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Abstract  11 

The acquisition of increasingly large plankton digital image datasets requires automatic methods 12 

of recognition and classification. As data size and collection speed increases, manual annotation 13 

and database representation are often bottlenecks for utilization of machine learning algorithms 14 

for taxonomic classification of plankton species in field studies. In this paper we present a novel 15 

set of algorithms to perform accurate detection and classification of plankton species with minimal 16 

supervision. Our algorithms approach the performance of existing supervised machine learning 17 

algorithms when tested on a plankton dataset generated from a custom-built lensless digital device. 18 

Similar results are obtained on a larger image dataset obtained from the Woods Hole 19 

Oceanographic Institution. Our algorithms are designed to provide a new way to monitor the 20 

environment with a class of rapid online intelligent detectors.  21 
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Author Summary 24 

Plankton are at the bottom of the aquatic food chain and marine phytoplankton are estimated to be 25 

responsible for over 50% of all global primary production [1] and play a fundamental role in 26 

climate regulation. Thus, changes in plankton ecology may have a profound impact on global 27 

climate, as well as deep social and economic consequences. It seems therefore paramount to collect 28 

and analyze real time plankton data to understand the relationship between the health of plankton 29 

and the health of the environment they live in. In this paper, we present a novel set of algorithms 30 

to perform accurate detection and classification of plankton species with minimal supervision. The 31 

proposed pipeline is designed to provide a new way to monitor the environment with a class of 32 

rapid online intelligent detectors. 33 

Introduction 34 

Plankton are a class of aquatic microorganisms, composed of both drifters and swimmers, which 35 

can vary significantly in size, morphology and behavior. The exact number of plankton species is 36 

not known, but an estimation of oceanic plankton puts the number between 3444 and 4375 [2]. 37 

Traditionally, plankton are surveyed using either satellite remote sensing, where leftover biomass 38 

is inferred indirectly through measurement of total chlorophyll concentration, or with large net 39 

tows via oceanic vessels [3], with subsequent microscopic analysis of the preserved samples. 40 

Satellite imaging methods are extremely accurate in terms of global geographic association and 41 

very useful for broad species characterization but may present practical challenges in terms of 42 

accuracy of the performed counts, species preservation and fine-grained characterization. The 43 

analysis of preserved samples, instead, allows for fine grained classification and accurate counting 44 

with narrow spatial sampling. More recently, real time observation of plankton species has been 45 
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made possible by novel instruments for high-throughput in situ autonomous and semi-autonomous 46 

microscopy [4]. Such high-resolution imaging instruments make it possible to observe and study 47 

spatio-temporal changes in plankton morphology and behavior, which can be correlated with 48 

environmental perturbations. Sudden or unexpected changes in number, shape, aggregation 49 

patterns, population composition or collective behavior may be used to infer anomalous conditions 50 

related to potentially catastrophic events, either natural, like harmful algal blooms, or man-made, 51 

like industrial run offs or oil spills. Intelligent systems trained on curated data could help establish 52 

the characteristics of a healthy ecosystem and detect perturbations that may represent potential 53 

threats. More importantly, given the diversity of plankton morphology and behavior across species 54 

and the growing but still limited availability of high-quality labeled data sources, there is a need 55 

for algorithms which require minimal supervision to classify and monitor plankton species with a 56 

performance approaching that of supervised algorithms. Moreover, it is also desirable for such 57 

algorithms to aid the discovery of new plankton classes, which cannot generally happen with 58 

supervised classification techniques.   59 

In this paper we propose a set of novel algorithms to reliably characterize and classify plankton 60 

data. Our method is based on an unsupervised approach to overcome the limits of supervised 61 

machine learning techniques, and designed to dynamically classify plankton from instruments that 62 

continuously acquire plankton images.  First, we evaluate the performances of our algorithms on 63 

a mixture of ten freshwater plankton species imaged with a lensless microscope designed for in 64 

situ data collection [5]. Next, we evaluate the performance of our algorithms on an image dataset 65 

extracted from the Woods Hole Oceanographic Institution (WHOI) plankton database [6]. 66 

Machine learning methods are becoming a popular way to characterize and classify plankton [7]–67 

[14]. A recent paper [15] explores the use of Convolutional Neural Networks to classify species of 68 
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zooplankton, by introducing an architecture named ZooplanktoNet. The authors claim that their 69 

customized architecture can reach higher accuracy compared to standard deep learning 70 

configurations, like VGG, AlexNet, CaffeNet, and GoogleNet.  In [16] and [17], the authors use 71 

an SVM based algorithm to classify species with high accuracy from the WHOI dataset. In a recent 72 

Kaggle competition contest (http://www.kaggle.com/c/datasciencebowl), the authors developed a 73 

deep learning architecture named DeepSea [18] to perform accurate classification of plankton 74 

collected with an underwater camera. In [19] the authors combine features obtained with multiple 75 

kernel learning to achieve higher accuracy than classic machine learning algorithms. However, all 76 

these advancements use supervised learning algorithms that rely on large labeled training sets 77 

which are very difficult and time consuming to create. Although recent computational advances 78 

may reduce the annotation burden for large biological datasets [20], a high-performance 79 

unsupervised learning algorithm can provide an alternative for real time unbiased in situ analysis. 80 

 81 
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Results 91 

Plankton Classifier 92 

We developed an unsupervised customized pipeline for plankton classification and anomaly 93 

detection, that we named plankton classifier. The pipeline, shown in Fig 1, is tested on a collection 94 

of videos containing ten fresh water species of plankton captured with a lensless microscope [5].  95 

