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Abstract. Complex tissues are composed of a large number of different types

of cells, each involved in a multitude of biological processes. Consequently, an
important component to understanding such processes is understanding the

cell-type composition of the tissues. Estimating cell type composition using

high-throughput gene expression data is known as cell-type deconvolution.
In this paper, we first summarize the extensive deconvolution literature by

identifying a common regression-like approach to deconvolution. We call this
approach the Unified Deconvolution-as-Regression (UDAR) framework. While

methods that fall under this framework all use a similar model, they fit using

data on different scales. Two popular scales for gene expression data are log-
arithmic and linear. Unfortunately, each of these scales has problems in the

UDAR framework. Using log-scale gene expressions proposes a biologically

implausible model and using linear-scale gene expressions will lead to statis-
tically inefficient estimators. To overcome these problems, we propose a new

approach for cell-type deconvolution that works on a hybrid of the two scales.

This new approach is biologically plausible and improves statistical efficiency.
We compare the hybrid approach to other methods on simulations as well as

a collection of eleven real benchmark datasets. Here, we find the hybrid ap-

proach to be accurate and robust.deconvolution, gene expression, microarray,
RNA-seq

1. Introduction

The tissues of multi-cellular organisms are typically comprised of a combina-
tion of many types of cells. As each cell type has its own set of functions and
behaviors, the composition and interaction of different cell types is integral to the
function and behavior of the tissues. Thus, studying cell-type composition has long
been of broad biological interest. Examples of the importance of cell type com-
position abound from the biological literature. In the study of infectious diseases,
the composition of white blood cells is important as it is indicative of many types
of dysfunctions (George and Panos, 2007). For example, the number of T-cells
among human peripheral blood mononuclear cells (PBMCs) spikes after a Lyme
infection (Bouquet et al., 2016). In neuroscience, the composition of brain cells has
long been a subject of study. For example, studying the relative composition of
microglia in human brains is of interest for those studying developmental dynamics
(Ayana et al., 2018). Similarly, understanding changes in the number of neuron
and glial cells has been the subject of extensive study with regards to Alzheimer’s
disease (Mohammadi et al., 2015).
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For this reason, methods to estimate cell-type proportions from high-throughput
genomics data have been extensively studied over the past two decades (for com-
prehensive literature reviews see Gaujoux (2013) or Mohammadi et al. (2015)).
Estimating cell-type proportions is known as cell-type deconvolution. Given gene
expression data from sample comprised of a mixture of cell types, deconvolution
methods estimate the proportions of the constituent cell types. These cell-type
proportions may be of interest in their own right, for example, to track the changes
in cell-type composition over time (Newman et al., 2015). In other cases, the es-
timated cell-type proportions are used as a means of deconfounding differential
expression analysis (Capurro et al., 2015). In this case, the cell-type proportions
can help explain observed gene-expression differences across samples. By including
the estimated proportions in a model, one can separate differences coming from
within-cell-type changes in gene expression and those differences coming purely
from cell-type-compositional differences among samples (Hagenauer et al., 2016).

In this paper, we present a critique of existing cell-type deconvolution methods
and present a new method for cell-type deconvolution that addresses the issues we
raise. First, in Section 2, we characterize existing deconvolution literature, propos-
ing a new unified deconvolution framework called the Unified Deconvolution-as-
Regression (UDAR) framework. The UDAR framework summarizes much of the
existing deconvolution literature, including many popular deconvolution methods.
It demonstrates that these methods employ a common unified model of the data
and mainly differ in how their parameter estimates are fit. One important fitting
consideration is data scale. Broadly, methods either fit using linear-transformed or
log-transformed gene expression data. Unfortunately, each of these scales has prob-
lems. We will show that using log-scale gene expressions proposes a biologically
implausible model and that using linear-scale gene expressions will lead to statisti-
cally inefficient estimators. Using the UDAR framework as a point of comparison,
in Section 3 we introduce a hybrid-scale approach for cell-type deconvolution that
uses aspects of fitting on both scales. Subsequently, in Section 4, we evaluate the
performance of the new approach across a wide range of simulated data as well
as eleven real benchmark datasets. These comprehensive analyses show that the
proposed approach produces accurate and robust estimates of cell-type proportions.

