curated the RNA-Seq gene expression profiles of CCLs from 3 5 

generally recognized CCL resources: 1) Cancer Cell Line Encyclopedia (CCLE), 6 

which contains expression profiles of 934 CCLs from RNA-Seq data(Ghandi et al. 7 

2019); 2) Genomics of Drug Sensitivity in Cancer (GDSC), which deposits the 8 

expression profiles of 457 CCLs from RNA-Seq data(Yang et al. 2013); 3) The 9 

E-MTAB-2706 dataset, which is a comprehensive transcriptional portrait of 675 10 

common human CCLs (Klijn et al. 2015b).  11 

Furthermore, we examined the integrity of information for all the CCLs above. 12 

Briefly, all the introductions of reference CCLs were retrieved using an in-house “web 13 

crawler” script programmed by the python language and its libs (e.g. urllib, 14 

BeautifulSoup, and requests etc.). First, CCLs with a similar character string (e.g. 15 

“HCT 116” or “HCT116” or “HCT-116” or “HCT_116”, but not limited in this style) 16 

and the same origin (e.g. from the colon or large-intestine etc.) were deemed as the 17 

same kind of a CCL with different aliases. Then CCLs with similar origins but 18 

large-distance of their names (20%, e.g., the character difference between SW1417 19 

and SW1463, not limited in this situation) were carefully checked and manually 20 

examined from the webpages of the resources. In addition, when a CCL was stored in 21 
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more than one source, the priority of its gene expression profile as a reference in 1 

CCLA was ranked by the following order (CCLE > GDSC > E-MTAB-2706). For 2 

example, the CCLE and GDSC databases simultaneously collected the expression 3 

profiles of HCT116 CCL, and in this case, the gene expression profile of HCT116 4 

CCL in the CCLE resource was served as a reference CCL, while the one in the 5 

GDSC was used as a validation sample for HCT116 CCL. Based on the above 6 

procedures, 1,471 kinds of non-redundant or unique reference CCLs (883 CCLs from 7 

CCLE database, 391 from GDSC, and 146 from E-MTAB-2706) were kept for further 8 

analyses. 9 

Curation of signature genes for CCLs  10 

   First, the gene signatures of each CCL were retrieved from literature mining, 11 

resource collection and de novo detection processes: 1) Literature mining from 12 

publications. In this process, we used several key words (e.g., “maker gene”, 13 

“specifically expressed gene (SEG)”, and “highly expressed gene” etc.) in the 14 

PubMed database to retrieve candidate signature genes for corresponding CCLs; 2) 15 

Resource collection. Two databases Harmonizome and SEGreg (Rouillard et al. 2016; 16 

Tang et al. 2018) were the main resources to collect the signature genes. In 17 

Harmonizome, those candidate signature genes with a score > 1 were used, which 18 

indicates that the gene has a strong positive gene-CCL association. In SEGreg 19 

database, genes with the tag “high” in the corresponding CCL was deemed as 20 

candidate signature genes; 3) De novo detection, SEGs were detected using SEGtool 21 

(Zhang et al. 2018) (default parameters, p-value <= 0.05, highly expressed pattern) on 22 
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gene expression profiles of 1,471 reference CCLs, and the output SEGs were acted as 1 

candidate signature genes as well. 2 

   Second, candidate signature genes from the above three processes were integrated 3 

to explore putative signature genes by the following two steps: 1) For CCLs from the 4 

same tissue (or organ), we calculated and adjusted the ratio of tissue-specific genes to 5 

candidate signature genes. For example, if the ratios of tissue-specific genes (with the 6 

number of 30) were more than 40% in 5 CCLs, we randomly assigned the same 7 

number of tissue-specific genes (e.g., the number is 30/5 = 6 in this case, allowed 1/5 8 

= 20% repetition) to the 5 CCLs; 2) For CCLs with similar candidate signature genes, 9 

we implemented the same operation as the step 1. Furthermore, we measured the 10 

reliability of signature genes in reference CCLs by examining their expression levels. 11 