Each video is ten seconds long and contains one or more species. As the method is unsupervised, 96 

no labels are provided to the classifier during training. The plankton classifier consists of four 97 

modules: an image processor, a feature extractor, an unsupervised partitioning module and a 98 

classification module. The image processor examines each frame of video and generates cropped 99 

images of each plankter. The feature extractor examines each plankter image and generates a 100 

collection of features. The unsupervised partitioning module clusters samples by features into 101 

classes. The classification module comprises of a neural network-based anomaly detector to both 102 

perform classification based on the inferred labels and provide information to extend the database 103 

in an unsupervised manner. A sample is considered an anomaly with respect to a class if the 104 

extracted features are significantly different from the class average, as described below. The 105 

classification module also includes a standard neural network classifier, for performance 106 

comparison. See section materials and methods for a description of the modules in more details, 107 

along with the methods considered and tested that led to our final design. 108 
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 109 

Fig 1. Schematic overview of the pipeline used to detect and classify plankton species with minimal supervision. Our preferred 110 

embodiment is represented by the red lines.  111 

 112 

 113 
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Unsupervised partitioning performance  114 

First, the plankton classifier examines each frame of an acquired video and generates cropped 115 

images of each plankter. A set of 131 features is then extracted, as described in Materials and 116 

Methods. The unsupervised partitioning module uses such features to place each plankton sample 117 

into one of Z classes. To automatically obtain the number of classes from the dataset, we have 118 

designed a custom algorithm based on partition entropy (see Materials and Methods). We 119 

evaluated the robustness of the implemented method on random subsets of the lensless dataset 120 

with different sizes, ranging from three to ten species. The box plot indicating the distribution for 121 

the estimated number of clusters Z among ten iterations can be observed in Fig 2e. The inferred 122 

number of classes, Z, is correctly identified in every case. A comparison of the performance of this 123 

algorithm against other existing methods is reported in the Supporting Information. Once we have 124 

obtained the number of clusters, we compared three clustering algorithms (see Supporting 125 

Information): k-Means, Fuzzy k-Means and Gaussian Mixture Model (GMM). Clustering 126 

accuracy is evaluated using purity (see materials and methods). The Fuzzy k-Means algorithm 127 

reaches a purity value of 0.934 (see Figs 2a, 2b), outperforming the standard k-Means (purity value 128 

= 0.887) and GMM [21] (purity value = 0.886). A posterior analysis of the results of the GMM 129 

reveals that this algorithm is not able to distinguish between Blepharisma americanum and 130 

Paramecium bursaria, due to their nearly identical appearance in the acquired videos. The Fuzzy 131 

k-Means algorithm is able to match the fuzziness exhibited by the plankton classes in parameter 132 

space which explains the lower accuracy of the crisp algorithms (k-Means and GMM). Therefore, 133 

we use the Fuzzy k-Means for our unsupervised classifier. A potentially important effect on the 134 

performance of any clustering algorithm is the class imbalance. The lensless microscope dataset is 135 

composed of 500 training samples for each of the ten considered species. To evaluate the impact 136 
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of class imbalance, we performed the following experiment: We have built a dataset where the 137 

number of images of a species is a fraction (between 10% and 80%) of the number of images of 138 

the other species. We then evaluate the purity of this dataset and repeat the procedure for all the 139 

other species. Fig 2f reports the average performance over the ten datasets obtained as described 140 

above, as measured by the purity. The algorithm is always able to infer the correct number of 141 

species, without any overlap, with a minimum average purity value of 0.74 ± 0.09 (corresponding 142 

to 80% of class imbalance) and a maximum average purity value equal to 0.90 ± 0.08 143 

(corresponding to 10% of class imbalance), with a maximum purity value of 0.972. This result 144 

shows that our pipeline can accurately cluster the data even in the case of strong class imbalance. 145 
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Fig 2. Unsupervised clustering results. a, b We performed a PCA analysis on the lensless digital microscope dataset to provide 147 

a graphical representation of the data distribution into the features space. We plot the first three principal components that account 148 

for ~67% of the total variance. We assigned different colors to the different plankton species. a Species are assigned using ground 149 

truth labels. b Species are assigned to the most overlapping cluster resulting from the unsupervised partitioning procedure. c, d 150 

Same analysis and procedure applied on the WHOI dataset. c Species are assigned using ground truth labels. d Species are assigned 151 

to the most overlapping cluster, resulting from the unsupervised partitioning procedure. e Distribution of number of clusters 152 

computed using our PE algorithm for a random subset of species in the lensless microscope dataset. Results are reported for different 153 

initial number of species. f Effect of class imbalance. For each of the ten species included into the lensless microscope dataset, we 154 

simulated class imbalance by increasing the number of images available to the clustering algorithm for the considered species. h, i 155 

PCA analysis on the lensless digital microscope dataset provides a graphical representation of the data distribution into the deep 156 

features space. The unsupervised partitioning using deep features is highly accurate. The first three principal components are plotted 157 

and different colors to the different plankton species are assigned. h Species are assigned using ground truth labels. i Species are 158 

assigned to the most overlapping cluster resulting from the unsupervised partitioning. 159 

 160 

Algorithm performance on features extracted using deep feature extraction 161 

Feature selection is an important part of any unsupervised learning pipeline. Indeed, hand 162 

engineering features introduces a degree of arbitrariness, which can be removed using a method 163 

of automated feature selection. Deep feature extraction, which consists in training a neural network 164 

architecture on either in- or out-of-domain data and use the last layer before prediction to extract 165 

features [9][22], is one such method. We trained the model described in section Convolutional 166 

Neural Network (CNN) for deep features extraction  using the ten classes included in our lensless 167 

microscope dataset. The model reached 99% of training accuracy, 99% of validation accuracy and 168 