2. A Unified Framework for Existing Deconvolution Models

Let Y ∈ RN be the measurements ofN gene expressions in a mixture sample ofK
types of cells and R ∈ RN×K be reference expressions of these N genes across the K
constituent cell types. Furthermore, let p = (p1, . . . , pK) be the proportions of the
K cell types in the mixture sample. Implicit in being proportions is that p must

satisfy the sum-to-one (STO) constraint:
∑K
k=1 pk = 1, and the non-negativity

(NN) constraint: pk ≥ 0 for k = 1, . . . ,K. That is, p ∈ ∆K−1, the (K − 1)

probability simplex ∆K−1 = {x ∈ RK : xk ≥ 0 and
∑K
k=1 xk = 1}.

The deconvolution problem is that p is unknown and we want to estimate it. In
this section we introduce a new unified model for cell-type deconvolution called the
Unified Deconvolution-as-Regression (UDAR) framework. The UDAR framework
posits that Y , R and p are related through the linear model

(1) Y = Rp+ ε
2
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for a random error ε. Estimating p under this model is equivalent to solving a
constrained regression of Y on R where the coefficients p must live in ∆K−1. Hence,
using this model is treating deconvolution as regression. Note that we only consider
problems where Y and R are known and we are interested in estimating p. We do
not consider the related problem where R is also unknown. For a discussion of this
problem see Gaujoux (2013) or Mohammadi et al. (2015) or Wang et al. (2016).

Nearly all existing methods model deconvolution following Equation (1), however
a few exceptions exist, e.g. Hunt et al. (2019). What differs among the methods
is the approach by which p is estimated. There are common themes among how
estimates of p̂ are fit. Typically, methods specify: (1) a loss function L : RK → R+

that determines model fit L(p) for putative proportions p, (2) an optimization space
Π ⊆ RK for p, and (3) a post-hoc adjustment function ϕ : Π→ ∆K−1 mapping from
the optimization space Π to the desired simplex ∆K−1. They then estimate p by
minimizing L over Π and applying ϕ. This approach is described in in Algorithm 1.

Algorithm 1 UDAR Fitting

Step 1: Minimize L over Π to get p∗:

p∗ = arg minp∈ΠL(p)

Step 2: Apply ϕ to p∗ to get p̂:

p̂ = ϕ(p∗).

The idea behind this approach is that, while ideally p̂ is the minimizer of L over
∆K−1, solving such a constrained minimization problem is difficult. Thus, UDAR
methods solve an easier relaxation of this problem, minimizing L over Π ⊇ ∆K−1

and then making post-hoc adjustments to p∗ to produce a final estimate p̂ ∈ ∆K−1.
A large number of existing deconvolution methods fit into this framework under

appropriate choices of L, Π, and ϕ. The most common choice of loss is the squared-
error loss (Lu et al., 2003; Abbas et al., 2009; Wang et al., 2006; Gong et al., 2011;
Qiao et al., 2012; Racle et al., 2017). Other loss functions used include an elastic net
penalized loss (Altboum et al., 2014), a support-vector regression approach which
is equivalent to using an ε-insensitive loss (Newman et al., 2015), and a Bayesian-
likelihood approach based on Latent Dirichlet Allocation that is equivalent to letting
L be a likelihood-based loss (Qiao et al., 2012; Blei et al., 2003). The optimization
space Π is typically one of three spaces: (1) ∆K−1 (Gong et al., 2011), (2) RK+ ,

the positive orthant of RK (Qiao et al., 2012; Racle et al., 2017), or (3) RK (Lu
et al., 2003; Abbas et al., 2009; Wang et al., 2006; Newman et al., 2015). In the
first case where Π = ∆K−1 no post-hoc adjustments are necessary and so ϕ is the
identity function. In the second case where Π = RK+ , since p∗ already satisfies
the NN constraint ϕ re-normalizes p∗ to enforce the STO constraint and hence

p̂k = ϕ(p∗)k = p∗k/
∑K
t=1 p

∗
t (Qiao et al., 2012; Racle et al., 2017). Finally, in

the first case of unconstrained optimization where Π = RK , ϕ zeros out negative

coefficients and then re-normalizes so that p̂k = ϕ(p∗)k = (p∗k)+/
∑K
t=1(p∗t )+ where