After the above processes, the retained genes were considered as putative signature 12 

genes. Finally, 180 out of 1,471 CCLs that did not have enough signature genes (less 13 

than 50) were dropped, and the rest 1,291 reference CCLs were kept for further 14 

analyses. 15 

Signature calculation and model construction for CCLs 16 

    To avoid the bias and technical variability of gene expression caused by the noise, 17 

different quantile normalization methods, and various experiment treatments, ssGSEA 18 

algorithm was implemented to calculate the enrichment scores of signature genes for 19 

each CCL, which could serve as robust expression features compared with the raw gene 20 

expression profiles (Figure 1). Thus, the raw expression profiles of reference CCLs 21 

have been represented by ssGSEA scores of signature genes sets, and each CCL has the 22 
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same 1,291 signatures, whose expression values are ssGSEA scores. Next, we 1 

constructed a 1,291 x 1,291 signature matrix for the reference CCLs, in which, each 2 

row is the corresponding signature values in 1,291 CCLs, and columns represent CCLs.  3 

    Furthermore, t-distributed stochastic neighbor embedding (t-SNE) algorithm was 4 

used for the classification and clustering of reference CCLs based on their signatures 5 

(parameters: dims = 3, perplexity = 50, max_iter = 5000, theta = 0, pca = TRUE), and 6 

three groups were obtained. Subsequently, we employed the random forest (RF) 7 

algorithm to extract features from reference CCLs with their group labels determined 8 

by t-SNE (the importance of each feature was represented in the Supplementary Table 9 

S5), and then built a prediction model that would been applied to estimate the potential 10 

group for the query CCL (Figure 1). 11 

CCL authentication 12 

In order to accurately authenticate CCLs, CCLA calculates the ssGSEA score of 13 

signature genes for the query CCL, then applies the prediction model (built by RF 14 

algorithm in the model construction step above) to pre-classify the candidate group of 15 

the query CCL (Figure 1). Then CCLA employs Pearson correlation and cosine 16 

distance to measure the similarities and divergences between the query CCL and each 17 

reference CCL in the pre-classified category. Then, CCLA ranked reference CCLs in 18 

the given category by Pearson correlation coefficient and cosine distance. The 19 

reference CCL with the highest similarity and least divergence was considered as the 20 

putative belonging of the query CCL, and the top 5 CCLs were also listed as candidate 21 

results.  22 
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Validation data collection 1 

Both gene expression profiles of CCLs from RNA-Seq and microarray platforms 2 

were curated to evaluate the accuracy of CCLA. Three kinds of CCLs with gene 3 

expression profiles were collected: 1) Public untreated CCLs from different 4 

laboratories; 2) Different passages and treatments of CCLs; 3) Well-known 5 

misidentified CCLs (Table 1).  6 

We employed the following criteria to judge a successful authentication in CCLA: 7 

1) The consistency between paper declared CCL and the results of CCLA. For example, 8 

if a CCL was identified as another one by CCLA which was different from the original 9 

paper, we deemed this as an inaccuracy authentication, otherwise is correct, expect for 10 

the well-known misidentified or contaminated CCLs (such as MDA-MB-435 cell line, 11 

the American Type Culture Collection (ATCC) reported that the MDA-MB-435 cell 12 

line is not breast cancer but actually melanoma related cell line); 2) For the well-known 13 

misidentified CCLs (e.g. MDA-MB-435 cell line), all the MDA-MB-435 strains were 14 

considered as the melanoma cell lines, and if any MDA-MB-435 cell line was 15 

identified as the melanoma origin, we deemed this authentication was a correct case. 16 

  17 
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Figure legend 

Figure 1 The data resources and algorithm of CCLA. (A) The resource 

collection and model construction for reference CCLs. The reference data of CCLs in 