98% of testing accuracy on the dataset obtained using our lensless microscope. Finally, the 128 169 

neurons from the fully connected layers preceding the output are extracted and used as features for 170 

our pipeline. The PCA computed for the lensless microscope testing set among these features can 171 

be visualized in Fig 2h. Fig 2i shows the results of the unsupervised partitioning procedure. The 172 
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underlying structure of the data set is very accurately captured, with a purity value of 0.98. Despite 173 

the fact that the accuracy obtained using deep feature extraction is slightly higher than the one 174 

obtained using the hand engineered features (purity of 0.980 vs 0.934), we decide to use the 175 

interpretable features described in Table 1. In fact, we think it is important that interpretability is 176 

maintained for the purpose of establishing a causal link between environmental perturbations and 177 

morphological modifications. However, for the purpose of organism classification, the customized 178 

deep feature extraction algorithm we implemented is a very viable alternative to the one proposed. 179 

 180 

 181 

Classification 182 

Supervised Classifier. At this stage of the pipeline, all samples have been assigned labels which 183 

have no correspondence to the actual plankton classes. We use the same trained clustering 184 

algorithm to classify the test samples, assigning each sample to the closest centroid. Using the 185 

trained Fuzzy k-means algorithm we reach a testing accuracy of 89%. Alternatively, one can use 186 

the labels obtained by our unsupervised partitioning algorithm to train a supervised classifier.  We 187 

evaluated two algorithms: An Artificial Neural Network (ANN) and a Random Forest (RF) 188 

classifier. Our ANN architecture consists of a collection of classifiers, each trained to detect one 189 

plankton class. The RF approach consists in a set of decision trees to separate the training step 190 

samples into the correct classes.  191 

For comparison, a simple ANN classifier is trained using the labels provided by the unsupervised 192 

partitioning algorithm. The ANN is a massive parallel combination of single processing units 193 

which can learn the structure of the data and store the knowledge in its connections [23]. See 194 
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Materials and Methods for further information and for a detailed description of the implemented 195 

architecture. The network is very shallow, providing an efficient feature selection process. The 196 

ANN classifier reaches a validation accuracy of 99% and a testing accuracy of 94.5%. Figs 3c and 197 

3d report the ROC curves and the confusion matrix obtained by testing the trained ANN classifier 198 

on our ten species plankton dataset. The ROC curves are close to a perfect classifier and the 199 

confusion matrix is almost diagonal with minor overlap between two pairs of species: Blepharisma 200 

americanuum-Paramecium bursaria and Spirostomum ambiguum-Stentor coerouleus. This 201 

misclassification is primarily due to the similarity in the shape, size and texture of the two pairs of 202 

species, influencing both the unsupervised training clustering and the subsequent testing of the 203 

supervised classifier.  204 

An alternative classifier method employs a Random Forest (RF) approach, a popular ensemble 205 

learning method used for classification and regression tasks.  206 

We train an RF algorithm using the labels provided by the unsupervised classifier and reach an 207 

accuracy of 94%. For comparison, we train the same RF algorithm using the actual labels (ground 208 

truth) of the training set and reach an accuracy around 98%, proving that our unsupervised 209 

classification approach performs comparably well with respect to the correspondent supervised 210 

approaches for the trained classifier. Since the ANN performs marginally better than the RF 211 

classifier, we propose the former for a pipeline. In the next section, we will present an alternative 212 

classification method 213 

 214 

Anomaly Detector 215 

When deployed in the field, microscopes will encounter species that have never been seen before, 216 

so it is essential that such samples are detected and correctly identified as anomalies. For a given 217 
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class, a sample is considered an anomaly if the sample features are significantly different from the 218 

feature average for the class. Algorithms for anomaly detection based on the separation of the 219 

features space have been successfully used to identify the intrusion in computer networks for 220 

security purposes [24]. Two anomaly detectors are implemented and compared; a state of the art 221 

one-class SVM15 and a customized neural network we call a Delta-Enhanced Class (DEC) detector 222 

that combines classification with anomaly detection. The one-class SVM algorithm uses a kernel 223 

to project the data onto a multidimensional space and can be interpreted as a two class SVM 224 

assigning the origin to one class and the rest of the data to another class. It then solves an 225 

optimization problem determining a hyperplane with maximum geometric margin, i.e., a surface 226 

where the separation between the two sets of points is maximal, that will be used as decision rule 227 

during the testing step. 228 

A customized one-class SVM is implemented by normalizing the testing samples using the training 229 

data belonging to a single class. In this way, there will be a significant difference in the absolute 230 

value obtained for the anomaly (out-of-class) samples compared to the in-class samples, improving 231 

the accuracy of the SVM. The one-class SVM so designed reaches an average testing accuracy of 232 

(93.5 ± 6.0) %, with high accuracy in both anomaly detection and classification.  233 
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 234 

Fig 3. Feature space representation and classification performances. a, b Multidimensional visualization of the geometric 235 

subset of the ten species in the lensless microscope dataset, obtained using the following methods (see Supporting Information): a 236 

Andrew’s curve. b Parallel coordinates. c ROC curves obtained for the neural network classifier trained on the labels provided by 237 

the clustering algorithm for the lensless microscope dataset. d Corresponding confusion matrix.    238 

 239 

 240 

We now describe an alternative ANN-based approach that simultaneously performs classification 241 

and anomaly detection. As demonstrated above, a single layer ANN is able to satisfactorily classify 242 

plankton data from our in-house dataset. However, to effectively approach the anomaly detection 243 
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step, we designed a deep neural network called Delta-Enhanced Class (DEC) detector (see 244 

materials and methods for further details). One DEC detector must be trained for each of the 245 

training species. Therefore, we train ten DEC detectors, one for each of the species of plankton 246 

identified in the unsupervised learning step. This procedure affords excellent accuracy on both 247 

classification and anomaly detection, on both real and simulated plankton data (see Fig 4), with an 248 

average testing accuracy on real data of 98.8 ± 2.4 %, an average anomaly detection testing 249 

accuracy of 99.2 ± 0.7 % and an average overall testing accuracy of 99.1 ± 0.9 % (see Fig 4b for 250 

details). The confusion matrices in Fig 4a demonstrate the discrimination power of our algorithm. 251 