(·)+ = max(·, 0) is the positive part (Lu et al., 2003; Abbas et al., 2009; Wang
et al., 2006; Newman et al., 2015). We call this latter post-hoc adjustment the
“zero-then-renormalize” adjustment.
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2.1. Scale Considerations for Deconvolution. An important question for the
UDAR framework is the appropriateness of this model for the deconvolution prob-
lem. One important modeling consideration is data scale. Typically, gene expres-
sions are either linearly transformed, e.g. TPM (Conesa et al., 2016), or logarith-
mically transformed, e.g. RMA, (Irizarry et al., 2003). In the former case, we say
the data is on the linear-scale and in the latter we say the data is on the log-scale.
Some deconvolution methods assume linear-scale expressions like in Newman et al.
(2015), some methods assume log-scale expressions as in Qiao et al. (2012), most
make no explicit assumptions about data scale at all. In the following sections we
will consider the appropriate data scale for the UDAR model. This will primarily
concern the two major components of the model: (1) the linear mean-structure Rp
and (2) the additive error-structure ε.

2.1.1. Mean Modeling. Assume we have a mixture sample comprised of cell types
k = 1, . . . ,K in proportions p1, . . . , pK . First, notice that if ηn is the amount of
mRNA in our mixture sample coming from gene n and ηnk is the amount of that
mRNA in the sample coming from type k cells then,

(2) ηn =
K∑
k=1

ηnk.

Now, assume we also have some reference sample of type k cells. Let the amount
of mRNA from gene n in the reference sample be η∗nk. Since the mixture sample is
comprised of a proportion pk of type k cells and the reference sample is 100% type
k cells, then we expect that

(3) ηnk ≈ pkη∗nk.

Essentially, this assumes that type k cells in the mixture behave as if they were
a random sample of the type k reference cells. We assume that this relationship
is only approximate because the type k reference cells may not exactly mimic the
type k mixture cells. For example, the microenvironment of the cells in the mixture
may modify gene expression.

Combining Equations (2) and (3), we get that

(4) ηn =
K∑
k=1

ηnk ≈
K∑
k=1

pkη
∗
nk.

Now assume that the linear-scale measured gene expressions are proportional to the
amount of mRNA so that Yn ≈ γαnηn and Rnk ≈ αnη∗nk for constants γ and {αn}.
The proportionality constants αn capture gene-specific effects like probe affinity
(for microarray data) or length-biases (for RNA-seq). The multiplier γ captures
global differences between the mixture and references. This includes effects like
sequencing depth or amount of mRNA. Again, we assume approximate equality
because the measurement process may introduce random errors. Combining with
Equation (4) we now get that

Yn ≈ γαnηn ≈ γαn
K∑
k=1

pkη
∗
nk = γ

K∑
k=1

pkαnη
∗
nk ≈ γ

K∑
k=1

pkRnk.

As is customary, assume that Y and R have been normalized to account for global
expression differences, by e.g. TPM (Conesa et al., 2016), so that γ = 1. Then the

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857805doi: bioRxiv preprint 

https://doi.org/10.1101/857805
http://creativecommons.org/licenses/by/4.0/


above equation shows that the linear model Y ≈ Rp proposed by UDAR is correctly

specified for linear-scale gene expression measurements since Yn ≈
∑K
k=1 pkRnk.

However, even if γ = 1, the linear mean structure is mis-specified for log-scale
gene expressions as

log (Yn) ≈ log (αnηn) ≈ log

(
K∑
k=1

αnpkη
∗
nk

)
6≈

K∑
k=1

pk log (αnη
∗
nk) ≈

K∑
k=1

pk log (Rnk)

since we can’t interchange a sum and a log. Thus log (Yn) 6≈
∑K
k=1 pk log (Rnk)

and so a linear mean-structure as proposed by UDAR does not make sense on the
log-scale. For a toy example of this principle see Figure 1.