CCLA were from three resources: CCLE, GDSC and CHCC (E-MTAB-2706 dataset 

in EBI). The gene signatures of CCLs were from three parts: 1) Text mining from 

publications; 2) SEGs collection from databases; 3) De novo detection by R package 

SEGtool. (B) The core steps of CCLA algorithm.  
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Figure 2 The accuracy assessment of CCLA. (A) The number of expressed 

signature genes in query sample and matched reference CCL; (B) The amount of 

missing signature genes in a query sample compared with the reference CCL; (C) The 

ssGSEA scores of signature gene sets in query sample and reference CCL. The X-axis 

indicates signatures of the reference CCL, while the Y-axis shows the ssGSEA scores 

of signature gene sets in the query sample (grey color) and candidate CCL (red color); 

(D) The accuracy of CCLA in different tissues. The Y-axis is the accuracy of 

validation datasets in corresponding tissue, and the X-axis shows the number of 

validated CCLs in the tissues. The top 1 accuracy means the target CCL ranks first of 

the outcomes of CCLA, while the top 3(5) accuracy indicates the target CCL appears 

in the first 3(5) results. The “cor” means the Pearson correlation coefficient between 

the accuracy and the reference CCLs in tissues, where the p is the P-value of the 

correlation. The low correlation here implies the accuracy of CCLA has no 

dependency with the number of reference CCLs per tissue. 
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Figure 3 The interface of CCLA web server. (A) A snapshot of the 

authentication page; (B) A partial of the authentication result page for the query 

sample in CCLA web server; (C) The detail results of top 5 candidate CCLs for the 

query sample; (D) The expression profiles of signature genes in the query sample and 

the reference CCL. 
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Tables 

Table 1 Validation datasets and corresponding accuracies of CCLA 

 

Datasets #samples #CCLs Accuracy (%) Exp. Treatment 

Top1 Top3 Top5 

E-MTAB-2706 399 399 93.98 96.49 97.24 TPM Untreated 

GDSC 112 112 81.25 87.50 93.75 TPM Drug 

GSE32323 10 5 90.00 100 100 Array Drug and control 

GSE54979 9 1 100 100 100 Array Drug and control 

GSE55624 18 1 100 100 100 Array Drug and control 

GSE66837 12 1 100 100 100 Array Drug and control 

GSE73318 36 6 100 100 100 RPKM Drug and control 

GSE83654 48 3 93.75 100 100 Array Drug and control 

GSE101966 8 1 100 100 100 FPKM Knock out and control 

GSE111485 18 1 100 100 100 RPKM Passages and control 
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GSE57820 12 1 100 100 100 Array miR-135b overexpression 

GSE61692 4 1 100 100 100 Array Overexpression and control 

GSE23655 12 1 100 100 100 Array Overexpression and control 

GSE65168 8 1 100 100 100 Array Hypoxia and control 

GSE7458 13 1 92.31 100 100 Array Degree and control 

#samples: The number of samples in the dataset; #CCLs: The number of CCLs in the study; TopX: The ratio of correct CCLs in the top X records in the 

outcome of CCLA; Exp.: The normalization method of gene expression data used in the study; Treatment: The treatment(s) used in the study. 

 

Table 2 The comparison of CCLA with CeL-ID 

 CCLA CeL-ID 

Data type Expression data SNPs from RNA-Seq reads  

Support platform RNA-Seq & microarray RNA-Seq 

Expression data Y N 

Time 10s Excessive time 

Pre-condition None Professional skills and several software  

for SNP calling and pattern match 
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Convenience Web server No mature tool  

Capacity 1,291 unknown 

Cost Free Free 
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Supporting Information 

Supplementary Table S1: Detailed results of authenticated CCLs for 

the test datasets. 

Supplementary Table S2: The accuracy of CCLA on different tissues.  

Supplementary Table S3: The authentication results of 

MD-AMB-435 datasets. 

Supplementary Table S4: The authentication results of CCLs 

contaminated by Mycoplasma. 

Supplementary Table S5: The importance of features in the predicted 

model from RF algorithm. 
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