The DEC detector outperforms the alternative one-class SVM classifier in both supervised 252 

(average accuracy equal to 95%) and unsupervised (average accuracy equal to 93.5%) 253 

configurations. It is worth reporting that the unsupervised one-class SVM reached a minimum 254 

overall accuracy of 79%, compared to 97.2% for the DEC detector (minimum values correspond 255 

to Paramecium bursaria detector).  To test the overall performance of our method, we produce a 256 

dataset of surrogate plankton organisms. For each different species, we test the corresponding DEC 257 

detector architecture using a surrogate species created with a feature-by-feature weighted average 258 

of all the species in our dataset. Starting with a uniform weight distribution, we increase the weight 259 

for the species corresponding to the trained DEC detector architecture up to 0.9 (steps of 0.1), 260 

obtaining 9 different surrogate species (see Fig 4d for an average parallel coordinates plot, showing 261 

the resulting distributions for the species Spirostomum ambiguum). The aim of this robustness test 262 

is to simulate the acquisition of an unknown species, whose features are increasingly closer to the 263 

features of the class correspondent to the detector, up to a maximum of 90% similarity. As Fig 4e 264 

shows, our classifier can recognize the synthetic species as an anomaly with an average accuracy 265 

higher than 98% if the similarity between the synthetic and the real species is up to 30%, and it 266 
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can maintain an average accuracy of over 82.6% if the species similarity is up to 50%. Accuracy 267 

of anomaly detection severely decreases if the species similarity is over 50%, reaching the 268 

minimum value of 37.5%. 269 

Plankton classifier performance on the WHOI dataset 270 

The WHOI provides a public dataset comprising millions of still monochromatic images of 271 

microscopic marine plankton, captured with an optical Imaging FlowCytobot 272 

(https://mclanelabs.com/imaging-flowcytobot/). To use this dataset as a benchmark to test our 273 

unsupervised classifier, we extract a set of 128 features from a collection of 40 species of plankton 274 

(100 images per species, randomly selected), using both the segmented binary image and the 275 

portion of the gray-scale image containing the plankton cell body. A full description of the species 276 

selection process is reported in the Supporting Information. The features set is identical to the one 277 

used for the lensless microscope dataset, except for the absence of three-color features, as the 278 

lensless microscope is a color-based sensor, while the Imaging FlowCytobot is monochromatic. 279 

Figs 2c, 2d show the results of our pipeline applied on the normalized features set. The algorithm 280 

reaches an overall purity value of 0.715 for the 40 WHOI species that we selected. The ability of 281 

our pipeline to distinguish between inter-species plankton morphology can be further observed 282 

comparing Fig 2c, which represents the PCA space corresponding to a subset of 18 of the 40 283 

species for the ground truth dataset, and Fig 2d, which represents the corresponding PCA space 284 

resulting from the unsupervised partitioning algorithm. A complete PCA representation for the 40 285 

species can be found in Supporting Information. We trained a random forest algorithm using the 286 

labels provided by the unsupervised partitioning with a train-test ratio of 80:20, obtaining a 287 

classification accuracy around 63%. For comparison, we have trained a supervised random forest 288 
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algorithm using the ground truth labels on the extracted features, obtaining a classification 289 

accuracy around 79%.   290 

 291 

Fig 4. Delta-Enhanced Class detector performances and results. a Confusion matrix corresponding to each of the ten neural 292 

networks trained on the lensless microscope dataset. b Overall testing accuracy performances for each of the ten testing classes. 293 

The number used on x axis to label each species correspond to the species number in panel a. c-d DEC detector anomaly detection 294 
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performances tested on in silico generated data. d Testing accuracy performances for varying percentage values of in silico species 295 

similarity with the trained species. e Example of average features space parallel coordinates plot for the in-silico species obtained 296 

using the species Spirostomum Ambiguum. By increasing the similarity, the features of the surrogate species approach the features 297 

of the real species, resulting in an increased average anomaly misclassification rate, decreasing the overall accuracy levels. e 298 

Detection of unknown species. The panel shows the percentage of samples detected by all the DEC detectors as anomaly, when 299 

removing one training species from the set, for each of the ten training species. These numbers reflect the level of accuracy of the 300 

proposed algorithm in detecting unseen species. The number used on x axis to label each species correspond to the species number 301 

in panel a. 302 

The plankton classifier can reveal unseen species  303 

We have demonstrated that our DEC neural networks are able to classify a sample as either a 304 

training class (i.e., the plankton species used to train the detector) or as an anomaly. If a sample is 305 

discarded by all the implemented detectors, it could either represent an intra-species anomaly (i.e., 306 

species included into the training set) or a sample belonging to an unseen species (i.e., species not 307 

included in the training set). The former represents the basis for using the proposed pipeline for 308 

real-time environmental monitoring, and its implications are discussed in the next section. We now 309 

test the potential of our pipeline to detect new species. We remove one class from our unsupervised 310 

partitioning ensemble set, consider it as never before seen and compute the number of testing 311 

samples detected as anomaly by all the remaining DEC detectors. This number indicates the 312 

algorithm accuracy in detecting new species. We repeat the procedure for each class. The average 313 

detection accuracy is 98.3 ± 10.1 % (see Fig 4e), demonstrating the ability of the pipeline to detect 314 

the presence of a new species. If two or more unseen species are detected, they will be stored as 315 

anomalies. As this group of anomalies grows, a human expert may determine offline the actual 316 

labels for these new species, thus allowing a DEC detector to be trained for each new species. 317 