2.1.2. Error Modeling. In contrast to the mean-structure, error assumptions are
most reasonable for log-scale expressions. While most methods simply note that
Y ≈ Rp and do not explicitly include an error term ε in their models, their loss
functions are optimal for typical regression-like error assumptions about ε. For
example, deconvolution methods minimizing the squared-error loss are are optimal

when εn
iid∼ N(0, σ2) with some constant error variance σ2 > 0. Such regression

assumptions are most appropriate on the log-scale. Indeed, it has been widely noted
that errors are well-modeled as normal with approximately constant variance across
expression levels for log-scale gene expression data (Qiao et al., 2012). Conversely,
error for linear-scale expression data are right-skewed and the variance tends to
increase with increasing mean expression (Qiao et al., 2012; Hardin and Wilson,
2009; Weng et al., 2006; Tu et al., 2002; Zwiener et al., 2014).

3. A Hybrid Model for Deconvolution

The previous two sections present a problem for existing deconvolution methods.
If they follow the UDAR model on the log-scale, they will have a mis-specified mean.
Conversely, if they propose the UDAR model with linear-scale expressions, the error
assumptions are un-realistic. To avoid both of these problems, we propose a new
method based on a hybrid of the two scales. Our hybrid model proposes that

(5) log(Yn) = θ + log

(
K∑
k=1

Rnkpk

)
+ εn

where εn
iid∼ N(0, σ2). Again, Yn and Rnk are the linear-scale gene expression. Our

hybrid-scale model proposes additive Gaussian error after a log transformation
and thus uses an appropriate scale for errors. Furthermore, the mean-structure
in Equation 5 implies log(Y ) ≈ θ + log(Rp), or equivalently, Y ≈ eθRp. Thus
it proposes a plausible linear-mixing structure on the linear-scale as discussed in
Section 2.1.1. Indeed, eθ is precisely the term γ mentioned in this section. Thus
the hybrid model explicitly includes a term that allows it to naturally account for
systematic differences between the mixture and reference expressions.

3.1. Fitting The Hybrid Model. To estimate p under this model, we let p̂ be
the MLE so that

(p̂, σ̂2, θ̂) = arg minp∈∆K−1,σ2∈R+,θ∈R`(p, σ
2, θ)
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and ` is the joint log-likelihood function of p, σ2, and θ. A valuable property of
this hybrid model is that this optimization problem can be easily solved using an
approach analogous to the UDAR fitting procedure.

Define λn(p) = log(Yn)−log
(∑K

k=1Rnkpk

)
and let S2(p) be the sample variance

of the λn(p),

S2(p) =
1

N

N∑
n=1

(
λn(p)− λ̄(p)

)2
where λ̄(p) = N−1

∑N
n=1 λn(p). It can be shown (see Supplementary Section 1)

that p̂ is the minimizer of S2 so that

p̂ = arg minp∈∆K−1
S2(p).

Furthermore, since S2 is invariant under scaling so that S2(cp) = S2(p) for any
c ∈ R+ we do not need to optimize over ∆K−1 directly. Instead, we can solve this
optimization problem over any set containing ∆K−1 and simply re-normalize. Let
p∗ be any minimum of S2(p) over p ∈ Π where Π is any set satisfying ∆K−1 ⊆ Π ⊆
RK+ so that

p∗ = arg min
p∈Π

S2(p).

(Notice that this minimum is not unique since if p∗ minimizes S2 then so does cp∗.)

Then if T ∗ =
∑K
k=1 p

∗
k is the sum of the elements of p∗, the MLE for p is p̂ = p∗/T ∗.

Full details for this fact can be found in Supplementary Section 1. This motivates
Algorithm 2, a simple procedure to estimate p̂.

Algorithm 2 Hybrid Fitting Procedure

Step 1: Minimize S2 over the parameter space Π = [0, 1]K ⊇ ∆K−1 to get p∗:

p∗ = arg min
p∈Π

S2(p)

Step 2: Form p̂ by modifying p∗ to ensure it satisfies the sum-to-one (STO)
constraint by defining

p̂ = p∗/T ∗

where T ∗ =
∑K
t=1 p

∗
t .