Alternatively, the samples corresponding to unseen species may be clustered and classified by the 318 
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unsupervised partitioning step of our pipeline, reducing the number of new species that must be 319 

examined by a human. 320 

Discussion 321 

The plankton classifier described in this paper provides the foundation for a robust, accurate and 322 

scalable mean to autonomously survey plankton in the field. We have identified interpretable and 323 

non-interpretable image features that work with our algorithms to perform an efficient clustering 324 

and classification on plankton data using minimal supervision and with a performance accuracy 325 

comparable to supervised learning algorithms [16]. Instead of labeling thousands of samples, an 326 

expert need only identifying one member of cluster to label all the samples of the cluster.    327 

We introduced a neural network that performs classification by learning the shape of the feature 328 

space and uses this information to identify anomalies. The network uses a novel unbiased 329 

methodology of feature-to-feature comparison of a test sample to a random set of training samples. 330 

While most of the existing classification methods require various degrees of user input, our method 331 

is automated, without sacrificing performance accuracy or efficiency. 332 

All features the plankton classifier relies upon are extracted from static images. However, our 333 

custom lensless microscope captures 2D and 3D dynamic of plankton. While this dynamic 334 

information is not considered in the analysis presented here, motion data can increase the 335 

dimensionality of the feature space, by adding spatio-temporal “behavioral” components, and may 336 

improve the performance of classifiers and anomaly detectors. This is particularly valuable in cases 337 

where species have considerable overlap in morphology feature space, as seen with Blepharisma 338 

americanuum and Paramecium bursaria, and Spirostomum ambiguum and Stentor coerouleus, 339 
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shown in the confusion matrices in Fig 3d. Currently, existing large plankton datasets, like the 340 

WHOI used in our validation experiments, are based on static images, but as the cost of video-341 

based in situ microscopes drops and their deployment increases, we believe datasets that include 342 

spatio-temporal data will become available and the use of such features will gain importance. 343 

Deploying smart microscopes capable of real-time continuous monitoring will give biologist an 344 

unprecedented view of plankton in situ. The adoption of an unsupervised unbiased pipeline is a 345 

significant step ahead in the development of a real-time “smart” detector for environmental 346 

monitoring. Several high-resolution acquisition systems for real-time plankton imaging already 347 

exist [25] and could adopt the pipeline proposed into this paper. Fig 5 shows a high-level 348 

representation of a continuous environmental monitoring system in the form of a flow chart, 349 

showing an example of how the detector could be coupled to the computational pipeline we 350 

designed. Once the descriptors have been extracted from the acquired videos, it is possible to use 351 

them to build a set of DEC detectors. It is important to stress that the size of the data likely to be 352 

acquired, or already present in the databases, makes neural networks the obvious choice to carry 353 

out the analysis due to their unsurpassed scalability. Our newly designed and customized DEC 354 

detector neural architecture for plankton classification and anomaly detection is a functional and 355 

efficient example of such algorithm. Moreover, neural algorithms can infer non-linear 356 

relationships between features (input) and correlate them with the class description (output) 357 

without making any assumptions on the underlying learning model. Hence, the classification 358 

depends only on the extracted features. Every time the network identifies a species belonging to a 359 

specific class, the average set of morphological features is then updated, thereby further qualifying 360 

the class morphology phase space. If an anomaly is detected, it may be sent to an expert for a 361 

supervised examination. The expert will determine whether that sample could be a species not 362 
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represented in the training set, or if it belongs to an existing training class, but its morphological 363 

features deviate significantly from the average features space of the corresponding class. In the 364 

former case, a new smart detector will be trained offline, so that the training set is dynamically 365 

expanded, and the system will provide a continuous monitoring of the aquatic environment using 366 

the human expert-in-the-loop paradigm. In the latter case, the identified anomalies may represent 367 

local environmental perturbations, either natural or man-made. Further work is needed to assess 368 

the validity of such hypothesis. An additional re-training step may be necessary to update the 369 

algorithms. Our pipeline is based on local analysis using a low powered device, capable of image 370 

capture and processing, classification and anomaly detection. Coupling such platform with a local 371 

(laptop, server) or cloud-based system where the training step may occur could provide the 372 

flexibility and resources needed to close the loop and generate the training data the low power 373 

platform can use for classification. Examples of systems that use this paradigm are already present 374 

in the literature [26], and we hope the availability of computational paradigms like the one we 375 

propose may increase the research in the field. A high-resolution plankton acquisition system 376 

placed in the water and powered with our unsupervised pipeline may enable the development of 377 

real time continuous smart environmental monitoring systems that are fundamentally needed to 378 

stakeholders and decision-making bodies to monitor plankton microorganisms and, consequently, 379 

the entire aquatic ecosystem [27]. 380 

Finally, it is interesting to consider if such unsupervised approach can be utilized for different data 381 

types, thus widening the potential applicability and interest of the technique. While an extensive 382 

analysis of the performance of our pipeline on diverse set of data is beyond the scope of this work, 383 

it is worth commenting that the algorithms we use are general and pose no evident drawback to 384 

their application to other cell types. Particularly, the features our classifier uses to cluster the 385 
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images do not include anything specific to plankton species (e.g. detection and estimation of 386 

number of flagella or other organelles.) Moreover, the proposed Deep Feature extraction method 387 

is even less dependent on the kind of data under study and may increase the applicability to other 388 

cell types. Thus, we expect the method to be potentially useful to other biological imaging fields.  389 