This procedure allows us to find the MLE without trying to minimize ` over
p, σ2 and θ simultaneously. Furthermore, like the UDAR model, this procedure
also allows us to optimize p over a relaxation Π = [0, 1]K ⊇ ∆K−1 instead of
having to directly search over ∆K−1. Also, like Algorithm 1, we re-normalize p∗ to
form a p̂ that is in ∆K−1. However, while for the UDAR framework the post-hoc
adjustments were a heuristic to enforce constraints on p̂, our re-normalization is
not heuristic. The two steps in Algorithm 2 precisely allow us to recover the MLE
of the hybrid model without solving a difficult optimization problem over ∆K−1.
While we could have optimized S2(p) over any space Π where ∆K−1 ⊆ Π ⊆ RK+ ,

letting Π = [0, 1]K greatly simplifies the optimization problem and allows us to use
standard global optimization routines with box constraints to find p̂.

In this section we considered how to estimate p as the MLE. Here, we showed
that finding the MLE reduces to minimizing a variance-based loss S2(p). More
generally, one could use the model in Equation 5 and estimate p by minimizing
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other loss functions. For example, one could consider L1 or L2 penalized losses,
or an ε-insensitive loss. Thus, the model proposed by Equation 5 is general and
extensible in many of the same ways as the UDAR framework.

3.2. References, Marker Genes, and Weights. We are considering the decon-
volution problem where there is some known reference data available. This data is
typically obtained from online gene expression repositories like GEO (Edgar, 2002)
or from specific profiles complied for cell-type deconvolution.

Such reference data is used in two major ways. First, the reference data is used
to create the reference matrix R so that Rnk is the typical expression of gene n in a
sample purely of cells of type k. Often, there exists more than one reference sample
for a particular cell type. If one has νk reference profiles of cell type k, then Rnk
is typically average expression across the profiles so that Rnk = (νk)−1

∑νk
r=1Rnkr

where Rnkr is the gene expression of gene n in the rth reference of cell type k.
In addition to using reference data to form the reference matrix R, this reference

data is often used to find marker genes. Marker genes are genes that are particularly
highly expressed in one cell type but not the others. Typically marker genes are
identified by comparing gene expression across cell types in the reference data using,
for example, a t-test. Once identified, deconvolution methods fit using only the
subset of marker genes. Let M ⊆ {1, . . . , N} be the set of marker genes. Then
the use of marker genes can be viewed as variable selection where we only fit using
those n ∈ M. Alternatively, we can view the marker genes as a weighting of the
loss function. Under the UDAR model, fitting using M is equivalent to using a
weighted loss function with weights wn = 1(n ∈M).

Our fitting approach in Algorithm 2 can also encompass marker genes as variable
selection or a weighted loss. For example, we can let p̂ be the MLE of p obtained
by minimizing S2(p) over only those n ∈ M. Equivalently, we can calculate S2(p)
as a weighted sample variance with weights wn ∝ 1(n ∈ M). In the case where
we have more than one reference of each cell type we may extend this approach by
relaxing the equal variance assumption of our model, estimating the variances of the
marker genes individually, and weighting inversely accordingly to these variances.
This allows us to incorporate variance information from the reference data if it is
available.

4. Results

4.1. Comparison of Methods on Simulated Data. To evaluate the efficacy of
the hybrid approach as compared to the UDAR model we evaluate the methods on
simulated heterogeneous mixtures of cells. We simulate the mixtures using reference
RNA-seq profiles of brain, liver and muscle cells from Parsons et al. (2015). First we
define R ∈ RN×K as the reference profile matrix of the N = 23, 459 genes profiled
in the K = 3 reference samples (Parsons et al., 2015). Thus R is comprised of
linear scale (untransformed) read counts. We then generate mixture proportions p
uniformly from ∆K−1 and form a simulated mixture profile Y ∈ RN so that

(6) log(Yn)
iid∼ N

(
log((Rp)n), τD2

)
where D2 is the sample variance of the vectorized log-scale reference matrix and τ
is a variance multiplier parameter we are free to choose.

To estimate the proportions from this simulated data, we consider four ap-
proaches. First we use the hybrid approach outlined in Algorithm 2. We compare
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this to two simple regression approaches and one more sophisticated support-vector
regression approach from the literature, cibersort (Newman et al., 2015). All three
of the approaches against which we compare follow the UDAR framework to solve
the regression problem. The simple regression approaches follow the UDAR model
using a squared-error loss L, optimizing over Π = RK , and applying the simple
zero-then-renormalize post-hoc adjustments to ensure the estimates live in ∆K−1.
The simple form of L and Π mean that these approaches are equivalent to modified
regressions on linear and log-scale data, respectively. We call the linear-scale version

a “Regression” approach because it is equivalent to letting p̂k = (p∗k)+/
∑K
t=1(p∗t )+

where p∗ are the coefficients obtained from regressing Y on R. We call the log-
scale version approach “LogRegression” because it is equivalent to the regression
approach but where the p∗ are the coefficients obtained from regressing log(Y ) on
log(R). The fourth method, cibersort, also falls under the UDAR framework us-
ing an ε-insensitive loss (i.e. using support-vector regression) and optimizing over
Π = RK . It then applies the zero-then-renormalize post-hoc adjustment to the
estimated parameters. For all four methods we subset Y and R to a set of M � N
marker genes chosen by an ANOVA on the reference data. The exact same set of
marker genes are used to fit the four methods.

In Figure 2 we plot scatter plots of the estimates against the truth for the hybrid
approach, the two regression approaches, and cibersort. There are four sub-plots
for four different simulation settings. The simulation settings cover a low amount
of noise (τ = 1/4), a large amount of noise (τ = 1), and a low number of markers
(M = 10) and a large number of markers (M = 100). For each setting and method
we estimate the proportions for 500 simulated samples. From these plots we an see
that the hybrid-scale approach generally out-performs the other approaches. The
LogRegression approach does comparatively poorly because it has a mis-specified
mean and thus an obvious bias manifested in the S-shaped relationship between the
truth and the estimates. The other three approaches do not exhibit this bias. On
average, their estimates generally track the true mixing proportions. Instead of the
S-shaped curve, we see that for these methods the points in Figure 2 have a scatter
centered around the dotted line. Nonetheless, linear-scale regression and cibersort
both perform worse than the hybrid approach because they have higher variance
estimates. This is evidenced from the higher scatter of the estimates around the
dotted line in Figure 2. Thus, the estimates for the hybrid approach are typically
closer to the truth than for the other two linear-scale methods (Regression and
cibersort). The higher variance of Regression and cibersort follows from the fact
that they mis-specify the error scale leading to statistically inefficient estimates. In
Supplementary Figure 1 we display boxplots of errors for the four methods over
a larger range of simulation settings. These plots show largely the same story
observed in Figure 2.

To explore the role of the Gaussianity assumption on performance, in Figure 3 we
construct similar scatter plots for data simulated using a negative binomial model
for the expressions. The simulations are similar to those in Equation 6, however we
let

Yn
iid∼ NegBinom (mean = (Rp)n, size = 1/τ)

so that Yn has mean µ = E [Yn] = (Rp)n and variance Var (Yn) = µ + µ2τ . In
Figure 3 we again consider simulation settings for low error (τ = 1/4), high error
(τ = 1) and for a small number of markers (M = 10) and a larger number of markers
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(M = 100). We see similar behavior for the negative binomial simulations as in the
Gaussian case. The hybrid approach out-performs the other approaches, suggesting
that the model is relatively insensitive to an exact Gaussian error assumption. The
hybrid-scale approach performs better than the other approaches because it uses
reasonable scales for both the mean structure and the errors. This leads to both a
lower bias and lower variance estimates than the other methods. In Supplementary
Figure 2 we display boxplots of errors for the negative binomial simulations over a
wider range of simulation settings. These figures tell much the same story.

4.2. Comparison of Methods on Real Data. To evaluate the performance of
the four deconvolution methods on real data we use a collection of existing de-
convolution benchmark datasets (see Supplementary Table 1). In all, these eleven
datasets cover a range of realistic deconvolution settings. Across the datasets there
is a range of cell types, number of cell types, organisms (human and rat), and tech-
nologies (RNA-seq and microarrays). Some datasets contain reference data created
as part of the same sequencing experiment, while other datasets contain third-party
references. For most of the datasets, the true mixing proportions are known be-
cause the cells were mixed in known proportions before expressions were assayed.
However for three of the datasets the true proportions are the cell type proportions
reported by a physical sorting technique applied after the gene expression assays.