 390 

Fig 5. Proposed real-time smart environmental monitoring pipeline. 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 
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Material and methods  401 

The proposed unsupervised pipeline (i.e., the plankton classifier) shown in Fig 1, consists of four 402 

modules: an image processor, a feature extractor, an unsupervised partitioning module and a 403 

classification module. In the following paragraphs we provide a description of the modules in 404 

more details, along with the methods considered and tested that led to our final design. 405 

Image Processing 406 

Each video consists of ten seconds of color video (1920x1080) captured at 30 frames per second. 407 

Background subtraction is applied to each frame to detect the swimming plankton in the image. A 408 

contour detector is applied to the processed image to create a bounding box around each plankter. 409 

Because of instrument design, organisms can swim in and out of the field of view (FOV) during 410 

acquisition. Our algorithm automatically selects organisms which are fully contained inside the 411 

FOV by checking whether the bounding box touches the borders of the FOV. In this way, the 412 

images we obtain will be only of fully visible organisms. The resulting cropped image is then 413 

saved. From this collection of images, a training set of 640 images (500 training and 140 testing) 414 

is selected for each class. An image processor module for static images has also been implemented 415 

for benchmarking the plankton classifier on existing plankton datasets (e.g., the WHOI dataset; 416 

See Supporting Information for further details.).  417 

Feature Extraction 418 

For each plankter image, 131 features are extracted from four categories: geometric (14), invariant 419 

moments (32), texture (67) and Fourier descriptors (10). Geometric features include area, 420 

eccentricity, rectangularity and other morphological descriptors, that have been used to distinguish 421 
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plankton by shape and size [16]. The invariant Hu [28](7) and Zernike moments [29] (25) are 422 

widely used in shape representation, recognition and reconstruction. Texture based features encode 423 

the structural diversity of plankton. Fourier Descriptors (FD) are widely used in shape analysis as 424 

they encode both local fine-grained features (high frequency FD) and global shapes (low frequency 425 

FD). A full list of the features we have selected is reported in Table 1. These features span a 131-426 

dimensional space, capturing the biological diversity of the acquired plankton images. Figs 3a and 427 

3b demonstrate as an example, the discriminating power of the geometrical features for the ten 428 

evaluated species. 429 

 430 
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Table 1: List of morphological features extracted from the processed images. See Supporting Information for a detailed 431 

explanation. 432 

Convolutional Neural Network (CNN) for deep features extraction  433 

We implemented a deep CNN using eight convolutional layers and two fully connected layers, as 434 

described in Fig 6. We customized our architecture to be invariant with respect to rotation, similar 435 

to what has been done in [18]. Each input sample is rotated four times at multiples of 90 degrees, 436 

and all the tensors resulting from the features extraction module are concatenated and used to train 437 

the fully connected layers. The neural network has been trained for 60 epochs, using stochastic 438 

gradient descent with learning rate equal to 10-5, using data augmentation by means of translation, 439 

zooming, and rotation. It is worth noticing that the implemented rotational invariance module 440 

actually performs a data augmentation operation, and it is indeed useful when partial training data 441 

are available. 442 

 443 

Fig 6. Deep features extraction. Deep CNN implemented for the purpose of deep features extraction. The blue layers represent 444 

convolutional layers, the grey ones represent a max pooling 2D operation. The fully connected layer with 128 neurons output has 445 

been used as feature set to the subsequent modules in our pipeline. 446 
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Unsupervised Partitioning 447 

Partition Entropy (PE) 448 

The Partition Entropy (PE) coefficient is defined as: 449 

𝑃𝐸 = − 
1

𝑁
∑  ∑ 𝑢𝑖𝑗 ∗ log (𝐾

𝑗=1 𝑢𝑖𝑗)𝑁
𝑖=1         (1) 450 

 451 

 452 

The coefficient is computed for every j in [0, K] and takes values in range [0, log(K)].  The 453 

estimated number of clusters is assigned to the index j* corresponding to the maximum PE value, 454 

PE(j*). The lower the PE(j*), the higher the uncertainty of the clustering. We repeat this procedure 455 

ten times and obtain a distribution of j*. Finally, the estimation of the number of clusters Z is the 456 

mode of this distribution.  457 

Clustering accuracy  458 

Clustering accuracy is evaluated using purity: 459 

 460 

where the class k is associated to the cluster j with the highest number of occurrences. A purity 461 

value of one corresponds to clusters that perfectly overlap the ground truth. Purity decreases when 462 

samples belonging to the same class are split between different clusters, or when two or more 463 

clusters overlap with the same species. We have implemented a purity algorithm capable of 464 

checking for these occurrences and automatically adapt to the correct number of non-overlapping 465 

clusters (see Supporting Information).  466 
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Classification algorithms 467 

Random Forest 468 

Random Forests (RF) is a popular ensemble learning method [30] used for classification and 469 

regression tasks, introduced in 2001 by Breiman. Random forests model providing estimators of 470 

either the Bayes classifier or the regression function. Basically, RF work building several binary 471 

decision trees using a bootstrap subset of samples coming from the learning sample and choosing 472 

randomly at each node a subset of features or explanatory variables [31]. Random forests are often 473 

used for classification of large set of observations. Each observation is given as input at each of 474 

the decision tree, which will output a predicted class. The model outputs the class that is the mode 475 

of the class output by individual trees [32].   476 

Let us consider a set of observations , with . The decision tree is designed as 477 

follows: we extract N times from the set of training observations (with replacement), for a each of 478 

the total number of decision tree. We specify the number of features  to consider for the tree 479 

growing, with .  For each of the nodes in the tree, the algorithm randomly selects 480 

features and calculates the best split for that node. The trees are only grown and not pruned (as in 481 

a normal tree classifier [33]. The split’s aim is to reduce the classification error at each branch. In 482 

detail, the algorithm considers an entropy-based measure trying to reduce the amount of entropy 483 

at each branch, selecting, with such a procedure, the best split. A possible choice is the Gini index: 484 

 485 

(27) 486 

 487 
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Where  is the Gini Index for branch at level m in the decision tree, and is the proportion of 488 

observations assigned to class i. Minimizing  , means to decrease the heterogeneity at each 489 

branch, i.e., a best split will correspond to a lower number of class in the children nodes. The 490 

algorithms continue in growing trees until convergence on the entropy-based on the generalization 491 

error [32]. 492 

Neural Networks 493 

An artificial neural network (or multi-layer perceptron) is a massive parallel combination of single 494 

processing unit which can acquire knowledge from environment through a learning process and 495 

store the knowledge in its connections [23]. Classification is one of the most active research and 496 

application areas of neural networks. In this work we used an artificial neural network to build a 497 

classifier able to predict the species for each observation extracted using the shadow microscope. 498 

Fig. 2 shows the developed architecture. The network is very shallow, with two hidden layers of 499 

40 neurons and an output layer with as much neurons as the number of species to classify. As 500 

reported in the main text of this manuscript, we used a training dataset with 10 species, thus the 501 

output layer is made up of k neurons, where k is the number of clusters obtained using the 502 

unsupervised clustering. As Fig 7 shows, the developed NN uses RELU activation function and 503 

dropout to reduce the overfitting. The network was trained using 200 epochs, Root mean square 504 

as an optimizer, a learning rate = 0,005 and categorical cross-entropy as loss function. The 505 

training requires 50 seconds on a MAC book PRO, core i7 – 2.9 GHz, solid state disk and 16 GB 506 

of RAM. The neural network has been implemented using KERAS, a powerful high-level neural 507 

network API running on top of TensorFlow.  508 

 509 
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 510 

Fig 7. ANN architectures implemented for classification based on the extracted features.  511 

Anomaly Detection  512 

One Class SVM 513 

We adopted the one class SVM described by Scholpoff in [34]. Let us consider a set of N 514 

observations: . Where  is a m-dimensional real vector and  515 

simply imply that the set contains normal observations belonging to a certain class. The one-class 516 

SVM is a classification algorithm returning a function which takes +1 in a “small” region capturing 517 

most of the data points, and -1 elsewhere. Let  be a feature map that map our observations set , 518 

into an inner product space such as the inner product for the image of can be evaluated using 519 

some simple kernel:  520 

 521 

              (28) 522 

  523 
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The strategy of the one class SVM is to map the data into the kernel space and separate the data 524 

from the origin with maximum margin, defining a hyperplane as: 525 

 526 

                     (29) 527 

 528 

Meaning that we want to maximize the ratio  , corresponding to the hyperplane’s distance 529 

from the origin. In order to solve this maximization problem, we have to solve a quadratic 530 

problem: 531 

 532 

            (30) 533 

 534 

subject to   . 535 

 536 

Where  is the feature mapping function that maps observations x into a feature space,  is a 537 

slack variable for outlier that allows observations to fall on the other side of the hyperplane538 

is a regularization parameter determining the bounding for the fractions of outliers 539 

and support vectors.  540 

If  and  solve this problem, then the decision function: 541 

 542 

(31) 543 

 544 
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will be positive for most of the training observation, while w will be still small. The parameter 545 

influences the trade-off between the reported properties. To solve the quadratic form, we can use 546 

Lagrangian multipliers, obtaining:  547 

 548 

(32) 549 

And set the derivatives with respect to w, and  and expanding using the kernel expression 550 

yields: 551 

 552 

 553 

 554 

 555 

(33) 556 

  557 

 558 

 559 

 560 

We used a Radial Basis Function kernel (RBF): 561 

 562 

     (34) 563 

 564 

And then the original quadratic problem is solved substituting Eq. 16 into Eq. 15, yielding: 565 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/856815doi: bioRxiv preprint 

https://doi.org/10.1101/856815
http://creativecommons.org/licenses/by-nc/4.0/


32 

 

 566 

 567 

               (35) 568 

 569 

under the constraint of Eq. (16b) and (16c).  570 

 571 

 572 

We finally use the support vectors  to recover the parameter needed to compute the 573 

hyperplane: 574 

 575 

 576 

 577 

     (36) 578 

 579 

DEC detectors 580 

We designed a deep neural network that we named Delta-Enhanced Class (DEC) detector for the 581 

purpose of anomaly detection. The DEC detector’s architecture is represented in Fig 8, and shows 582 

a 2-neurons output, indicating that the sample is a member of the class or is an anomaly (i.e. not a 583 

member of the class). For each observation, we train such neural network with the actual features 584 

vector and extract randomly select a set of points from the training class in our dataset. For each 585 

of these selected points, we define a custom network layer (delta layer) that computes the 586 

difference in absolute value (as a vector, feature by feature) between the actual observation and 587 
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the extracted random set. The vector of differences and the actual observations are used as inputs 588 

to the neural network (Fig 8), which assigns the proper weights to either one during training. The 589 

set of points to select is a hyperparameter which needs to be tuned. Through testing we determine 590 

that 25 points is the optimal tradeoff accuracy and computational cost. 591 

 592 

Fig 8. Schematic representation of DEC detector architecture. 593 

 594 

 595 

 596 

Code availability 597 

The full source code accompanying this paper has been made available under EPL license at the 598 

following link:  https://github.com/sbianco78/UnsupervisedPlanktonLearning. 599 

 600 
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Supporting information 601 