The choice of marker genes is an extremely important component in the ap-
plication of cell type deconvolution methods as accuracy is strongly influenced by
the choice of markers. For example, consider Figure 4. In this figure we plot
the error for the dataset from Gong et al. (2011) for the four methods. Error is
measured as absolute value of the difference between the true proportions and
their predictions. We use the exact same marker genes for each method, but
estimate the cell type proportions using a range of different numbers of mark-
ers (M). We let M vary following an approximate exponential sequence M =
1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, approximately doubling the number
of marker genes at each step. We can see from this figure that estimation perfor-
mance depends heavily on the number of marker genes used. For example, cibersort
does poorly for a small number of markers, but sees improvement for a large num-
ber of markers. For each method, there is an optimal number of marker genes to
use. For the log-scale regression and cibersort this is about 500, for the hybrid ap-
proach this is about 100, and for the linear-scale regression, performance appears
to improve as we include more marker genes.

Importantly, the optimal number of marker genes depends as much on the par-
ticular dataset as on the particular method. As an example, consider accuracy as a
function of number of marker genes in Figure 5 for the data from Shi et al. (MAQC,
2006). Here, error seems to decrease for all methods as we increase the number of
marker genes. For this dataset the plot suggests that we should use thousands of
marker genes for deconvolution. We display similar plots for the other datasets in
Supplementary Figures 3-11. These show that the optimal number of marker genes
varies widely from dataset to dataset and method to method.

Unfortunately, while deconvolution performance is greatly affected by the choice
of marker genes, there is generally not a known universal way to choose marker
genes that will be optimal for all possible datasets. Thus, an important advantage
of the hybrid approach is that its performance is consistently good for a wide
range of marker genes. In Figure 6, for each dataset we plot the best-case and
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worst-case error of each method across all of our possible choices of M . We see
that for five (a plurality) of the datasets (Becht, Gong, Liu, Newman PBMC and
Parsons) the hybrid approach has better performance than other methods for the
worst-case choice of marker genes. Furthermore, for the remaining datasets the
hybrid approach has a performance within 1% of the other methods except on the
Newman FL and Shen-Orr datasets (see Supplementary Figures 12 and 13). All
together then, in a worst-case analysis, the hybrid approach performs better, or
within 1%, of all other methods on nine out of the eleven datasets.

This worst-case analysis is important because generally there is little guidance
apart from heuristics in how to choose the optimal number of marker genes. Thus,
the hybrid approach has the desirable property that it will not perform too poorly
if a non-optimal set of marker genes is chosen. In addition to having the best worst-
case error, the hybrid approach typically has the best best-case error. In six of the
eleven datasets (Abbas, Becht, Linsley, Liu, Shen-Orr, Shi) if we were to choose the
optimal number of markers for each method, the hybrid approach would have the
lowest error. While it is unlikely that we will choose the exact optimal markers for
any dataset or method, the hybrid approach at least has the potential to strongly
out-perform other methods. Among the remaining six datasets where the hybrid
approach does not have the best best-case error, it is within 1% of the performance
for all other methods except on the Parsons dataset (see Supplementary Figure 12
and 13).

5. Conclusion

Estimating cell-type proportions is an important problem with a wide range of
applications across the spectrum of biological fields. Many existing deconvolution
approaches estimate cell-type proportions using modified regression approaches as
described in the UDAR framework. Unfortunately, fitting such a model using either
linear-scale or log-scale gene expressions will be sub-optimal. Log-transforming gene
expressions before fitting under a UDAR model biases the estimates. However a
regression-like fit using linear-scale gene expressions assumes an un-realistic error
model for gene expression measurements. Our hybrid approach tackles both of
these problems proposing a model that uses a plausible mean-structure while also
maintaining reasonable error assumptions. This leads to an estimate of cell-type
proportions that are robust and accurate. In simulations, we saw that the hybrid
approach reduces estimation variance without introducing a bias. We also saw that
the model performed well under violations of Gaussian assumptions. In an analysis
of real data, it was shown that cell-type deconvolution is sensitive to choice of
marker genes. Unfortunately, this is compounded by the fact that for real data
there is often no easy way to find an optimal set of marker genes. For this reason,
the low variance estimates produced by the hybrid approach typically had the
lowest error in a worst-case analysis across a range of marker genes. Furthermore,
the approach also had the lowest error in a best-case analysis, showing that the
variance reduction does not come at the expense of accuracy.