S1 Data. The lensless microscope dataset and the dataset extracted from the WHOI used in 602 

this paper is available at the following link: 603 

https://ibm.ent.box.com/s/8g2mp5knl2by7cv0ie0fx60mlb3rs6v3 604 

S1 Text. Supplementary Information include: S1. Implemented detector to extract plankton 605 

images from the acquired videos S2. Evaluation of purity with respect to the number of samples 606 

using the lensless microscope dataset S3. Example images from the considered datasets S4. 607 

Example images from the considered datasets S5. Estimated number of clusters adopting the 608 

partition coefficient S6. Local Binary Pattern computation. S7. Multi-dimensional representation 609 

for the Haralick subset of features S8. Multi-dimensional representation for the Hu-moments 610 

subset of features S9. Multi-dimensional representation for the features extracted from the gray 611 

values histogram S10. Multi-dimensional representation for the LBP subset of features S11.  612 

Multi-dimensional representation for the Fourier Descriptors subset of features S12. Multi-613 

dimensional representation for the Zernike moments subset of features S13. Histogram reporting 614 

the normalized ranking score for the set of designed descriptors S14. Schematic work flow 615 

describing how an observation is associated to the three possible outpus of the developed system: 616 

retraining class, anomaly or belonging to a trained class  617 

S1 Fig. Implemented detector to extract plankton images from the acquired videos. The 618 

bounding box corresponding to the final detected contour is used to crop the plankton image.   619 

S2 Fig. Evaluation of purity with respect to the number of samples using the lensless 620 

microscope dataset. The results are very accurate with number of images per sample higher or 621 
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equal to 100. Using 50 images results in an overlap between two clusters (corresponding to the 622 

species Paramecium bursaria and Blepharisma americanuum), and in a decrease of the 623 

performances (light gray bar). The corrected purity algorithm introduced in this supplement (see 624 

Customized purity algorithm section), allows for a more accurate result (patterned bar).  625 

S3 Fig. Example images from the considered datasets. a-z13 WHOI dataset (names as they are 626 

labeled in the dataset) z14-z23 lensless microscope dataset. a Ceratium b Chrysochromulina c 627 

Coscinodiscus d  Dactyliosolen e Gyrodinium f Strombidium_morphotype1 g Dino30  h Euglena 628 

i Eucampia j Flagellate_sp3 k Pyramimonas_longicauda  l Thalassionema m Delphineis n 629 

Pleurosigma o Chaetoceros_didymus_flagellate p Dictyocha q DactFragCerataul r 630 

Emiliania_huxleyi s Corethron t Kiteflagellates u Tintinnid v Dinobryon w Ephemera x 631 

Thalassiosira_dirty y Skeletonema z Pseudochattonella_farcimen z0 Proterythropsis_sp z1 632 

Heterocapsa_triquetra z2  Rhizosolenia z3 Prorocentrum z4 Pleurosigma z5 Phaeocystis z6 Laboea 633 

Strobila z7 Katodinium_or_Torodinium z8 Mesodinium_sp z9 Paralia z10 Guinardia_striata z11 634 

Asterionellopsis z12 Amphidinium_sp z13 Pennate_morphotype1 z14 Blaepharisma Americanum 635 

z15 Euplotes Eurystomus z16 Spirostomum ambiguum z17 Volvox z18 Arcella Vulgaris  z19 636 

Actinosphaerium Nucleofilum z20 Dileptus z21 Stentor Coeruleous z22 Paramecium Bursaria z23 637 

Didinium nasutum. 638 

S4 Fig. Examples of species that are incorrectly assigned to the same cluster by our algorithm 639 

because of their morphological similarity in our feature space. Similarity is intended from left 640 

to right a Proterythropsis_sp  b Heterocapsa_triquetra c Amphidinium_sp  d 641 

Pseudochattonella_farcimen e Gyrodinium f Prorocentrum  642 

S5 Fig. Estimated number of clusters adopting the partition coefficient. a and the XIE-BENI 643 

index b as a function of sample size (species). The results are less precise if compared with the 644 
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partition entropy (see fig 2e in the main text). However, both the algorithms can reconstruct 645 

correctly the number of clusters for subset of 3 species and 5 species. The number of clusters on 646 

the y axis is the distribution of ten runs on random subsets of all species. For example, for the 647 

leftmost box, 3 species have been randomly chosen from the lensless microscope database. This 648 

procedure is repeated ten times and the mode is then used as the estimated number of clusters.  649 

S6 Fig. Local Binary Pattern computation. 650 

S7 Fig. Multi-dimensional representation for the Haralick subset of features. a Andrew’s 651 

curve. b Parallel coordinates 652 

S8 Fig. Parallel coordinate for the Hu-moments subset of features. a Andrew’s curve. b 653 

Parallel coordinates 654 

S9 Fig. Multi-dimensional representation for the features extracted from the gray values 655 

histogram.  a Andrew’s curve. b Parallel coordinates 656 

S10 Fig. Multi-dimensional representation for the LBP subset of features. a Andrew’s curve. 657 

b Parallel coordinates 658 

S11 Fig. Multi-dimensional representation for the Fourier Descriptors subset of features. a 659 

Andrew’s curve. b Parallel coordinates 660 

S12 Fig. Multi-dimensional representation for the Zernike moments subset of features. a 661 

Andrew’s curve. b Parallel coordinates 662 

S13 Fig. Histogram reporting the normalized ranking score for the set of designed 663 

descriptors. 664 
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S14 Fig. Schematic work flow describing how an observation is associated to the three 665 

possible outputs of the developed system: retraining class, anomaly or belonging to a 666 

trained class 667 

S1 Table.  Computational time on raspberry pi for the analysis of one sample. The standard 668 

deviation is computed among the objects contained into the 60 frames of the analyzed video. 669 
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