More broadly, the model proposed in this paper opens the door to many exten-
sions and generalizations. While we estimate the proportions p in Equation 5 using
a maximum-likelihood approach, one could combine this model with some of the
other insights in the deconvolution literature and fit p using more sophisticated loss
functions like L1 or L2 penalized losses, or ε-insensitive losses. Thus, the approach
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we describe has the potential to be the basis for many new, hybrid-scale, approaches
to deconvolution.

In conclusion, we note that understanding cell-type heterogeneity among com-
plex biological tissues is a problem with broad and persistent biological interest.
Furthermore, an increase in high-quality cell-type reference data from bulk and
single-cell sequencing technologies makes cell-type deconvolution an increasingly
important tool for the analysis of high-throughput data. While historically decon-
volution methods have focused on genomic data, the robust nature of the method
we have proposed means it will likely be highly applicable to other high-throughput
data such as methylation data or ATAC-seq. We hope to explore such directions
in future work.

6. Software

An implementation of the hybrid approach and examples of how to use the
method can be found online at dtangle.github.io.

Supplementary Material

Supplementary material includes a proof of the MLE and figures for simulation
and real-data analysis.
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Figure 1. The mixture sample is 50% of A and 50% of B. The
orange ovals represent mRNA from a specific gene. Since the ref-
erence of type A typically has four mRNA we expect 4 × .5 = 2
mRNA in the mixture to come from ref. A. Similarly, since ref. B
typically has six mRNA, we expect 6× .5 = 3 mRNA in the mix-
ture to have come from ref. B. In total, we get 5 = 4× .5 + 6× .5
mRNA in the mixture. Thus the amount of mRNA in the mix-
ture is a linear mixture of the amount of mRNA. This does not
work if we logarithmically transform the counts. In that case we
would expect, on the log-scale, to get log(4)× .5+log(6)× .5 ≈ 1.6
mRNA. Exponentiating back to the linear scale, this is ≈ 4.9, thus
under-counting the true amount of mRNA.
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Figure 2. Evaluation of methods on simulated mixture data with
Gaussian noise for different values of the variance multiplier (τ) and
number of marker genes (M). (A) τ = .25, M = 10, (B) τ = .25,
M = 100, (C) τ = 1, M = 10, (D) τ = 1, M = 100.
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Figure 3. Evaluation of methods on simulated mixture data from
a negative binomial model for different values of the variance mul-
tiplier (τ) and number of marker genes (M). (A) τ = .25, M = 10,
(B) τ = .25, M = 100, (C) τ = 1, M = 10, (D) τ = 1, M = 100.

●●

●● ●●

M = 1 M = 2 M = 5 M = 10 M = 20 M = 50 M = 100 M = 200 M = 500 M = 1000 M = 2000 M = 5000

G
ong

0.0

0.2

0.4

0.6

Method

|tr
ut

h 
−

 e
st

im
at

e|

method Our Approach Regression LogRegression cibersort

GongA

●● ●●

●●

Our Approach Regression LogRegression cibersort

G
ong

1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00 1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00 1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00 1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

0.0

0.2

0.4

0.6

Num. Markers

|tr
ut

h 
−

 e
st

im
at

e|

GongB

Figure 4. Error for methods for the Gong dataset over a varying
number of markers (M). Error is measured as the absolute value
of the truth less the estimate. (A) displays the plots by number of
markers. (B) displays the exact same data but separating by
method.
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Figure 5. Error for methods for the Shi dataset over a varying
number of markers (M). Error is measured as the absolute value
of the truth less the estimate. (A) displays the plots by number of
markers. (B) displays the exact same data but separating by
method.
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Figure 6. Best-case and worst-case for the methods over all
datasets. The best case is the best error over all values of M . The
worst-case is the worst error the method achieves on the dataset
over all value of M we tried.
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